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Abstract
Purpose – Behavioral pattern mining for intelligent system such as SmEs sensor data are vitally
important in many applications and performance optimizations. Sensor pattern mining (SPM) is also
dynamic and a hot research issue to pervasive and ubiquitous of smart technologies toward improving
human life. However, in large-scale sensor data, exploring and mining pattern, which leads to detect the
abnormal behavior is challenging. The paper aims to discuss these issues.
Design/methodology/approach – Sensor data are complex and multivariate, for example, which
data captured by the sensors, how it is precise, what properties are recorded or measured, are
important research issues. Therefore, the method, the authors proposed Sequential Data Mining (SDM)
approach to explore pattern behaviors toward detecting abnormal patterns for smart space fault diagnosis
and performance optimization in the intelligent world. Sensor data types, modeling, descriptions and SPM
techniques are discussed in depth using real sensor data sets.
Findings – The outcome of the paper is measured as introducing a novel idea how SDM technique’s scale-
up to sensor data pattern mining. In the paper, the approach and technicality of the sensor data pattern
analyzed, and finally the pattern behaviors detected or segmented as normal and abnormal patterns.
Originality/value – The paper is focussed on sensor data behavioral patterns for fault diagnosis and
performance optimizations. It is other ways of knowledge extraction from the anomaly of sensor data
(observation records), which is pertinent to adopt in many intelligent systems applications, including
safety and security, efficiency, and other advantages as the consideration of the real-world problems.
Keywords Activity description, Behavioral pattern, Data mining, Intelligent systems, Smart space,
Trajectories
Paper type Research paper

I. Introduction
Critical analysis of Smart Environment (SE) sensor data is a technological exploration of
intelligent system’s functionality and performance (Brian and C.J.H., 2007). Sensor
technologies are related to human cognitive capture and visualize behavioral patterns,
which adopted in almost every modern intelligent system. Personal (smart home), safety
(traffic management, military security), healthcare (cognitive behavior), business (sales
track) are few domains. Furthermore, industries (architectural control), environmental
monitoring, and location-aware services are an additional potential area of smart
technology applications. In these applications, sensors captured various properties of
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physical phenomena become a huge sensor data, which is challenging to explore and
mine behavioral patterns in a traditional approach. The problem is more noticeable to
analysis the hidden data relationship and searches useful information (Tao et al., 2009;
Joëlle et al., 2005).

Behavioral Pattern Mining (BPM) is the process of segmenting the signal or sensors’
paths, which are an essential to reveal, object trajectories and characteristics for fault
detections. The approach is an investigation of smart space applications in relation
to sensor technologies’ performances. Sensor data captured from diverse sensor devices
and annotated as the objects’ situations or moments. Therefore, data schemas, precision
or accuracy, units of measurement factors are a seductive issue of BPM ( Jae-Gil et al.,
2007). However, the behavioral pattern in large-scale sensor data is challenging. Since the
data do not have common features, and the process of data synthesizing is complex as a
set of instructions and event patterns (Elad, 2004). The issues can be summarized as: as
sensor technologies, and applications are increasing, sensor data handling and analyzing
become a challenge; how sensor data behavioral patterns are developed by considering
the domain contexts and actuators’ behaviors towards abnormal behavior pattern
detections and synthesizing?; sensor data are not completely stored, which involves
real-time activities. How to combine and analyzes trend and active sensor data?; and
what analytic tool is more capable to explore sensor data as its types (volume, velocity,
variety, etc.), complexity, sensitive, and massiveness and other behavioral factors?

In this paper, we proposed Sequential Data Mining (SDM) technique for a critical
analysis of sensor data behavioral pattern towards Abnormal Behavior Pattern (ABP)
detection. The approach is an arrangement of instances or events in a sequential manner
or standard to define the objects’ trajectories behaviors. It is the process of exploring the
data model, which design in a given sequence of sensor data to define objects’ properties
how and why deviate from its normal conditions. Moreover, an intelligent system is the
agglomeration of advanced IT and smart technologies, which is pertinent to the dynamic
applications of SDM. The technique of SDM for sensor design, pervasive computing and
pattern mining (Parisa and Diane, 2011) is a systematic approach demystify the process.
It is essential to address each sequence of the behavioral pattern, which support to
describe the nature of sensor data (Yan et al., 2008; Thomas et al., 2006).

The ultimate goal of this paper is critically analyzing sensor data toward behavioral
pattern mining using SDM techniques. Therefore, its contributions can be summarized
as: introducing a novel idea and techniques to demystifying sensor data behavioral
patterns as the context of the domain; optimizing DM applications as to explore
sequential sensor events. SDM adapts to analysis sequence event patterns based on
clustering and distance mining techniques for sizing clustered elements, then extend it
into normal and abnormal sequence pattern characterizations. Proposed and present a
generic distance-based clustering algorithms to define sensor data pattern behavior,
which is significant to segment the boundary of any trajectories as normal and
abnormal properties. The approach is also scalable to overcome challenges that
happened in the process of SE performance optimizations and fault diagnosis.

The rest of the paper is organized into five sections. Section II summarizes the
related and synonymous research works in the field of pattern mining and sensor
technologies. In Section III, we discussed the sensor data features, models and model
descriptions, pattern clustering and defining rules and algorithms. Section IV is the
empirical analysis of the methods and the detail discussed. The last, Section V is
the conclusion of this work, in which followed by the acknowledgments and reference
for cited articles in this work.
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II. Related work
Many research works in SE or intelligent environments enhancing to the advancement of
sensor technologies, which focussed on its applications. The approaches are focussing on
researchers endeavor and real supervision of the artifacts and certain assumptions of
sensor performances for the smart space. However, the methods are not capable to
address the ever growing sensor data handle, store and process challenges. Since the
sensor data behavioral pattern developments are demanding more time, efforts, data
labeling, and descriptions (Ramakrishnan and Rakesh, 2013; Dong et al., 2005).

SDM-based pattern mining is a systematic approach to implement both supervised
and unsupervised methods to scale up data patterns in normal and abnormal behavior
(Parisa and Diane, 2010). The significant of using these combined methods are for two
major reasons: the supervised method is essential to considering the knowledge of the
existing system norms that made an effort on unsupervised approach gain better
results; and the unsupervised method provides access to extract the unknown and
hidden information or patterns in the large-scale sensor data (Tˆam and Bernt, 2006).
The methods give a clear understanding for data characterizing, annotating and
modeling. The process is pertinent to know how to define the patterns and why the
abnormal behaviors are significant to the newly merged pattern. It also provides a
tremendous application. The ABP detection is, therefore, a novel concept to investigate
the cause of the problems or system faults (Piciarelli and Foresti, 2006). It is uncommon
or unique trajectories behaviors (Wiliem et al., 2008), pattern irregularity (Oren and
Michal, 2005) of sensor data.

