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Solving two-dimensional Markov
chain model for call centers

Chih-Chin Liang
Graduate Institute of Business and Management,

National Formosa University, Hu wei, Taiwan, ROC, and
Hsing Luh

Department of Applied Mathematics, National Chenchi University,
Taipei, Taiwan, ROC

Abstract
Purpose – The purpose of this paper is to develop a novel model of a call center that must treat calls
with distinctly different service depending on whether they orginate from VIP or regular customers.
VIP calls must be responded to immediately but regular calls can be routed to a retrial queue if the
operators are busy.
Design/methodology/approach – This study’s proposed model can easily reveal the optimal
arrangement of operators while minimizing computational time and without losing any precision of the
performance measure when dealing with a call center with more operators.
Findings – Based on the results of the comparison between the exact method and the proposed
approximation method, the approach shows that the larger the number of operators or inbound calls,
the smaller the error between the two methods.
Originality/value – This investigation presents a computational method andmanagement cost function
intended to identify the optimal number of operators for a call center. Because of computational
limitations, many operators could not be easily analyzed using the exact method. For the manager of a call
center, the sooner the optimal solution is found, the faster business strategies are deployed. This study
develops an approximation method and compares it with the exact method.
Keywords Call center, Management cost, Operators management, Two-dimensional Markov chain
Paper type Research paper

1. Introduction
Motivated by a research project involving call centers at a selected company in Taiwan
(Kim et al., 2012; Liang et al., 2005, 2009), this study discusses an approximation method
suitable for use when an exact solution is not attainable to calculation of the management
cost of a call center that involves blocking probability and waiting time (Huang, 2010;
Liang and Luh, 2013; Melikov and Babayev, 2006; Xu et al., 2002; Bright and Taylor,1995).
A large-scale service sector regards uninterrupted customer service as a key operational
target (Kim et al., 2012; Liang et al., 2005, 2009). To meet customer demands, a service
company must manage human resources in a call center to answer inbound calls using a
computer system. Human resource management is a strategic approach to managing
employees who individually and collectively contribute to the achievement of business
objectives (Armstrong and Taylor, 2014; Yang et al., 2007). Moreover, a call center
charged with satisfying customer inquiries assigns staff members as phone operators
(Kim et al., 2012). Additionally, operators should make all customer arrangements during
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customer phone calls (Dudina et al., 2013; Gans et al., 2003). The number of operators
represent the capacity of handing inbound calls. Managers can implement actions to
reduce management expenses (Armstrong and Taylor, 2014, Benaroch et al., 2010;
Li and Chandra, 2007; Lee and Park, 2005). That is, through analyzing the management
costs associated with specific solutions, managers can determine the optimal operator
assignment strategy (Benaroch et al., 2010; Dubelaar et al., 2005; Lee and Park, 2005).
Analysis of the management costs associated with daily call center operations can
assist managers in making operator allocation decisions. Operators thus can be
assigned efficiently based on analysis of the management costs associated with call
center operations.

Obviously, the main daily job of the operator is to answer customer calls. However, not
all customers benefit the company equally. On average, the revenues contributed by
customers of telecommunication companies in Taiwan range from $7.9 US dollars/month
(regular users) to $60 US dollars/month (important users) (National Communication
Commission, 2014). This statistic implies that VIP customers can benefit a company far
more than regular customers do (Kim et al., 2012; Liang et al., 2005, 2009). Therefore based
on financial considerations companies should adopt business strategies by which they
respond to VIP customers faster than regular ones. Obviously, the best solution for a
company is a system that prioritizes VIP calls (denoted as v-calls) over regular calls
(denoted as r-calls). However, given limitations of human resources, how to assign
operators to efficiently serve customers of different levels of importance becomes crucial
to developing a successful call-center service.

To optimize the assignment of operators in a call center, the guard channel scheme,
which suggests the reservation of partial channels for packets with high privilege,
could be adopted to help assign operators for v-calls (Choi and Chang, 1999; Do, 2010;
Dudina et al., 2013; Gans et al., 2003; Servi, 2002; Winkler, 2013). This investigation
considers a novel model for call center operations that is based on a guard channel
scheme. Based on the proposed design, v-call are assigned high privilege, while still
providing regular customers with satisfactory service. Restated, some operators should
be dedicated exclusively to answering v-calls, while regular customers are guaranteed
to receive services from the call center. The risk of this approach is that if the regular
customer is angry because of the long waiting time, they may spread negative feedback
(Kim et al., 2012; Liang et al., 2005, 2009). Therefore, the proposed method should consider
waiting time. This study models two types of calls as a two-dimensional Markov chain
(Phung-Duc et al., 2010; Tran-Gia and Mandjes, 1997). This investigation applies the
V-model to call center behavior (Dudina et al., 2013; Gans et al., 2003). Specifically, two
types of customers can enter the call center and be served. Our objective is to derive
performance measures of the investigated model, as well as upper and lower bounds of
the waiting time of regular customers.

