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Requisite variety, autopoiesis,
and self-organization

Carlos Gershenson
Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas,
Universidad Nacional Autónoma de México, Mexico City, Mexico

Abstract
Purpose – Autopoiesis is a concept originally used to define living systems. However, no measure for
autopoiesis has been proposed so far. Moreover, how can we build systems with a higher autopoiesis
value? The paper aims to discuss these issues.
Design/methodology/approach – Relating autopoiesis with Ashby’s law of requisite variety,
self-organization is put forward as a way in which systems can be designed to match the variety of
their environment.
Findings – Guided self-organization has been shown to produce systems which can adapt to the
requisite variety of their environment, offering more efficient solutions for problems that change in
time than those obtained with traditional techniques.
Originality/value – Being able to measure autopoiesis allows us to apply this measure to all systems.
More “living” systems will be fitter to survive in their environments: biological, social, technological,
or urban.
Keywords Adaptation, Autopoiesis, Self-organization
Paper type Research paper

Complexity
Cybernetics has studied control in systems independently of their substrate (Wiener, 1948).
This has allowed using the same formalisms to describe different phenomena, such as
neuronal and electronic circuits, offering the advantage of allowing the transfer of solutions
in one domain to another. For example, understanding adaptive behavior in animals can
help us build adaptive machines (Walter, 1950, 1951).

The cybernetic tradition of studying systems independently of their substrate has
propagated into other fields, one of them being the scientific study of complexity. The
term complexity derives from the Latin plexus, which means interwoven. We can say
that a complex system is one in which its elements are difficult to separate,
as they depend on each other. This dependence is caused by relevant interactions
(Gershenson, 2013a). Interactions are relevant when they co-determine the future of
elements. Thus, it is not possible to describe the future of an element studied in
isolation, its interactions have to be taken into account, and that is why they are
relevant. Interactions generate novel information which is not specified in initial nor
boundary conditions, limiting the predictability of complex systems (Gershenson, 2013b)
because of their inherent computational irreducibility (Wolfram, 2002), i.e. you can only
know the future once you have been there.

Complex systems are pervasive, as it is more difficult to find isolated phenomena
compared to phenomena which interact. It is not that science had not noted the
relevance of interactions. We just did not have the proper tools until a few decades ago.
It is difficult to describe complex systems in detail with traditional analytic methods, asKybernetes
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we have a rather limited number of variables we can fit in a paper or blackboard.
The scientific study of complex systems has progressed in parallel with the
technological development of electronic computers. This is because computers allow us
to study systems with multiple components and their interactions. More recently, data
availability has made it possible to contrast different theories of complex systems in all
branches of science. In an analogous way to microscopes permitting the study of the
microworld and telescopes enabling the exploration of the cosmos, computers are tools
which are giving us access to a greater understanding of complexity (Pagels, 1989).

A central question in the scientific study of complex systems is related to their
control, given their inherent limited predictability (Gershenson, 2007). It is desirable to
predict the future of systems and their environment to be able to act before a
perturbation occurs which might damage or destroy the system. In such situations,
feedforward control is suitable. Still, depending on the predictability of a system,
different control approaches are required (Zubillaga et al., 2014). The less predictable a
situation is, the more adaptive a system should be, i.e. feedback control would be more
appropriate. To be able to decide over different control approaches, measures of
predictability, and complexity are needed.

In the context of telecommunications, Shannon (1948) defined a measure of
uncertainty which he called information, which is equivalent to Boltzmann’s entropy
from thermodynamics. Intuitively, a message will carry little information if new data is
predictable, i.e. it is known beforehand with certainty derived from a skewed
probability distribution (few states highly probable). A message will have a high
information content for homogeneous probability distributions (most states equally
probable), because new data cannot be predicted from data already received. Shannon’s
information can be used to measure emergence, self-organization, and complexity
(Fernández et al., 2014).

Emergence can be understood as the creation of novel information. For example,
interactions between atoms of hydrogen and oxygen generate novel properties in a
molecule of water. Interactions between molecules of water generate novel properties
such as wetness, temperature, and pressure. The properties at a higher scale are not
present in the elements at the lower scale, so we can say that the properties emerge
from the interactions between elements. In other words, emergence occurs when
interactions generate novel information. Shannon’s information can be used precisely
to measure this novelty, and thus emergence, and normalized to the interval between
zero and one. Maximum emergence will occur with maximum information,
i.e. minimum predictability, while minimum emergence will occur with minimum
information, i.e. maximum predictability.