Sensor data are signals or motions, which are the intelligent agents perceives the
state of the physical objects moment records of the sensor devices. It needs to analyze
the applications and functionality of smart spaces to optimize its performances and
securities. In SE, the activities are predefined continual tasks. However, the data
pattern could vary as the object trajectories, location, and time. In certain conditions,
such as the electric power-off, the tasks may be dis-continual, which causes the process
incomplete or abnormal (Parisa et al., 2011). Therefore, such complex and large-scale
sensor data demand an advanced analytical tool to analyze the behavioral patterns,
which tracked in each path span of time. SDM-based sensor data BPM is a generic and
inference approach for sensor data analysis (Charu, 2013).

III. Significant measure of sensor data behavioral pattern mining
Sensor readings are not completely random that correlate to time and space or location
on a given sensor record, which captures by sensor devices to analyze the events’
behavioral patterns. For instance, the temperature measures in a room can be the heat
or cool conditions records, which are two events (or parameters). Therefore, measuring
such events patterns are explored in relation to sensor device locations and data
capturing-time that shows the temperature turning point, which help to define the
intelligent system performance and functionality in the room. Therefore, the significant
measure of sensor data is the critical analysis of event sequence patterns as the
magnitude of an objects trajectories or behaviors at the specified location and time
(Ahmed and Nada, 2013).

Behavioral pattern mining is a complex and dynamic process, which is challenging
for statistical or traditional approaches. SDM technique is a solution to demystifying
sensor data handle and analysis based on trajectories toward abnormal behavioral
pattern detection. Smart home acquires and prior sensors knowledge is essential to
evaluate intelligent system physical sets in a way that can optimize various intelligent
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tasks for different goals, including safety and security (Yiu and Yau, 2006). The technology
is advancing to big shopping malls, robotic intelligent environment, interactive conference
and others social crowd places. The system supports the integration of heterogeneous
devices that facilitate collaborative intelligent activities (Erfaneh et al., 2012). In the past,
for a significant measure of intelligent behaviors, various computational techniques have
been proposed (Parisa and Diane, 2011). Many researchers detected the uncommon and
unique behavior of the trajectories based on video-camera surveillance common behavior
contexts. However, these approaches are applied to specific issues. On the other hand,
sensor technology is dynamic and crosscutting fields, which need generic analytic
approaches to infer and scale-up for various problems solving process. Moreover: sensor
records or captured images are the unsupervised streaming data type, which need
advanced tools to explore the implicit knowledge; SDM technique is capable to scale up
both supervised and unsupervised methods for sequential streaming data as
a fundamental and adaptive research in relation to fault diagnosis and smart space
optimizations; and abnormal behavioral based knowledge discovery is an interesting
task to measure intelligent system performance and detect faults.

3.1 Sensor data in an intelligent ecosystem
A sense is describing in various ecosystems, including electronic sensing, human
sensing and others (Mu-Yen and Edwin, 2013). All sensor data are characterized by
sequential and dynamic types. The technological (electronic and nontraditional) sensor
data recorded and collected in intelligent or smart environments, which are interesting
to exploit sensor data behavioral patterns toward fault or abnormal pattern detections.
SDM is needed to explore the behavior and patterns of the sensor data to extract
valuable and implicit knowledge. The techniques/algorithms of clustering and the
nearest neighbor used to classify sensor data behavior (Bhatia and Deepika, 2013). It is
the systematic way to solve SE challenges and faults. Sensor data hidden interactions
and similarity measures are analyzing using various techniques, which includes the
Hidden Markova Model (HMM) (Karthika and Sumathi, 2012) and Emerging Patterns
Mining (Tao et al., 2009).

Sensor data sequences are often linear or multi-dimensional arrangements with
different lengths. As the application of intelligent systems growing at a dynamic pace,
pattern mining based on one-dimensional (linear) trajectory and similarity of a given
time series is not always an effective approach. For example, sensor data of similar
movement patterns might appear in two or more sensor devices, which are different
sampling rates of tracking and sensor devices combined with various speeds of the
moving objects. Such multi-dimensional data sets can be explored by applying
SDM-based similarity function. Let the objects are points that move in a two-
dimensional plane (x, y) at a time t. Therefore, the sensors S¼ [(s1, t1), (s2, t2),…, (sn, tn)]
or si are the pair of (si, x, si, y) with their corresponding time ti and (si, ti) are activities of
an object recorded by the sensor devices S (Chen et al., 2005). Thus, S could be
normalizing to x and y position values using their respective mean values as (μx, μy) and
corresponding standard deviations as (σx, σy), which defined as:

S xi; yj
� � ¼ t1;

S1:x�mx
sx

;
S1:y�my

sy

� �� �
; ::: ; tn

Sn:x�mx
sx

;
Sn:y�my

sy

� �� �� �
(1)

The advantage of SDM similarity function is a dynamic and scalable computational
technique for large-scale sensor data. The approach helps to develop behavioral
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patterns-based analysis supported by a corresponding time and sensor locations.
The sensor data records at each sensor device are a pair of two parameters, which is
pertinent to detect where such abnormality or faults happened. It is the other way of
evaluating the intelligent system performance to improve the smart space applications.
The analysis of such dimensional data patterns needed for system reusability and in
general fostering performance optimizations. It is also gaining in the target area for
ubiquitous and pervasive computing, which focussed on a proprietary intelligent
system into “real living spaces,” such as the residential home.

3.2 Sensor data characteristics
The sensor data characterization is essential for classifications and other further
analysis, which gives a meaningful understanding and standards to category’s events
as their common properties and data trends. It requires efficient and real-time
processing techniques to avoid a problem that arises from its massive volumes of
possibly uncertain nature and complexity. The analysis of the active (or live) sensor
data is needed to execute in one pass of the data, which mean that the data type is
typically not often possible to store into the entire data set.

SE is a smart place of the real world, which equipped with sensors, actuators and
computing components that generate massive sensor data. The data types (volume,
velocity, variety, etc.) of sensor records characterize as its independent sources and
object behavior. It is essential to extract valuable information to optimize the
intelligent system, including computer application’s performance and safety that
affect people or users’ daily activities (Szewcyzk et al., 2009). For example, the
activity of walking or cooking in the smart place, recognize as actuator’s behavior
in terms of objects’ moments sequential events of the sensor data. The sensor
signals recorded events sequential properties against time, sensor locations and
object’s occupation in a smart space (Diane and Lawrence, 2011). The sequence
of k event types is called a (k)-sequence. It refers to the subsequence consisting of
the ith to the jth event types of k-sequence S

!
as s!ði; jÞ, with i∈[1, k−1], j∈[i+1, k],

and the ith event type in the sequence S
!

as S
!½i� that assume. The assumption

of any event type S
!½i� in S

!
is needed to follow its sequence of the S

!½1 : i�1�
(Tao, 2012; Juan et al., 2010).