This study presents a model of two call types, v-calls and r-calls, as a two-dimensional
Markov chain. Based on analysis of the two-dimensional Markov chain, we can obtain
three measures of model performance: the probability that the system fails to serve a
regular customer on the first attempt (Pr), the probability that the system fails to serve
a VIP on first attempt (Pv), and the average number of regular customers in the retrial
group (Lq). Additionally, the upper and lower bounds of the waiting time for regular
customers could be found by analysis of the two-dinensional Markov chain.

To identify the optimal assignment among K operators, this investigation constructs a
management cost function per unit of time using a queueing model and sets the optimal
thresholdN. For example, if the number of occupied operators who are too busy to answer
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customer inquiries is N or larger, the remaining K-N operators are reserved for serving
VIPs. On the other hand, if the incoming r-call which finds no operators available on its
arrival, the call sent back to the retrial group to wait for the next available operators.
Based on the above descriptions, the management cost (MC (N,K)) is expressed as follows,
where Cw denotes the holding cost of calls in the retrial group, while Cr and Cv represent
the opportunity costs of blocking calls of regular customers and VIPs:

MC N ;Kð Þ ¼ CwLqþCrPrþCvPv (1)

.From Equation (1), the results could be obtained by computing a two-dimensional Markov
chain as explained below. However, applying the proposed model to a real case, it would
be difficult to identify the optimal N because of the long computing time. Because the
number of operators is generally large, with more than 100 operators in a large-scaled call
center, the above complex computation necessitates the expenditure of considerable effort
to solve stationary probabilities (Choi and Chang, 1999; Do, 2010; Dudina et al., 2013;
Gans et al., 2003; Servi, 2002; Winkler, 2013). Since computers necessarily have limited
computational ability, processes might be delayed if performed using a low-end computer.
Additionally, such limited computational ability wastes excessive energy together with
the excessive waiting time. On the other hand, a high-end computational machine is needed
to solve this problem for the large number of operators, if no appropriate solution can be
provided. In order to resolve this problem, the investigation provides an approximation
method known as the phase merging algorithm, introduced by Melikov and Babayev
(2006). Instead of the exact method, the algorithm is rephrased in the form applicable to
a two-dimensional Markov chain and applied to the model to approximated stationary
probability distributions and measures of their performance.

This study also examines estimated errors between the approximate and precise
methods. The numerical results demonstrate that the approximation method enables
the manager to save computational time without sacrificing accuracy given numerous
operators. Using the approximation method, it is easy to accurately estimate management
costs and effectively allocate operators in a large call center.

The remainder of this paper is structured as follows. In Section 2, a quasi-birth-
and-death (QBD) process model is designed based on a two-dimensional Markov
chain and the estimation of waiting time is further calculated. Section 3 illustrates
the computation of stationary probability distribution. Section 4 then describes the
approximation method, which is applied to a case to determine the optimum allocation
of operators that minimizes management cost. Section 5 discusses the error estimation
between the exact and approximation methods. Finally, Section 6 illustrates the
conclusions and suggests directions for future research.

2. A queueing model
To estimate the management cost, the queueing model, which describes a call center that
deals with calls from two categories of users, is derived to compute the opportunity of
incoming calls are the r-calls from regular customers, and the v-calls from VIPs. A total
of K operators is considered in a call center, where K is a large finite number. Namely,
a maximum of K operators can serve customers. Let λγ and λυ denote the Poisson arrival
rates of r-calls and v-calls, respectively. The service rates for both call types by each
operator are μ, where the service time is exponentially distributed. If at least one free
operator is available on the arrival of a v-call, that call is admitted for immediate service;
otherwise, v-call are immediately terminated. Let Pv represent the probability that v-calls
are not served immediately.
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Figure 1 shows that r-calls can legitimately connect with the call center when the
number of busy operators is less than N, N is a nonnegative integer and has a value
of K or less. Otherwise, the incoming r-calls are blocked or routed to the retrial group.
The r-calls in the retrial group try to re-call following a period that follows an
exponential distribution with rate α. Since all waiting calls in the retrial group are
stored on a computer system with limited storage capacity, this study assumes that the
retrial group has finite capacity, say R. Let Pr represent the probability that r-calls do
not receive immediate service. Thus, Pr denotes the probability that r-calls do not
receive service when the retrial group is full. Generally, inbound r-calls may leave the
system immediately after it learns that no available operators exist for service even if
the retrial group is not full. This study thus assumes that r-calls either enter the retrial
group with probability H0 or leave the system forever with probability 1-H0. The re-call
rate of r-calls in the retrial group is α. Regarding the r-calls in the retrial group,
following an unsuccessful re-call they either return to the retrial group with probability
H1 or leave the system with probability 1-H1.