Self-organization occurs when interactions between elements of a system produce a
global pattern or behavior, as in the stripes of a zebra of a flock of birds. There is no
central or external control, but local interactions between elements lead to global
regularities. Maximum organization is achieved with maximum regularities. Thus,
self-organization can be seen as the inverse of entropy, and thus information and
emergence (Pask and von Foerster, 1960). Self-organization will be high when
emergence is low and vice versa. A maximum self-organization occurs with minimum
information, i.e. maximum predictability, while minimum self-organization occurs with
a maximum information, i.e. minimum predictability.

Complexity requires both emergence and self-organization. Following López-Ruiz
et al. (1995), we can define complexity as the multiplication between emergence and
self-organization. Thus, complexity will be minimal when emergence (chaos) or
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self-organization (order) are extreme, and complexity will be high when there is a
balance between emergence and self-organization. Control of systems with a high
complexity will benefit from having both prediction and adaptation. For a formal
derivation and further explanation of these measures of emergence, self-organization,
and complexity, please refer to Fernández et al. (2014).

Requisite variety
Ashby’s law of requisite variety states that an active controller must contain as much
variety as the phenomenon it attempts to control (Ashby, 1956). This is because if the
controlled has, say, ten states, the controller must be able to have enough variety to
respond appropriately for each of those ten states. For example, if an industrial robot
should be able to install four different types of screws, it requires enough variety to
discriminate at least four different situations and act accordingly to each of them. If we
now require the robot to manage two new types of screw, it will require a greater variety
to consider six different situations than the one required in the four screw scenario.

Stafford Beer applied the law of requisite variety to organizations, highlighting that
systems need to have enough variety to be viable. Still, in some cases the environment
of systems may have “insufficient” variety, and controllers should attempt to increase
the variety of the environment rather than matching it (Espejo and Reyes, 2011).

Bar-Yam (2004) noticed that variety can be seen as complexity, which had not been
defined in its current usage when Ashby proposed his law. This law can be generalized
to a law of requisite complexity: an efficient active controller will require at least the
same complexity as the complexity of the controlled. In other words, a controller for
a complex system requires to be at least as complex as the system it attempts to control.
In practice, this requires a balance between predictability and adaptability of the
controller (Gershenson, 2013b) to face both the emergence and self-organization of
the controlled.

Living systems can be described as control systems, since they require certain
control over the dynamics of their environment. Thus, the law of requisite variety also
is found in life, as organisms have to match the complexity of their environment at
different scales.

Autopoiesis
Maturana and Varela (1980) coined the concept of autopoiesis to define living systems.
Autopoiesis means self-producing, so it is related to autonomy (Ruiz-Mirazo and
Moreno, 2004). Even when the original concept focussed on the emergence of biological
systems from chemical components, the use of autopoiesis has been generalized to
other domains, such as sociology (Luhmann, 1986), changing its original meaning
to describe a broader range of phenomena. In the original meaning of autopoiesis, the
self-production was meant to be material, as in a cell organizing its own molecules.
A more general meaning of autopoiesis considers self-production independently of its
substrate. Thus, a society can self-produce its own norms, which are non-material.

A measure of autopoiesis has been proposed recently (Fernández et al., 2014),
taking inspiration from the law of requisite variety and the concept of “life ratio”
(Gershenson, 2012a). Autopoiesis in its broad sense can be defined as the ratio between
the complexity of a system and the complexity of its environment. It is convenient to
have a gradual measure of autopoiesis, as it is difficult to find a crisp boundary
between the living and non-living. This gradual measure can be useful to study the
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origin of life in evolution, but also the autonomy and adaptivity of any system. Note
that the environment of a system is not the rest of the universe, but only the part which
interacts with it, i.e. affects the system (von Uexküll, 1985). If autopoiesis is less than
one, it implies that the environment has a higher complexity than the system, thus
dominates its dynamics. If autopoiesis is greater than one, it means that the system has
a greater complexity than its environment, i.e. it fulfills the law of requisite complexity.
An autopoiesis greater than one also implies a higher degree of autonomy of the
system. This generalized view of autopoiesis considers systems as self-producing not
in terms of their physical components, but in terms of its organization, which can
be measured in terms of information and complexity. In other words, we can
describe autopoietic systems as those producing more of their own complexity than the
one produced by their environment. Thus, a greater (informational) autopoiesis implies
more autonomy.

Certainly, if the system has to be distinguished from its environment, this distinction
has to be made by an observer and might vary depending on the purposes of a
description. Moreover, the boundaries of a system can change in time. In this case, the
measure of autopoiesis can be extended to integrate the varying complexity ratios
between what is considered a system and what is considered its environment
depending on its dynamic boundary.