3.3 Sensor data models for pattern mining
A fundamental aspect of data modeling and pattern development is a technique to
prepare sensor data for knowledge extraction and fault (abnormal behavior) diagnosis
of the intelligent systems. It is a sequential arrangement of sensor data according to
object’s behavior or properties signal that capture or record by the sensor devices in the
system. The processes of event sequence conceptualize on sensor locations, and
trajectory records time. The path for each event’s movement shapes the behavior of the
object’s data that need to analyze accordingly (Dhaval et al., 2009) using different data
analytical tools. In the past, various techniques implemented to visualize data patterns,
which include Bayes Gaussian (a probabilistic approach) ( Jaakko et al., 2008; Rainer
et al., 2008), neural networks (Ahmad et al., 2011; Fernando et al., 2005). However, the
sensor data exploration process is dynamic and steps wisely, which need the advanced
analysis to understand and clearly define signal behavioral patterns. SDM techniques
are capable, adaptable and make the analysis to more understandable, generic and
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informatics as the intelligent system contexts (Fan et al., 2009). The data processing
conceptual model, as it is shown on Figure 1, is a basic flow chart to recognize activities
or events as the contexts of supervised learning techniques approaches that relying on
the unsupervised sensor data. As Tˆam and Bent (2006) proofed, the process depends
on labeled data that the activity recognition would limit to the activity learning the
recognition of sensor data.

Patterning mining could not be the end of data processing, which extend until
knowing or defining the data behavior as normal and abnormal patterns. The ABP
mining is more about the process of defining the pattern that deviates from the normal
context of the given sensor data. Then after, based on the detected pattern, we extract
valuable information that can changed to the knowledge for the improvements of
intelligent system performances. Sensor data are always complex and context
sensitive, which do not have a common or predefine definition and standards (Paul and
Richard, 2001). Such challenges are essential issues in the implementation of SDM to
develop a sequential pattern as pervasively of the sensor data analysis gain to the new
patterns. Furthermore, properly modeling data are important to describe the behavioral
correlation of event records against time and locations to explore the existing situations
of the systems.

3.4 Sensor data model descriptions
The model description is the representation of data behaviors and characteristics in
various ways by having time and locations inferences, which is important to detect and
isolate data behaviors as the domain contexts. The models can be developed either as
the underlying of the physical system as a set of devices establishing a relational
coordination in which characterized as magnitudes of trajectories to apply
deterministic behavioral patterns. In some case, the process might be a complex
and model description also challenging. It needs to support a priori probabilistic
models, which support to apply linear regression (Diane and Lawrence, 2011) and
Gaussian models (Szewczyk et al., 2009) techniques. The sample data pattern
similarities such as the trajectory length to their respective locations and behavior
are developing as Figure 2. The patterns (Pi) characterized by three distinct colors
as P1, P2, and P3, which referenced by the sensor locations S1, S2 … Si and (Li) are
the trajectories’ lengths.

As the sensor data behavior change, the pattern will also change, which is
interesting to the approach of SDM techniques that needs to activity recognitions as the
domain contexts (Chen et al., 2005). The techniques of Naïve Bayes classifiers as a DM
approach vitally essential to identify the activity, while the events correspond to the
greater probability set of sensor values. Figure 2 showed if, someone (an object) wants

Data

Mining

Clustering

Defining patterns

Input

Interesting pattern
Visualizing
(outputs)

Sensor data

Data mining approach
pattern mining

Additional
tracking activities

HMM

•  Normal
•  Abnormal

Figure 1.
Proposed
pattern mining
components model
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to go from “S1” to “S6”, the moment will record in different sensors as its paths, which
causes a certain deviation sensor data. Objects’ trajectory data are discriminating in
terms of time, magnitudes, with direction and sensor device locations, which are
fundamental factors for pattern behavior detections to define as nor normal and
abnormal. Because the sensor captured data are integrated or described in such
parameters (Table I), which support to verify the activity recognition model to its
proper location positions.

Sensor data are not always labeling. In some case, it may have uncertainty. As it is
showing in Table I, the records have some unlabeled data on the second row of the third
column. In such case, the unlabeled records can be defined based on the original labeled
data by performing activity recognitions of model descriptions using the bootstrapping
learning technique (Peng et al., 2007). The approach is using basic radiative transfer
equations and takes advantage of unique multichannel distributions of sensor
emissivity to derive sensor behavioral pattern of the unlabeled data (Ariel et al., 2012).
An inherent assumption of a bootstrap algorithm is operating in its optimal
performances for the large-scale sensor data. The sensor data in a sequence of events
“e” are described as e¼ {t, id, l}. Where “t” is a timestamp, “id” is the sensor “ID”, and
“l” is the activity of the label. The ID associated with the sensors in the system or
the space that refers to a location tag of “L”, which used to facilitate to transform the
activities’ patterns in the specified nodes. The activities are donated by “a”.
It represents as a¼ {E, l, t, d, L}, where E are sequential patterns of n sensor device of
events “e” patterns. It is {e1, e2,…, en}. t and d are the start time and duration of the
activities, respectively as shown on Figure 2 of the sensor data features model, and the
graphic components are the design of sensor data patterns.

The pattern Si of the ith sensor device is designed to the specifying locations to
record the moving object sequence actions. The sequence describes as S¼ {s1, s2,…,
sn} for all “n” sensor device nodes, and the records are coordinating as its position
(location) of “Si” and time “ti”. Therefore, the locations si as Union (U) are defined as

S1

S2

S4

S3

S5

S6

L6

L5

L3

L4

L2

L1

P1

P2

P3

L7

Figure 2.
Sensor node based

modeling
representation of the

sensor data set
observation patterns

Timestamp (t) sensor ID (id) Label (l )

17/10/2011 06:00 W004 Conference room
17/10/2011 06:01 W030 None
17/10/2011 06:02 W015 Reception

Table I.
Example sensor data
records as walking
(W) of W004, W030,

and W015 denote
sensor IDs
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U¼ {u1, u2,…, un} from its sub-components, which are the set of activities in the smart
space where those sensors can detect object behaviors along their paths. To isolate the
detected abnormal behavior, we process as targeted activities (T) defined as T¼ {t1, t2,
… tn}, which represent events sequence of instants starting at the time t0. The records
could involve about the object trajectories, including come into, walk around and leave
the area during the given time t. When an object positioning on a sensor si decides to
move to a new position that the data recorded by the respective sensor sj at its new
location and the destination. It implies si→sj that denoted as the direction of transition
for the objects. It measures by a transition relative distance matrix, denoted as Ω that
hidden behind these sensor vectors “S” (Fan et al., 2011). The transition distance
between those reachable nodes should be introduced into the trajectory searching
algorithm, which might not be necessary to reflect the real distance that can be a simple
transition relative distance ( Jan, 2001):

Definition 1. transition relative distance dsi↔sj denotes that the relative distance of
moving from si to sj, both of which should be physically reachable
without triggering any other nodes. The model dsi↔sj−0 represents
that there is no chance, and the smaller value indicates, the nearer
distance between them. We set 0 to those physical unreachable
relationships between sensors and calculate transition relative distance
using a standard distance value, which divided by the real distance
measured from the deployment of the sensors.