Let X1(t) represent the random variable representing the number of r-calls in the
retrial group and let X2(t) denote the random variable representing the number of calls
in service at time t. Taking a long-term view, let S represent the state space, where
S¼ {(X1, X2), 0⩽X1⩽R, 0⩽X2⩽K}. Then (X1, X2) denotes a two-dimensional Markov
chain whose elements in Q-matrix are represented by:

q i; jð Þ; i; j
0� �� �

¼

lrþlv; if i
0 ¼ i; j

0 ¼ jþ1; 0p ipR; 0p jp N�1

lv; if i
0 ¼ i; j

0 ¼ jþ1; 0p ipR; Np jpK

ia; if i
0 ¼ i�1; j

0 ¼ jþ1; 1p ipR; 0p jpN�1

ia 1�H 1ð Þ; if i
0 ¼ i�1; j

0 ¼ j; 1p ipR; Np jp K

iaH 1; if i
0 ¼ i; j

0 ¼ j; 1p ipR; Np jpK

lrH 0; if i
0 ¼ iþ1; j

0 ¼ jþ1; 0p ipR; Np jpK

jm; if i
0 ¼ i; j

0 ¼ j�1; 0p ipR; 1p jpK

0; otherwise

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

Retrial
Group

K

K-1

N

N-1

2

1

Blocked r-calls

r-calls

v-calls

Operators

······

······

Figure 1.
A queueing system

904

IMDS
115,5

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 0
1:

44
 0

9 
N

ov
em

be
r 

20
16

 (
PT

)



Figure 2 illustrates the diagram of the state transition rate for call center operations.
The parameters of the proposed model are: K, the numbers of operators in the
call center; R, the capacity of the retrial group; N, the decision variable of number
of operators; λr, the arrival rate of r-calls following a Poisson distribution;
λv: the arrival rate of v-calls following a Poisson distribution; H0, the probability
that a r-call enters the retrial group; α, the rate of associated with a re-call time in
the retrial group following an exponential distribution; H1, the probability of r-calls
that re-enter the retrial group after an unsuccessful retry; μ, the service rate of
an operator; π(i, j), stationary probability at state (i, j), where i is the random variable
representing the number of r-calls in the retrial group, j is the random variable
representing the number of calls in service from VIP and regular customers; Lq,
the average number of calls in retrial group; and λ, the total arrival rate of VIP
and regular customers.

The two-dimensional Markov chain resembles the birth and death process model
(QBD) (Artalejo and Gómez-Corral, 2008; Artalejo et al., 2005; Gómez-Corral, 2006;
Do et al., 2014; Phung-Duc, 2014; Phung-Duc et al., 2013). This investigation
establishes the infinitesimal generator (Q-matrix) as follows. Let dik represent the
diagonal element on the kth row in the Bi, where i is larger than or equal to zero and
smaller than or equal to R, while k is larger than or equal to one and smaller than
or equal to K:

Q ¼

B0 A0 0 0 � � � 0

A2 B1 A0 0 � � � 0

0 A2 B2 A0 & � � �
0 0 & & & 0

^ ^ 0 A2 BR�1 A0

0 0 0 0 A2 BR

0
BBBBBBBBB@

1
CCCCCCCCCA

Let Bi, A0 and A2 defined as follows:

Bi ¼

0

1

^

N�1

N

Nþ1

^

K�1

K

�dðiÞ1 lv 0 0 0 0 � � � 0 0

m �dðiÞ2 lv 0 0 0 � � � 0 0

0 & & & & ^ ^ ^ ^

^ & N�1ð Þm �dðiÞN�1 ia 0 � � � 0 0

0 0 0 Nm �dðiÞN lv � � � 0 0

0 0 0 0 Nþ1ð Þm �dðiÞN þ 1 lv 0 0

^ ^ ^ ^ 0 & & lv 0

0 0 0 0 0 0 K�1ð Þm �dðiÞK�1 lv

0 0 0 0 0 0 0 Km �dðiÞK

2
66666666666666666664

3
77777777777777777775

;
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State transition
diagram
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A0 ¼

0

1

^

N�1

N

Nþ1

^

K�1

K

0 0 0 0 0 0 � � � 0 0

0 & 0 0 0 0 � � � 0 0

0 0 & 0 0 0 � � � 0 0

^ ^ 0 0 0 0 � � � 0 0

^ ^ ^ 0 lrH 0 0 � � � 0 0

^ ^ ^ ^ 0 & 0 0 0

^ ^ ^ ^ ^ & & 0 0

^ ^ ^ ^ ^ 0 0 lrH 0 ^

0 0 0 0 0 0 0 0 lrH 0

2
66666666666666664

3
77777777777777775

;

and:

A2 ¼

0

1

^

N�1

N

Nþ1

^

K�1

K

0 ia 0 0 0 0 � � � 0 0

0 & ia 0 0 0 � � � 0 0

0 0 & & 0 0 � � � 0 0

^ ^ 0 0 ia 0 � � � 0 0

^ ^ ^ 0 ia 1�H 0ð Þ 0 � � � 0 0

^ ^ ^ ^ 0 ia 1�H 0ð Þ 0 0 0

^ ^ ^ ^ 0 & & 0 0

^ ^ ^ ^ 0 0 0 ia 1�H 0ð Þ ^

0 0 0 0 0 0 0 0 ia 1�H 0ð Þ

2
66666666666666664

3
77777777777777775

:

Additionally, let π¼ [π0, π1, π2,…., πR−1, πR] represent the exact solution, where πi¼
(π(i, 0), π(i, 1),…, π(i,K)) for i¼ 0, 1, 2,…, R, and ∀πi∈M1×(K+1), where the above results
satisfy equations:

pQ ¼ 0; (2)

and:

XR
i¼0

XK
j¼0

p i; jð Þ ¼ 1 : (3)

Hence, this investigation adopts the following balance equations:

p0B0þp1A2 ¼ 0

p0A0þp1B1þp2A2 ¼ 0

p1A0þp2B2þp3A2 ¼ 0

^

pR�2A0þpR�1BR�1þpRA2 ¼ 0

pR�1A0þpRBR ¼ 0
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Applying Equations (2) and (3), we could obtain πi¼ (π(i, 0), π(i, 1),…, π(i, K)) for
i¼ 0, 1, 2,…, R, by using the Matlab software given relatively small K. The three
performance measures derived from the above equations are as follows:

(1) The probability that the system fails to serve a regular customer on the first
attempt is Pr ¼

PR
i¼0

PK
j¼N p i; jð Þ, because calls from regular users will be

redirected to the retrial group when N or more operators are busy;

(2) The probability that the system fails to serve a VIP caller is Pv ¼
PR

i¼0 p i;Kð Þ,
because all operators are too busy to answer v-call; and

(3) The average number of regular customers in the retrial group is
Lq ¼

PR
i¼1

PK
j¼0 ip i; jð Þ.

3. Computational time
Because of a large KW100, the abovementioned measures require computation
through experiments. To determine the computational complexity of the three
performance measures, this investigation establishes parameters for an experiment
based on a real case. Although the number of operators is 71 (K¼ 71), to clarify the
problem of long computational time, this investigation also extended K from 71 to 451.
Table II shows the time spent to calculate the blocking probability of calls from regular
customers based on the data listed in Table I for K with different capacity through
Equations (2) and (3). The experimental results demonstrate that because this queueing
model is a two-dimensional Markov chain, the balance equations are so complex that
their algorithmic computing time grows exponentially (Figure 3). The experiment is
implemented using a mathematical tool (Matlab® 7.0) with a high-end workstation
(Windows® 7 Business version, Intel® Core™ i7 CPU at 2.69 GHZ, and three gigabytes
of random access memory (RAM)) (Tables I and II).

Obviously, such an exact method becomes highly impractical given large K.
Over 20 hours (73,072 seconds) are needed to calculate the results when K is
126. Therefore, Section 3 of this study introduces an approximation known as the
phase merging algorithm to calculate Equations (2) and (3) to solve the computational
problem.

4. The approximation method
Numerous approximation methods have been proposed to solve the computational
problem associated with a large number of channels (exceeding 1,000) with heavy
traffic in the telecommunication research literature (Abdrabou and Zhuang, 2011;
Allon et al., 2013; Bandi and Bertsimas, 2012; Bicen et al., 2012; Halfin and Whitt,
1981; Nelson, 2012; Sriram and Whitt, 1986; Whitt, 1983). However, call centers have
their own limitations and unique features in handling calls from real people, and do

Parameter Value Parameter Value

N K H1 0.999
R 15 λr 7.78
μ 1/3 λv 3.89
α 1.8 λ 11.67
H0 0.15 K 71

Table I.
Parameter set
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not merely transmit data. It is necessary to consider simple approximation methods.
One such method is known as phase merging algorithm and was introduced by
Melikov and Babayev (2006) and adopted by Choi, Melikov and Velibekov (Choi et al.,
2008; Liang and Luh, 2013; Ponomarenko et al., 2010) to compute stationary
probability. This method can be implemented in call centers. The approximation
method is shown as follows.

Application of the phase merging algorithm to this model requires making the
following assumptions (based on Figure 2):

lv * lrH 0 (4)

0

20,000

40,000

60,000

80,000

100,000

120,000

140,000

160,000

180,000

200,000

1 11 21 31 41 51 61 71 81 91 101 111 121 151 251 351 451

seconds 

K
Figure 3.

Computational time

K Seconds K Seconds

1 0.02 86 237.56
6 0.17 91 305.57
11 0.56 96 362.80
16 1.31 101 428.32
21 2.76 106 476.88
26 6.30 111 558.36
31 10.25 116 638.95
36 16.44 121 731.54
41 24.79 126 761.41
46 35.30 151 1,325.80
51 49.16 201 3,484.20
56 65.94 251 8,271.80
61 87.36 301 14,773.00
66 111.10 351 54,720.00
71 139.09 401 99,006.70
76 168.04 451 180,890.00
81 208.39

Table II.
Computational time
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Km * Ra (5)

lv * Rað1�H 1Þ (6)

The above assumptions are rational in a call center. When the arrival rate of v-calls
significantly exceeds that of r-calls multiplied by the probability of r-calls entering the
retrial group being blocked, a high chance of more than N customers in service implies
protection for VIPs. In this regard, this study assumes the up vertical flow must
significantly exceed the left and right horizontal flow (see Figure 2). Additionally, the down
vertical flow significantly exceeds the up slanting flow shown in Figure 2. If the model
satisfies the above conditions, then it is possible to adopt the phase merging algorithm.