Notice that autonomy is gradual: having a certain autopoiesis does not mean that a
system is independent of its environment. This suggests that life is also a gradual
property: the transition from non-living to living is smooth (Gershenson, 2012a).
For example, with agriculture our species has become more autonomous from the
weather to provide food. Still, we are not autonomous from oxygen. Moreover, the
concept of life can be generalized to domains other than biology as well (Langton, 1997;
Aguilar et al., 2014). In this view, we can build systems with the features of the living
(Bedau et al., 2009, 2013). But how to do it?

Guided self-organization
We can use self-organization to guide the dynamics of complex systems (Prokopenko,
2009, 2014; Ay et al., 2012; Polani et al., 2013; Prokopenko and Gershenson, 2014). It was
already mentioned that self-organization consists of an internal increase in order of a
system. Since most systems have certain emergence (entropy) for free
(thermodynamics), self-organization can be used guide systems toward a higher
complexity (Gershenson, 2012b), and thus autopoiesis and variety.

Guided self-organization can be understood as the steering of the self-organizing
dynamics of a system toward a desired configuration. We can assume that
environmental variety (emergence) is given for free, because of the second law of
thermodynamics. Therefore, we can focus on applying self-organization to match the
particular (required) variety to control the environment. A low emergence will require
little self-organization, as there will be a low variety. High emergence will demand a
high self-organization to match the high variety.

One approach for designing and controlling self-organizing systems consists on
minimizing friction (negative interactions) and maximizing synergy (positive
interactions) (Gershenson, 2007) through the implementation of mediators. These
mediators must match the required complexity of the environment to be able to cope
with the variety of different possible interactions and states which might occur.
Moreover, this has to be done at multiple scales (Gershenson, 2011), as complexity is
dependent on scale (Bar-Yam, 2004).
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An example where these ideas have been applied is in the coordination of traffic
lights (Zubillaga et al., 2014). Comparing a self-organizing method (Gershenson, 2005)
with a traditional non-adaptive method, we have shown that the self-organizing
method is close to a theoretical optimal performance for all densities (Gershenson and
Rosenblueth, 2012). This is achieved because the controller (traffic lights) manages to
adjust its complexity to the complexity of its environment (vehicles), leading to an
autopoiesis greater than one for almost all densities. The densities where autopoiesis is
less than one is precisely where the performance is farther from the optimum.

A similar approach can be generalized to other domains (Gershenson, 2007), such as
cognitive systems (Haken and Portugali, 2015) or urbanism (Gershenson, 2013c). Most
urban systems are complex because the interactions between their elements generate
novel information (emergence) at different temporal and spatial scales. This limits their
predictability, while urban problems change in time, i.e. they are non-stationary. Self-
organizing urban systems can adjust their complexity to match the variety of the urban
problems as they change in time, thus maintaining an autopoiesis greater than one, as it
occurs with traffic lights. In this sense, we can speak about cities becoming more living
(Gershenson, 2013c).

In some contexts, it might be more appropriate to change the complexity of the
environment, rather than adjusting the complexity of the system. In other contexts,
both complexities of system and environment might coevolve.

Discussion
The approach presented so far can also be used to describe and understand the
evolution of complexity (Gershenson and Lenaerts, 2008). If we assume random
variations in information, some information will be able to propagate better.
This implies that information able to cope with the complexity of its environment will
have a higher probability of persistence, leading to the natural selection of more
complex information. Since this information will be part of the environment of other
systems, this will push other systems toward an increase in their complexity as well.
In this sense, complexity and life as understood here are to be expected in evolution
with very few assumptions considered (Gershenson, 2012a).

Life as a systemic property, more general than the original concept of autopoiesis
(Froese and Stewart, 2010). It might be useful to use a more abstract conception of life
because it allows us to study the properties of living systems beyond biology. Since it is
desirable to have these properties to face the complexity around us, from a pragmatic
perspective we can say that such a description can be useful.

Conclusions
Systems will be viable if their complexity (variety) is higher than the complexity of
their environment. This is also true for living systems. Thus, we can define a measure
of autopoiesis as the ratio between the complexity of a system and the complexity of its
environment. To achieve higher complexities, self-organization can be used to guide the
properties and dynamics of systems toward a balance to match the emergence imposed
by the environment.

Such a general formulation can be rather abstract, but is useful to direct efforts to
design and control complex systems. Its benefits have been already shown for urban
systems. There is a potential to be explored in other domains, where artificial systems
can be designed to be more like living systems.
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