3.5 Sequential data mining-based sensor data synthesizing
Sensor data synthesizing is the process of annotates the data to define the key
components for a clear understanding and look for relationships between the events,
which collected from various sources. It is a way to know data characteristics,
interactions and interrelations to explain the sensor data in which contextual conditions,
actions, and consequences affect the data behavioral patterns. Therefore, data
synthesizing considers the different perceptions and standpoints of sensor data and
the multiple and diverse patterns of connections for abnormal behavioral pattern
detections. The process is pertinent for many reasons, which includes: first optimizations
and makes efficient in the intelligent system via SE. Second, exploring the diversified
application of sensor data, which is creating new user models that lead to easy access and
interaction the objects as needed. Third, it is a systematic approach to searching the
hidden knowledge from the sensor data for a better of the decision-making process.
Fourth, to personalize the smart systems for which to analyze the user’s interaction with
a system and developing cognitive models that aid in the design of user interfaces and
interaction mechanisms. It is human-centric that provides context information on
location, trajectories and the behavior of the intelligent systems (Debraj et al., 2012). Fifth,
it is essential to demystifying ABP detections and isolations as the domain contexts.
Sensor data Annotation is also a fundamental task to standardize the sequences and
indexing process, including the sensor ID, time and activities’ initial and destination as it
is shown in Table II.

Date Time Sensor ID Object ID

2012/04/30 10:56 S1 O1
2012/04/30 10:57 S2 O2

Table II.
Sensor data on
moving objects
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3.5.1 Sequential pattern mining. Sensor records are sequential, and continuous flow of
signal’s data streams in the sensor devices. The synthesize and annotate of sensor data refine
the data behaviors and trajectories, which support behavioral patterns detections using SDM
algorithms (Thomas et al., 2006). The process begins with the conceptual understanding of
events (E), and the pattern defining as E¼ {e1, e2,…, en} to the sensor data sets “D”. Each
event of the sensor data consists of the field’s event-ID (id), and the instance types (ai, bj) as it
showed in Figure 3. Therefore, the Pattern (P) is further categorized as normal (Pn) and
abnormal (Pa) in reference to location and time of objects trajectories.

As it is shown on Figure 3, the two events of “a” and “b” correlations are symbolized by
“×” and “square black box”, which represent the important interactions of the data
behaviors. The two correlations points as data behavioral patterns tell about events factors
dependency via time and locations. Then after, the exploration techniques are exhibited
based on the data patterns, which might deviate from the normal positions or not. The way
to synthesize these events: first, it classified the unstructured data of its similarities that
formulating as the similarity patterns (simP) and a minimal threshold (simminei and ej) of the
events’ pattern. Then the events’ relation score is defined as (simP (ei, ej) simmin), which helps
to measure the distance variations between the two events. An event sequence E¼ {e1, e2,
… en} is an ordered event, where an event Ei (1⩽ i⩽ l ) is a moment (or transformation)
from its start to end. “l” is the number of events in a sequence of a trajectory length. Each
length might (not) have a specific attribute, such as timestamp, denoted as ei× time that
registers the time when the trajectories are executing. As a generalized convention,
sequence E¼ {e1, e2,…, en} and ei× timeoej.time are represented as 1⩽ i⩽ j⩽ l.

A sequence E with length l is an l-sequence, denoted as len(E)¼ l and the ith sequence
denoted as E[i]. An event can occur at most once in event sets, and can occur multiple times
in various event sets in a sequence, such as sequence E, β, etc. As the behavioral pattern
variations, one can be super sequence than another for a given sensor data. Sequence
sensor data set is a set of two-tuples (sensor ID and events (E)). A tuple (S_ID, E) in a sensor
data is said to contain a sequence γ that γ is a subsequence of E. For example, Table III
show’s event sequence of sample sensor data sets at the minimum threshold (θ¼ 1) signal
detections as the count value of aWθ, b¼ θ and coθ for each sensor device.

The sensor detects the object as the sequence events, where each signal in the reading
time and location correspond to sense objects as its positions and functionality. If the object
is a moving object, the trajectory synthesizes as events order against the increasing
trajectories-time that corresponds to a sequence sensor data. The trajectory length
measured at time series for a sequence E of the intelligent systems. The sequence describes
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The two events
of “a” and “b”

sequences

1159

Smart
environment
sensor data

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 0
3:

02
 0

8 
N

ov
em

be
r 

20
16

 (
PT

)

http://www.emeraldinsight.com/action/showImage?doi=10.1108/IMDS-12-2014-0386&iName=master.img-000.jpg&w=141&h=74
http://www.emeraldinsight.com/action/showImage?doi=10.1108/IMDS-12-2014-0386&iName=master.img-001.jpg&w=140&h=76


as the fraction of total sensor records that support the event sequence. The sensor data
behavioral pattern sequence analysis of a moving object or detection trajectory is
supported a minimum of two sensor devices, which helps to detect events that are greater
than or equal to the minimum threshold (ei⩾ θ). Based on this concept, the events’
sequence pattern is sorted from largest to least detections as Table IV.

Suppose the event (a) detection is supported by sensors 1-4, (b) supported by 1, 4 and
5, (a, c) by 2 and 3, and (a, b) by 1 and 4. Therefore, the sensor data behavioral pattern is
varying as the detected event sequences and trajectory lengths as shown in Table IV.
The advantages of events sequences are also important to define the context of the
data, which are capable to build the proper pattern in the sensor data along with their
variations. From the intelligent system context model, the process of different sensor
data may have diverse patterns due to the variation of space, time or activities. Such
multiple patterns can be addressed by providing multiple thresholds of the data
behavior and sequences. The SDM approach of Sequential Pattern Mining (SPM) and
the physical environment contexts are important to the system able to detect the ABP
value (Yan et al., 2008). That is sensor “i” is (Si) as a group of “n” point’s instances or
activities of “a”, and it is defined as:

si ¼ ai; a2; ::: ; anf g (2)

Based on these definitions, event sequences of pattern (a, b) distance variation can be
also computed in regardless of the instances’ order variations or incompleteness of
sensor records. However, the derived pattern (a) event sequence could comprise n
variations for the activities, which denoted as ai. Furthermore, if there are discontinuous
events or records, the pattern would be a discontinuity of zero. Thus, the sequential
similarity function is vitally significant to define the pattern behavior, which is
imperative to have common features between instances in terms of time series aspects.
The distance can be measured using different techniques, including DM, HMM and

Sample events Transformed events sequences Sorted events sequences
S_ID Sensor ID Sorted events