The steps of the phase merging algorithm are illustrated based on the above
assumptions, as follows:

(1) Split state space of the original two-dimensional Markov chain by (Choi et al., 2008):

S ¼ [R
i¼0

Si; Si \ Si0 ¼ |; ia i0 (7)

where Si¼ {(i, j)∈S:0⩽ j⩽K}.

(2) The conditional stationary distribution p j9i
� � ¼ p i;jð ÞPK

j¼1
p i;jð Þ

within each class Si has

been defined as an M/M/K/K queueing system given the following arrival rates:

lrþlv; if joN

lv; if j⩾N
:

(

Therefore:

p j9i
� � ¼

rj

j!p 09i
� �

; if 1p jpN

rN

j! r
j�N
v p 09i

� �
; if Np jpK

:

8<
:

where r ¼ lr þlv
m , rv ¼ lv

m , 0p jpK and:

p 09i
� � ¼ XN

j¼0

rj

j!
þrN

XK
j¼N þ 1

rj�N
N

j!

 !�1

(8)

From Equation (8) (Choi et al., 2008), we find the probability π(j∣i) which does not
depend on i. Therefore, p jð ÞD¼ p j9i

� �
is omitted.

(3) All states within subset Si could be merged into a single merged state o iW .
The merged model is a birth and death process and the transition rates are
manipulated with little algebra, which yields:

q o i4 ; o i
0
4

� � lrH 0

XK
J¼N

p jð Þ; if i ⩾ 0; i
0 ¼ iþ1;

ia
XN�1

j¼0

p jð Þþ 1�H 1ð Þ
XK
J¼N

p jð Þ
 !

;

0; otherwise

if i ⩾ 1; i
0 ¼ i�1:

8>>>>>>>><
>>>>>>>>:
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The stationary distribution of the merged model ψ(o iW ), o iW , i¼ 0, 1,…, R
is thus obtained. Based on the stationary probability of M/M/R/K, this study
provides the following equations (Choi et al., 2008):

c o i4ð Þ ¼ ti

i!
c o04ð Þ; (9)

where:

c o04ð Þ ¼
XR
i¼0

ti

i!

 !�1

; (10)

t ¼ lrH 0
PK

j¼N p jð Þ
a
PN�1

j¼0 p jð Þþ 1�H 1ð ÞPK
j¼N p jð Þ

� �; (11)

Define:

p i; jð Þ ¼ p jð Þc o i4ð Þ: (12)

Based on the above descriptions, we obtain the following lemmas.

Based on the assumptions of Equations (4)-(6), the phase merging algorithm can
approximate π using Equation (12). It is explained in the following.

Lemma 1. Because π(i, j) is the stationary probability of state (i, j) and the expected
rates of flow in and out of state (i, j) must be equal, this study considers
three cases with given state (i, j) and Si.

• Case 1. jWN.

Flow in state (i, j), it gives:

p iþ1; jð Þ iþ1ð Þa 1�H 1ð Þ½ �þp i; j�1ð ÞlvþlrH 0þp i; jþ1ð Þ jþ1ð Þm (13)

Flow out state (i, j), it gives:

p i; jð Þþ lvþlrH 0þ jmþ ia 1�H 1ð Þð (14)

Because Equation (13)¼Equation (14), by little algebra, we have:

p i; jð Þ lvþ jmð Þ ¼ p i; j�1ð Þlvþp i; jþ1ð Þ jþ1ð Þmþej (15)

where ej ¼ p iþ1; jð Þ iþ1ð Þa 1�H 1ð Þ½ �þp i�1; jð ÞlrH 0 � p i; jð ÞlrH 0 � p i; jð Þia 1�H 1ð Þ:
Let Equation(15) be divided by λv and it produces:

p i; jð Þ lvþ jmð Þ
lv

¼ p i; j�1ð Þlv
lv

þ p i; jþ1ð Þ jþ1ð Þm
lv

þ p iþ1; jð Þ iþ1ð Þa 1�H 1ð Þ
lv

þp i�1; jð ÞlrH 0

lv
� p i; jð ÞlrH 0

lv
� p i; jð Þia 1�H 1ð Þ

lv
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The εj in Equation (15) might be ignored, because (4) and (6) imply εj is approaching to
zero. The Equation (16) represents the balance equation within Si.