1 a, b o (a, b)W 1 o (a, b)W o (c)W
1 c (c) 2 o (a, c)W
2 a, c o (a, c)W 3 o (a, c)W
3 a, c o (a, c)W 4 o (a, b)W
4 a, b o (a, b)W 5 o (b)W o (c)W
5 b (b)
5 c (c)

Table III.
Sample events
pattern sequence

Large detection sets Mapped to

(a) 1
(b) 2
(a, c) 3
(a, b) 4
(c) 5

Table IV.
Large detections sets
of event sequence
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Dynamic Time Warping (DTW) (Chen et al., 2005). DTW is needed to measure the
dimensions of time variations between instances. The mathematical formulation of the
two instances distance computed based on Hausdorff distance measurement of following
equation as shown in (Table V):

D si; sj
� � ¼ max d si; sj

� �
; d sj; si
� �� 	

(3)

where d (Si, Sj)¼maxa∈Si, maxa∈Si ||a−b||
The measurements of the path or distances between “a and b” are normalized by 26.2368

of the dimensional transformations from its centers (0, 0), which can be computed as:

~m sð Þ ¼ 1
n

X
ai (4)

The sensor data similarity along with contextual information is an abstraction step to
segment and labels the real-valued time series into similar subsequences. The normalized
computed distance measurement revealed the relational pattern that defines the
sensor data features, which is important to discover the sensor data behavioral
patterns clustering.

3.5.2 Behavioral pattern clustering. Behavioral pattern clustering is a technique of
categorizing sensor data as of their similarities and interactions to achieve the goal of
keeping track of intelligent systems performances. The advantages of clustering
based SPM is to predict the object behavioral positions in terms of locations and time
to detect abnormal behaviors or faults (Bhatia and Deepika, 2013; Elad, 2004).
The algorithm, such as a k-means use for the set of events sequences or trajectories as
clusters (C), are ω¼ {C1, C2,…, Ck}. Whereas, the trajectories (Tr) clusters are
a sequence of multi-dimensional points, which is donated as Tri¼ (a1, a3,…, aj)
a subject to be ai (1⩽ j⩽ leni) is a dimensional point. Where “len” is the length of the
trajectories or number of events “N” (activities). The length “len” of a trajectory
differentiates as Trc1, TrC2,…, TrCk (1⩽ C1oC2o ,…, oCk⩽ leni) of the sub
trajectory as the Definitions of 2-4:

Definition 2. Sensor data pattern is the events or signals sequential design that
models to understand its behaviors as nor of normal and abnormal

behavior patterns. The data set A ¼ aiAℜd
n on

i¼1
represented in each

activity in a pattern of d-D (dimensional) set of data that associates

S1 S2 S3 S4 S5 S67 S7 S8 S9

S1 0 23.6643 18.8812 19.8620 20.9105 20.0873 20.5244 22.0284 22.0681
S2 23.6643 0 20.0000 19.8746 20.1928 21.7256 21.2544 21.7658 22.5389
S3 18.8812 20.0000 0 19.6342 17.0514 19.2224 17.6564 19.9060 19.5320
S4 19.8620 19.8746 19.6342 0 19.9437 18.6145 19.8305 20.9344 21.5058
S5 20.9105 20.1928 17.0514 19.9437 0 21.0891 19.3520 20.1370 20.3408
S6 20.0873 21.7256 19.2224 18.6145 21.0891 0 22.1190 23.0922 22.0567
S7 20.5244 21.2544 17.6564 19.8305 19.3520 22.1190 0 23.4947 22.4332
S8 22.0284 21.7658 19.9060 20.9344 20.1370 23.0922 23.4947 0 24.9048
S9 22.0681 22.5389 19.5320 21.5058 20.3408 22.0567 22.4332 24.9048 0

Table V.
Hausdorff distance
measurement based

sample data
correlations
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with their class label ω(ai)∈{ωa(ABP), ωn(normal)}. Therefore, our
assumption is 8ai; aj;o aið Þ ¼ oPaLo aj

� � ¼ oPn ) f aið Þ⩾ f aj
� �

, i.e.,
any Pa factor must be greater than all Pn factors. The predicted ABP
set as (Pa), which represented as {a:ω(a)¼ωPa}.

Definition 3. ABP is defining and computationally feasible for a large set of sensor
data, which is a process of fault or unusual behavior detections based
on k-mean algorithm and distance measurements. The techniques
involve the hidden interactions of the events and data similarity of
pattern frequency. Thus, the procedural prediction of an event e1 is
followed by its nearest neighbor e2.

Definition 4. The event e′ follows N of a different event e, denoted by e→Ne′, subject
to e′ is in the sensor data Ne′ of e patterns. A simple sensor event,
neighborhood of an event e to capture the follow predicate (p), distance
(R) and time interval (T) can be defined as:

N ðeÞ ¼ p9pAD4distance e:location; p:locationð Þ�
pR4ðp:time�e; timeÞA ½0;T�	

The significance measure of f1→f2 the sequential pattern describes as the number of
events of the type f2 that follow events of type f1. It is essential to detect sequence in
a large-scale sensor data within any independent distribution system (Yan et al., 2008).
It is a systematic approach to identifying the proper sequential even patterns than
count them. The clustering technique for the sequential pattern is a systematic data
model, which provides a clear understanding of sensor data similarity of neighboring
node pattern and instances categories. One or more instance could be in one pattern,
but not the reverse. For instance, one object trajectory can have different instances,
such as slow, normal, fast walking. However, the pattern is the same that is the object
walking. Therefore, the process of clustering is essential to define the abnormal
behavior patterns from the object trajectory patterns, which support the instances of
the domain contexts (Piciarelli and Foresti, 2006). The proposed pattern clustering
algorithm or technique is defined as follows:

Algorithm: Pattern clustering method
Procedure Cluster (P)

►At the beginning, each pattern is considered as a cluster
C¼ p
Compute proximity matrix, m
repeat
Sim¼max(m[a, b]) ∀a, b∈C
if sim W θ then

Merge a, b
end if
update m

until sim W θ
return C

end procedure
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Furthermore, the trajectory (Tr) partitioned can be classified at every event points (Pt).
The partition represents a line segment between two consecutive characteristic points
as the set of (Ppari−l) line segments point clusters (Ptci) and partition (Ppari) as {ptc1, ptc2,
…, pparc1, pparc2,…, } of the sensor data.