• Case 2. j¼N:

p i; jð Þ lvþ jmð Þ ¼ p i; j�1ð Þ lvþlrð Þþp i; jþ1ð Þ jþ1ð Þmþej (16)

where ej ¼ p iþ1; jð Þ iþ1ð Þa 1�H 1ð Þ½ �þp i�1; jð ÞlrH 0�p i; jð ÞlrH 0�p i; jð Þia 1�H 1ð Þ:
Let (16) be divided by λvKμ and it produces:

p i; jð Þ lvþ jmð Þ
lvKm

¼ p i; j�1ð ÞðlvþlrÞ
lvKm

þ p i; jþ1ð Þ jþ1ð Þm
lvKm

þp iþ1; jð Þ iþ1ð Þa 1�H 1ð Þ
lvKm

þp i�1; jð ÞlrH 0

lvKm
� p iþ1; j� 1ð Þ iþ1ð Þa

lvKm

� p i; jð ÞlrH 0

lvKm
� p i; jð Þia 1�H 1ð Þ

lvKm

The εj in Equation (16) might be ignored, because (4)-(6) imply εj is approaching to zero.
• Case 3. joN:

p i; jð Þ lvþlrþ jmð Þ ¼ p i; j� 1ð Þ lvþlrð Þþp i; jþ1ð Þ jþ1ð Þmþej (17)

where ej ¼ p iþ1; j� 1ð Þa iþ1ð Þ � p i; jð Þia:
Let (17) be divided by Kμ which leads to:

p i; jð Þ lvþluþ jmð Þ
Km

¼ p i; j� 1ð Þ lvþlrð Þ
Km

þp i; jþ1ð Þ jþ1ð Þm
Km

þp iþ1; j� 1ð Þ iþ1ð Þa
Km

� p i; jð Þ ia
Km

The εj in Equation (17) might be ignored, because (5) implies εj is approaching to zero.
Using Equations (15)-(17) and given Si, we can ignore the horizontal and slanting flows
in the system (see Figure 2) except for vertical flows. Therefore, based on Equations
(15)-(17), we conclude the following: If εj is small and can be ignored, p (i, j) is an
ε-approximation of π(i, j). Based on four approximations, (18)-(21) could be derived for
the measures of performance and the average waiting time (Choi et al., 2008):

Pr � 1� p 0ð Þ
XN � 1

i¼0

ri

i!
; (18)

Pv � p 0ð Þr
NrK � N

v

K!
; (19)

Lq � c o04ð Þ
XR
J¼1

t j

j� 1ð Þ!; (20)

Now we compute an effective arrival rate of r-calls in the retrial group denoted by lnr .
Because the total calls in the retrial group is completely owing to regular customers,
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it is calculated by the average number of r-calls admitted in the retrial group minus
some of them leave the system with probability (1-H1) or find no servers available
subsequently. Let P(R) denote the probability that the retrial group is full, and Pn

r
represents the probability that r-calls may be routed to the retrial group where P Rð Þ ¼PK

J¼0 p R; jð Þ and Pn

r ¼
PR � 1

i¼0

PK
j¼N p i; jð Þ.

Lemma 2. The effective arrival rate of r-calls is given by:

lnr ¼ lrP
n

r H 0 1� P Rð Þð Þ 1 � Pn

r
1 � H 1P

n

r ð1 � P Rð ÞÞ

� ��
and 0p 1 � Pn

r
1 � H 1P

n

r 1 � P Rð Þð Þp1

Proof: Let D ¼ lrP
n

r H 0 1� P Rð Þð Þ. We have:

lnr ¼ D� DPn

r 1�H 1ð ÞþDPn

r H 1P Rð Þ� �� DPn

r 1�H 1ð ÞH 1P
n

r 1� P Rð Þð Þ�
þDPn

r H 1P Rð ÞH 1P
n

r 1� P Rð Þð Þ � UUU

¼ D 1� Pn

r ð1�H 1Þ
1�H 1P

n

r 1� P Rð Þð Þ �
Pn

r H 1P Rð Þ
1�H 1P

n

r 1� P Rð Þð Þ

� 	

¼ D
1� Pn

r

� �
1�H 1P

n

r 1� P Rð Þð Þ


 �

¼ lrP
n

r H 0 1� P Rð Þð Þ 1� Pn

r

� �
1�H 1P

n

r 1� P Rð Þð Þ


 �

_0pH 1p1 and 0pP Rð Þp1

‘0p 1� Pn

r

1�H 1P
n

r 1� P Rð Þð Þp1

Finally, from the abovementioned derivations, we obtain the mean waiting time in the
retrial group based on the formula of Little is:

Wr ¼
Lq

lnr
(21)

The call center must determine the number of servers required to ensure that both
types of customers (regular and VIP customers) receive satisfactory service.
Satisfactory service (Chen and Henderson, 2001) means that at least qr percent of
r-calls are served withinm seconds. This definition of satisfactory service is common in
the call center industry. Restated, partial r-calls are answered immediately (set m¼ 0).
This investigation considers two waiting time with r-calls: N equals zero and N does
not equal zero (0oN⩽K).
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• Case 1. N¼ 0.
Clearly, any regular customer cannot enter the system to receive service. On the other
hand, theM/M/K/K queueing system only serves VIP customers. Since VIP customers
do not have waiting time in the model, the waiting times for v-calls and r-calls both
equal zero. Thus we can conclude that for any time when w is zero or greater, it has:

P waiting time of both calls4wð Þ ¼ 0: (22)

• Case 2. 0oN⩽K.