3.5.3 Distance measurement based behavioral pattern mining. Distance-based
clustering is a pairwise similarity and distance variation of the events, which
perform as the point distance measurements between two points. The process
of distance computing consists of a sequence of activities a1,…, an at time t(l, n)
that can be explored using different distance measurements. The distance
between the pairs of activities or locations measures as its corresponding points of
ɑ and b using the Euclidean distance measurements. The pairs of the sensor
record are the proportion time length, i.e. a1,…, n and b1,…, n of Euclud (a1,…, n, b1,…, n),
which defined as the sum of activity’s distances in a given time t interval. It
described as:

DEuclid a1; :::; n; b1; :::; m
� � ¼ Xn

i¼1

:at ; bt: (5)

The Euclidean distance between the two activity points defined as:

:at ; bt: ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
at:x�bt:xð Þ2þ at:y�bt:y

� �2q
(6)

Furthermore, the noisiness and distortions of the sensor data may affect the
alignment of the pattern, which the Euclidean distance measures could not capture
the inherent distance of the trajectories. Therefore, applying various alignment
distance measurements such as DTW is paramount. To compute the distance
between two points is the systematic approach to permitting the comparison of the
Euclidean distance of activities with different time lengths (Karthika and Sumathi,
2012). The method is employed to align the two trajectories as of the overall
distance minimization process and the dynamic computation of DTW of (n, m)
time defined as:

DTW a1; :::; n; b1; :::; n
� � ¼ :an; bm:þmin

DTW a1; :::; n�1; b1; :::; m�1
� �

DTW a1; :::; n�1; b1; :::; m
� �

DTW a1; :::; n; b1; :::; m�1
� �

8><
>: (7)

Where a1,…, n−1 and b1,…, m−1 are the sub trajectories of a1,…, n and b1,…, m
respectively that covers the time points 1 to n−1 sequences. For Metrix sensor
data sets, Edit Distance on Real sequence (EDR) measurement is more powerful to
compute the sequence pairs of numerical values of points, which is significant to
define proper matching between instances:

Definition 5. The pair of activity vectors ai and bj is from two trajectories of a and b.
The corresponding matching represents match (ai, bj)¼ true iff
∣aix, bjx∣⩽ θ bjx and ∣aiy−bjy∣⩽ θ, where θ is the matching threshold.
The two trajectories ɑ and b of length with their corresponding length n
and m EDR (ɑ, b) is the number of inserts or replace or delete

1163

Smart
environment
sensor data

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 0
3:

02
 0

8 
N

ov
em

be
r 

20
16

 (
PT

)



operations to shift ɑ into b. Therefore, EDR distance of the two
trajectories “an” and “bm” is defined as:

EDR an; bm
� � ¼

1 if m ¼ 0 and n ¼ 0;

n:cins; if m ¼ 0 and na0;

m:cdel; if ma0 and n ¼ 0;

min fEDR an�1; bm
� �þcdel;

EDR an�1; bm�1
� �

þc an; bmð Þ;
EDR an; bm�1

� �
þcins; else;

8>>>>>>>>><
>>>>>>>>>:

(8)

Where “C” is the sub cost function of the two activities (of ɑ and b). Therefore,
C(an, bm)¼Cmatch if dist (an, bm)⩽ θ; c(an, bm)¼ cmismatch if dist (an, bm)Wθ and. cmatch,
cmismatch, cins, cdel are the cost of the match, mismatch, insertion, and deletion
respectively, subject to cins ¼ cdel :y symmetry to the matching threshold that quantizes
the uncommon to distance Cmatch or Cmismatch. If the sensor data is the triangle
inequality types, the Longest Common Sub Sequence measure (LCSS) ( Jae-Gil et al.,
2007) is more appropriate. LCSS distance measurement needs parameterization of the
two points as δ and ε to match with their respect time and space, and the computation
is defined as:

LCSS a1; :::; n; b1; :::; n
� � ¼

0 if n ¼ 03m ¼ 0

1þLCSS a1; :::; n�1; b1; :::; m�1
� �

if n�mj jpd

max a1; :::; n�1; b1; :::; m;
� 	

4:an�bm:pe

LCSS a1; :::; n; b1; :::; m�1
� �

otherwise

8>>><
>>>:

(9)

For local distance or density or density based measurements, Minimum Boundary
Rectangles (MBR) approach is more effective and pertinent (Stephen and Ernest, 1997).
It is a method to approximate line segmentations between trajectory distances. The two
boundaries of B1 and B2 of the MBR of the line segments are L1 and L2, respectively.
The local distance based on the MBR of Dmin(B1, B2) computed as:

Dmin B1;B2ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D B1: x1; xu½ �;B2 x1; xu½ �ð Þð Þ2þ D B1: y1; yu½ �;B2: y1; yu½ �ð Þð Þ2

q
(10)

The distance between two points defined as:

D l1; u1½ �; l2; u2½ �ð Þ ¼
0 l1; u1½ � \ l2; u2½ �a0

l2�u1 if u1o l2
l1�u2 if u2o l1

8><
>: (11)

Hausdorff distance measures based on a weighted sum defined as:

DHuasdorf f ¼ w?:d?þwJ:dJþwy:dy
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Where w⊥, w|| and wθ are the weight of the components of the aggregate perpendicular
distance (d⊥) of the two separated trajectories (d⊥a and d⊥b). The aggregate parallel
distance (d||) of two captured between trajectories, and the angular distance (dθ) of the
two trajectories orientation differences as it is shown on Figure 4(a):

Definition 6. d⊥, d|| and dθ is the distance functions in clusters line segments of L1
and L2, which defined as the Equation (12). The Euclidian distance
between d⊥a, d⊥b are two perpendiculars distances between L1 and L2.
da||, db|| are the two parallel distances between the two lines, and θ is the
angle between L1 and L2.

The distance function between two trajectories line segments of L1 and L2 are
defined as:

d? ¼ d2?;aþd2?;b
d?;aþd?;b

dJ ¼ min dJ;a; dJ;b
� 	

dy ¼ :L2:� sin y

(12)

The sub-cluster of the sensor data (trajectory) partitioning is also a line segment of two
points (Figure 4(b)) that belong to the same cluster closed to each other according to
their distance variations. The trajectory line segments of l

0
1; l

0
2 are the approaches

to support the efficient trajectory clustering, and it is defined as:

DLL l
0
1; l

0
2

� �
¼ min

ai A l
0
1;bj A l

0
2

:ai�bj: (13)

3.6 Comparative analysis
Sensor data are complex and continual time series or streaming data, which is
demanding powerful analytic tool to develop its behavioral pattern toward faults or
abnormal behavior detection. In the past various approaches were proposed for analysis,
such streaming data, via HMM and Bayes classifier. The HMM is implementing to
measure the distance variations by modeling the data as their similarities and hidden
interactions using Hilbert Scanning Distance – HSD, Kullback-Leibler distance (KLD),
heuristic distance, and others. The techniques are more effective and successful in speech
recognition, time series prediction, and document and image classification than sensor
data analysis ( Jianping et al., 2010). Whereas, the Bayes distance measurement is also a
probabilistic approach. Nutshell, the sequential data analysis using these knows
techniques are complex and subject specific.

In either of HMM, various techniques and Bayes based Hidden Markov process
consists of a state transition process. These are the hidden data behavior and the
observable process that determined by the underlying the state transition. HMM (λ) is

ad

ad

L1

L2

a1

DLL(l1,l2)
bd

bd
�

′

a2
′

b1
′ b2

′l1′

′ ′

l2
′

(a) (b)

Figure 4.
The three

components of
distance function for

line segments
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the descriptions of data initial distribution (π), transition matrix (A) and the output
distributions (B), which described as λ¼ (π,A, B). HMM-based distance measurement is
the process of data transit from its initial to the prospective output as a model. The
output distribution or B described by the action of emitting as bi(x), which provides an
emission matrix indicating the probability of events of x from a hidden state i as a
normal distribution. Therefore, as per the hidden similarities, the discrete HMM model
charactering as the set of N hidden states in the model of S¼ {s1, s2,…, sN} sequences.
The state transaction probability matrix is:

A ¼ aij
� 	

1p i; jpN (14)

where: aij¼ p{qt+1¼ sj|qt¼ st}

0paijp1:
XN
j¼1

aij ¼ 1

The set of M observable events per state is, therefore, E¼ {e1, e2,…, eM} and the
observation events, probability matrix is B¼ {bi(x)} where 1⩽ j⩽N, 1⩽ x⩽M, thus:

bj xð Þ ¼ p ei at t9qt ¼ sj
� 	

; subject to 0pbj xð Þp1;
XN
i¼1

bj xð Þ ¼ 1 (15)

Therefore, the initial state probability distribution is:

p ¼ ptf g; 1p ipN (16)

where:

pt ¼ p q1 ¼ st
� 	

(17)

0pptp1;
XN
t¼1

pt ¼ 1

IV. Experiment and discussion
The rapid development of sensor technology has paved the way for SE to provide
intelligence sensor-based services, which contains several and advanced interconnect
smart devices. The intelligent environment is, therefore, has the abilities of perception,
cognition, sensations, reasoning and anticipation about a user’s activity, which provide
proper reactions (Zhonghong, 2008). In parallel, sensor data generated by such a
sophisticated and intelligent system are increasing ever than before, which demand
advanced and scalable analytic tool. DM is an effective tool to manipulate in
understandable ways as to develop sequential data patterns. Mining sequential
patterns as SDM technique has become an important task with broad applications,
such as abnormal behavioral pattern detections or fault diagnosis. The objective of
detecting and isolating abnormal behavioral pattern is to understand the factors that
affect SE performances, which offers an intelligent sensor-based service. The technique
implemented DM-based clustering and distance measurements on the sample
sensor data.
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The performances of the proposed approach evaluations showed on the subsequent
analysis, which produced results that provide more clear and novel explanations about
the need for SDM-based critical analysis for sensor data. The effectiveness and
efficiency of the approach are tested in iterative and extensive experiments using
Center for Advanced Studies in Adaptive Systems (CASAS) sensor data (CASAS,
2010). Moreover, SDM-based behavioral pattern mining discussed in terms of its
tremendous applications, including fault diagnosis and performance optimizations for
the better functionality of smart spacing and technology. CASAS data obtained from
the CASAS smart home database by subscribing and downloading from their web site.
We used 43.8 MB sample data that having 22 attributes (sensors index) with 729,000
records. To explore this data as an SDM approach, we used MATLAB and RapidMiner
application tools. The approach is a step-by-step sensor data projection and
pseudo-projection techniques. We use nine attributes (as random selections) and their
corresponding 307 records as a training sensor data as shown in Figure 5 and then scale
out for large-scale sensor data analysis.

In an SE, object moments are recognizing and synthesizing at the corresponding
time of the records as a cluster of trajectories, which is worth noting that the design of
the sensor devices used for various applications. The sensor data tabulated in the form
of n× p the data matrix X¼ (eij). Where “n” is for the number of records (raw data) and
“p” for the parameters (S1-to-S9 of the sensor devices) as showed in Figure 5. The set
of objects clustered in terms of attributes or events that we seek as a collection of
k-mutually exclusive and exhaustive subsets of X, say, C1,…, Ck. The clusters are an
agglomeration of normal and abnormal behavioral patterns of the events. The clusters’
elements and the sum-of-squared-error criterion are defined based on the events and
patterns distance measurements against their nearest neighbors. The allocation of
events to the respective groups is carried out according to minimum distance and
the cluster centroid calculated values. The minimum distance computations of
cluster-centroid are performing until no change is possible. However, the numbers
of clusters (k) are not static that vary as the user desires. In this study, we computed
various iterative clustering tests to minimize the risk of data masking and data swamp
for proper ABP detections. Among the various outcomes, for “k” values of 2 and 5 are
clear and understandable graphic representations showed on Figure 6(a) and (b).

Note that the process of clustering is a representation of patterns in respect of each
event being closest to its group cluster-centroid. We choose hundred random starts
(“replicates”, 100) by picking events at random to serve as the initial events (“start”,
“sample”). The control phrase (“maxiter”, 500) increases the allowable number of
iterations. Each chosen clusters obtained from the hundred replications with idx (index
of x (activities)), which indicating cluster membership for the n events. It evolves the
cluster centroid “c”, the sum deviations of sumd gives the within-cluster sum of

Figure 5.
Sensor data example

sets with detail
attributes

descriptions
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events-to-cluster-centroid distances, and d includes all the distances between each
event and cluster centroid.

For a better visualization of the sensor data behavioral pattern, we also analysis
the same sample data in different techniques, which gives a succinct graphical
representation of how well each event’s lies within its cluster. As ai be the average
dissimilarity of ei with all other events within the same cluster. However, distance
measurements did not always reveal the better characteristics or behavior of the events
to be in the same cluster. Therefore, ai can be interpreted as how ei assign to its cluster.
The smaller the value is, the better the assignment that the average dissimilarity of
point ei to a cluster C as the average of the distance from ei to the events point in C. Let
bi be the lowest average dissimilarity of ei to any other cluster that ei is not a member.
The cluster with this lowest average dissimilarity is said to be the “neighboring cluster”
of ei since it is the next best-fit cluster for point ei and it is defined as:

si ¼
bi�ai

max ai; bif g (18)

Where the event similarities can be si ¼
1�ai=bi if aiobi

0 if ai ¼ bi
bi=ai�1 if ai4bi

8><
>: as Si is always

between −1 and 1 (−1⩽ si⩽ 1).
Based on this computational analysis, the sample sensor data synthesized in the same

iteration and class categories, which provide the result as showed Figure 7(a) and (b).
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The event patterns run from 2-5 different cluster values using the k-means routine from
the Statistics Toolbox on the Sample taste the data matrix X from Table V.

As it is shown in Figure 7, the sample data behavioral pattern is more detectable as
the number of clusters is increasing. Moreover, the data categories become more
selective and give clear insights to interpret the real situations of SE to address its
optimal performances and fault detections. For instance, in Figure 6(a), the events
clustered behavioral patterns showed a similar tendency to Figure 6(b). The event
patterns in Figure 7(b) against Figure 7(a) clearly visualizes data types, which provide
more understanding of the behavioral patterns. It is vitally essential to support the
decision-making processes by focusing on better or more probable events towards SE
performance and fault detections. Furthermore, the sensor data clustering evaluated by
the DTW-based distance measurements as of Equations (7) and (8), the outcomes
visualized as Figure 8. The lesson of the outcomes is how the pattern is oscillating,
which is pertinent to define the events that need to be analyzed as the domain contexts
and users desire.