Because VIP customers are served immediately, this investigation only needs to
consider the waiting time for regular customers in the retrial group. Abate and Whitt
have proposed algorithms for numerically calculating tail probabilities. However,
the proposed algorithms require complex arithmetic, which is inconvenient for the
manager of a call center manager to apply to calculate waiting time. Let Wr denote
a random variable of the waiting time of r-calls. Given Markov’s inequality for a
nonnegative random variable X and constants x, β larger than zero indicates:

P X ⩾ xð Þp
E Xb
� �
xb

;

where P(.) denotes a probability function (Ross, 2002). Hence, we conclude that:

P Wr4wð ÞpWr

w
: (23)

Equation (5) provides an upper bound on the tail probabilities ofWr, and hence a lower
bound of P(WrWw), namely, P(WrWw∣λv¼ 0) for any w that exceeds zero.

That is, given ∀wW0 then:

P Wr4w9ln ¼ 0
� �

pP Wr4wð ÞpWr

w
: (24)

Apparently, Equation (24) provides lower and upper bounds for regular customer waiting
times. The upper bound is calculated by Equation (21). The manager can use these results
to determine the optimum N that satisfies regular customers the service requirements can
be met. The procedure used to calculate N for satisfactory service is shown in Algorithm
WP. The manager could simply increase N until Equation (23) with w¼m falls below
(100-qr) percent. Therefore, we can be reasonably confident of approaching these goals
using formulae (21) and (24). WP algorithm is written as follows:

Step 1. Given N, w, qr.
Step 2. Compute x ¼ E Wr9Nð Þ

w
Step 3. If xo (100− qr) percent, then STOP.
Step 4. Increase N and go to Step 2.

Based on satisfactory service requirements, we compute the probability of waiting time
which is more than w seconds for regular customers when the traffic intensity of regular
customers is lr=Nm. From (24), we can determine the lower bound and upper bound of
the probability. The effective arrival rate is lnr . Given w, we have Wr=w ¼ Lq=wl

n

r .
Furthermore, the lower bound can be found when lv ¼ 0: In this case, we consider it as a
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traditional M/M/N/K queueing model where K¼N+R. To illustrate satisfactory service
requirements, we have set up the parameters in Table III.

The experiment results show that the upper bound of probability of waiting time goes
up along with the increasing arrival rate of regular customers. Additionally, under the
study it expects that a satisfactory service represents at least 90 percent of r-calls are
served within 50 seconds. We adopt WP algorithm to compute Nwithw¼ 50 and qr¼ 90.
The experiment results show that the probability of waiting time more than 50 seconds is
below 10 percent when lr=Nm ¼ 1:556 and N≧ 48 (Figure 4). Hence, the call center may
control the probability of waiting time of regular customers less than 50 seconds is more
than 90 percent by assigning more than 48 servers.

Finally, from Equations (1) and (2), we obtain πi¼ (π(i, 0), π(i, 1),…, π(i, K)) for
i¼ 0, 1, 2,…, R, by using a mathematical tool (Matlab® 7.0) with a high-end
workstation, we can calculate the results using the above method (the exact method).
However, it is easy to identify the optimal N when K is small. When K is large, such
complex computations might slow the computer system to a standstill. For example,
when the number of operators is ⩾70 (the number of the operators of the case
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(1)Upper bound of waiting time with N=46

(2)Upper bound of waiting time with N=47

(3)Upper bound of waiting time with N=48

Figure 4.
Probability of

waiting time more
than 50 seconds

Parameter Upper bound Lower bound

K 70 70
R 15 15
N 35 35
1/μ 3 3
α 1.8 1,000
H0 0.15 1
H1 0.999 1
λr 7.78; 10.37; 12.96; 15.56; 18.15; 20.74; 23.34 7.78; 10.37; 12.96; 15.56; 18.15; 20.74; 23.34
λv 3.89; 5.19; 6.48; 7.78; 9.08; 10.37; 11.67 0; 0; 0; 0; 0; 0; 0
w 50 (sec.) 50 (sec.)

Table III.
Parameters for upper

bound and lower
bound tests
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company), almost six hours are needed to complete the computation. Therefore, the
approximation method must be discussed.

Finally, to clarify the errors between the exact and approximation methods, this
investigation obtained the results listed in Table III. In the experiments, we assume
R¼ 15, α¼ 1.8, μ¼ 0.33, λ¼ 11.67 and N¼K. This investigation determined that the
errors between the exact and approximation methods decrease with increasingK. From
Table III, we found almost no error between the exact method and the approximation
method once KW40. Restated, if K exceeds 51, Pr decreases to zero based on the
original assumptions (Table IV). To clarify the comparison of the exact and
approximation methods, λ must exceed the original assumptions. This study thus
increased λ from 11.67 to 211.67. The results are listed in Table V. Additionally, the

K
Computational time by

approximation method (sec.)
Computational time by
exact method (sec.)