Sensor data are always complex and active, which might not completely store.
Because of these facts and other data, behavioral pattern clustering cannot be prefaced
to define the data situations of nor of data normal and abnormal pattern. Therefore,
some outcast data can be explored as their time and location positions. The
computational algorithm is defined as Equation 15 to validate the outcomes as a
normal or abnormal event’s behavioral pattern:

f a; kað Þ ¼ 1
N

count kað Þ (19)
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where N is the total recorded activities or number of observed behavior counts, (ka) is
the number of events within the cluster k where the activity α resides. The minimum
threshold is also computed and defined as Equation (16) to visualize the abnormal
pattern behavior as it is shown on Figure 9. Therefore, the calculated value of θ is 0.99,
which is less than the confidence or normal value (1):

f a; kað Þoy-abnormal behavior (20)

As it is shown in Figure 9, the abnormal behavior of sensor data recognized in three
distinctive categories. These are ‘no records or activities, high activities that are the
normal or acceptable recognition and mixed that are acceptable or non-acceptable
activity’s recognition. However, in this visualization, the detected ABP needs further
isolations and identification processes. The insignificant and less acceptable activity
recognitions treated as an ABP, which are essential to investigate the performance and
challenges of SE intelligent services. Therefore, the data clustered behavioral patterns
need to be computed based on the data internal relation behaviors. Based on this
analysis, the distance measurement value with correlations and event’s weight
deviation showed universe relations, which visualize the correlation matrix of the
sensor data interactions as showed on Figure 10.

The correlation pattern model view of Figure 10 visualizing the isolated ABP as less
correlation behavioral pattern, which is pertinent to a critical analysis of the dominant
factors of the smart space in terms of its recorded data. The outcome is important to
detect and interpret the challenges of SE performances and applications, which
includes sensor device’s locations, data management, preprocessing and other related
issues to improve the performance of smart systems.

As the DM based Naïve Bayes process of event distributions and similarity
measures (hidden relationships) of sensor data are also essential to analyze events
performance towards ABPs as discussed in Sections 3.3 and 3.4. The computational
outcomes are tabulated and represented as shown in Tables VI and VII naïve Bayes
simple distribution and events similarity, respectively.

The Naïve Bayes simple distributions based graphic representations of events
behavioral pattern clearly visualized as Figure 11(a)-(e), which is vitally significant to
distinguish the ABPs. Based on these computational facts (the variations, between
events, mean and standard deviation), the ABPs on Figure 11(a)-(e) are considerably
isolated. Whereas for Figure 11(d), the factors are in between nor normal and abnormal
patterns. Furthermore, events variations distributions also computed as Table VII.

The parameters S1, S2, Sn ,…, relative distance measurement is also important to
gain a clear understanding of sensors data behavioral pattern devotions in relation to
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sensors locations and data capturing capacities in the intelligent systems. The hidden
interactions of data are a fundamental factor to discriminate the data behaviors fully.
Therefore, HMM-based data similarities or distance variation model visualized as
Figure 12. In an HMM-based time series clustering algorithm of sensor data, the
distance measure is an indicator to select the proper patterns in a basic clustering
process. However, HMM-based behavioral pattern performance analysis is complex
and focussing on measuring to discriminate data similarities than behavioral
deviations or fault diagnosis, which is well adopting in speech recognitions, image
segmentations, and others. On the other hand, DM clustering and nearest neighbors
techniques are dynamic and adaptable, and also a systematic approach to augment
applications for sensor data behavioral pattern detections. Based on these facts, a DM
technique for sensor data BPM is an advanced and scalable application in the
engineering fields, which can be an inference to many other scientific works. It has
powerful and capable performances to define time series streaming data similarity or
deviation measurements.

V. Conclusion and future directions
In this paper, we discussed the innovative topic of critical analysis of sensor data
behavioral patterns, which is pertinent to SE performance optimizations and fault
diagnosis. In the first section, we discussed SE or intelligent systems in general in order
to understand the applications the smart technologies in relations to sensor data
deluge. The large-scale sensor data need to be analyzed to define the trajectories’
behavioral patterns, which is the theme of this study. The technique of SDM focussed
on in the paper is to explore or mine sensor data behavioral patterns in a smart place to
detect the abnormal behavioral patterns for fault analysis and SE performance
optimizations in general. In Section III that followed the relative work discussed in
details the sensor data behavioral patterns in terms of sensor data ecosystems,
characteristics, pattern development and descriptions. Besides to these, the technique
of SDM of clustering and distance measurements based behavioral patterns explored,
pattern-clustering algorithms proposed, and various distances measurements-based
techniques synthesized. In Section IV, the proposed method performance, their
outcomes and the need for the approach well analyzed and evaluated using real sensor
data. The experiment was conducted to elucidate sensor data behavioral patterns that

Attributes (sensors index) S1 S2 S3 S4 S5 …
Parameters Mean SD Mean SD Mean SD Mean SD Mean SD …

Predicted pattern behavior
Normal (y) 0 0.001 0.154 0.555 0.231 0.599 0.231 0.599 0.308 0.751 …
Abnormal (n) 0.250 0.707 0.750 2.121 0.750 1.488 0.125 0.354 0 0.001 …

Table VI.
Naïve Bayes simple

distributions

1st Att. (sensors index) S1 S1 … S2 S2 … S3 S3 … S4 S4 … S5 S5 … …
2nd Att. (sensors index) S2 S3 S1 S3 S1 S2 S1 S2 S1 S2 …
Distance value 6.708 6.245 8.602 6.782 6 6.164 3.742 6.782 6.928 3.742 …

Table VII.
Similarity

measurement of
sensor data
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semantic enrichment can enhance ABPs detections. The results presented in graphs
and interpreted for users, and for further development and applications of sensor
technologies. Thus, the SDM-based sensor data critical analysis augmented as to
sensor data behavioral pattern mining toward ABPs detections, which helps to isolate,
identify and accommodate smart space faults as the domain contexts.

In the past studies, it was demonstrated that only a limited amount of information
extract from raw sensor data. In this study semantics, sequential events BPM as to
ABPs detections provide novel ideas to extract knowledge implicit, which SDM could
scale up and play a great role in the new era of big sensor data. Furthermore, the study
has some limitations that can be venues for future research. This study did not consider
the causative factors of the ABPs that are how the faults or changes happened, which
can provide more specific insights into the root challenges of the sensor functionality.
It needs to extend how to control and reconfigure the abnormal behavior. Sensor data
abnormal behavior identification in relation to real-time SE risk assessments is vitally
pertinent for advanced and large-scale intelligent systems.
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