Speed
ratio

Pr by
approximation

method
Pr by exact
method

1 0.0312 0.0624 2.00 0.972 0.991
6 0.0468 0.39 8.33 0.834 0.939
11 0.0468 0.5928 12.67 0.697 0.813
16 0.078 1.2792 16.40 0.563 0.655
21 0.0936 2.652 28.33 0.433 0.502
26 0.1092 5.85 53.57 0.310 0.357
31 0.156 9.4537 60.60 0.198 0.226
36 0.1716 14.3053 83.36 0.107 0.120
41 0.2028 21.7621 107.31 0.044 0.048
46 0.2184 31.8086 145.64 0.012 0.013
51 0.2964 44.9283 151.58 0.002 0.002
56 0.3432 59.14 172.32 0.000 0.000
61 0.3744 76.7993 205.13 0.000 0.000
66 0.4368 98.9358 226.5 0.000 0.000
71 0.4836 123.194 254.74 0.000 0.000

Table IV.
Exact vs
approximation
(λ¼ 11.67)

K
Computational time by

approximation method (sec.)
Computational time by
exact method (sec.)

Speed
ratio

Pr by
approximation

method
Pr by exact
method

1 0.016 0.031 2.00 0.998 0.999
6 0.016 0.031 2.00 0.991 0.992
11 0.078 0.593 7.60 0.983 0.985
16 0.094 1.217 13.00 0.975 0.978
21 0.094 2.184 23.33 0.967 0.971
26 0.140 4.976 35.44 0.959 0.964
31 0.125 8.518 68.25 0.951 0.957
36 0.125 13.869 111.13 0.943 0.950
41 0.187 20.904 111.67 0.936 0.943
46 0.250 30.358 121.63 0.928 0.936
51 0.296 41.434 139.79 0.920 0.929
56 0.296 56.940 192.11 0.912 0.922
61 0.343 76.425 222.68 0.904 0.915
66 0.406 98.187 242.08 0.896 0.908
71 0.484 123.184 254.72 0.888 0.901

Table V.
Exact vs
approximation
(λ¼ 211.67)
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speed ratio Computational timeapproximation=Computational timeexact
� �

is used to clarify
the outstanding performance of the approximation method.

5. Discussion
However, to merely identify the errors between the exact and approximation methods
is insufficient, because the manager needs to know whether their company needs to
adopt the approximation method to determine the management costs. The manager’s
question can be answered by discussing the difference in errors between the
approximation and exact methods.

Restated, this study demonstrates the errors of the approximation and exact
methods of different performance measures along with the increasing number of total
operators. Table VI lists the parameters for finding the errors of Pr, Pv, Lq and MC
between the approximation and exact methods. Figures 5 and 6 lists the experimental
results. Moreover, to identify the errors between the absolute and exact methods, this
study assumes a large λ (23.34, which is twice 11.67).

The numerical results are illustrated in Figures 5 and 6 when λ¼ 11.67 and 23.34,
respectively. The error between approximation and exact methods are increasing at
first (the top error values when λ¼ 11.67 and 23.34 are K¼ 11 and K¼ 6, respectively)
and decreasing gradually. The error between the approximation and exact methods
will approach to zero when λ¼ 11.67 and 23.34 are K¼ 86 and K¼ 51, respectively.
The MC could be found quickly with small error (if the acceptable error rate is smaller
than 5 percent) when λ¼ 11.67 and 23.34 are K¼ 36 and K¼ 16, respectively. The
aforementioned numerical results imply that using approximation method is feasible
for the manager of a call center to calculateMC value in a busy call center. If 5 percent
of error rate can be accepted by a manager, the manager can decide the optimal K.
Thus, the manager of a call center can hire operators explicitly based on the estimated
MC. Finally, this study shows the computational results of the MC based on different
retrial rates (α) that represent the frequency of sending the blocking calls in the waiting
queue to operators. The computational results show that MC will be 13.5, 61.62 and
70.26 when retrial rates are 1, 30 and 120, respectively.

6. Conclusion
This investigation presents a computational method and management cost function
intended to identify the optimal number of operators for a call center. Because of
computational limitations, many operators could not be easily analyzed using the exact

Parameter Value (λ¼ 11.67) Value (λ¼ 23.34)

N 25 25
R 15 15
μ 1/3 1/3
α 1.8 1.8
H0 0.15 0.15
H1 0.999 0.999
λr 7.78 15.56
λv 3.89 7.78
Cr 1 1
Cv 2 2
Cw 20 20

Table VI.
Experimental
parameters
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method. For the manager of a call center, the sooner the optimal solution is found, the
faster business strategies are deployed. This study develops an approximation method
and compares it with the exact method. The approximation method demonstrates
outstanding computational performances when the state variables are too big to be
handled in matrix.

However, a good call center management scheme must consider not only operational
costs, but also traffic conditions and other managerial variables. Future research
should include more variables to identify nonlinear optimization with stochastic
parameters.
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