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Domain knowledge and data
quality perceptions in genome

curation work
Hong Huang

School of Information, University of South Florida, Florida, USA

Abstract
Purpose – The purpose of this paper is to understand genomics scientists’ perceptions in data quality
assurances based on their domain knowledge.
Design/methodology/approach – The study used a survey method to collect responses from 149
genomics scientists grouped by domain knowledge. They ranked the top-five quality criteria based on
hypothetical curation scenarios. The results were compared using χ2 test.
Findings – Scientists with domain knowledge of biology, bioinformatics, and computational science
did not reach a consensus in ranking data quality criteria. Findings showed that biologists cared more
about curated data that can be concise and traceable. They were also concerned about skills dealing
with information overloading. Computational scientists on the other hand value making curation
understandable. They paid more attention to the specific skills for data wrangling.
Originality/value – This study takes a new approach in comparing the data quality perceptions for
scientists across different domains of knowledge. Few studies have been able to synthesize models
to interpret data quality perception across domains. The findings may help develop data quality
assurance policies, training seminars, and maximize the efficiency of genome data management.
Keywords Behaviour, Assessment, Curation, Domain knowledge, Genome
Paper type Research paper

Introduction
The proliferation of heterogeneous genomic data types represents the diverse concepts
of biology (Sanderson, 2011; Wu et al., 2010; Yang et al., 2011). Genome curation is
the process of digitizing and integrating disparate pieces of genomic data and their
related literatures to facilitate the sharing of genomic knowledge (Reed et al., 2006).
The genome curation process can be facilitated by using standardized terminologies
and metadata schemas (MacMullen and Denn, 2005; Pagani et al., 2012; Willis et al.,
2012). There are well established terminologies and metadata standards in biosciences
for describing data-types, protocols used in experiments, and gene ontology for
molecular functions (Leonelli et al., 2011; Mayor and Robinson, 2014). It is a complex
process that requires multidisciplinary knowledge, pertinent work experience, and
skills relevant to the effective execution of multi-faceted curation operations (Burkhardt
et al., 2006). Thus, genomic research has become a data rich domain requiring not only
effective methods to process, interpret, and reuse genomic data (Salimi and Vita, 2006;
Samuel et al., 2008), but extensive knowledge of the fields of biology, bioinformatics,
and computational science.

Scientists working on genome curation require domain knowledge in areas such as
biology, bioinformatics and computational science. Scientists conducting genome
curation generally possess either PhDs or Masters degrees in biology, bioinformatics,
computer science, or other related disciplines (Burge et al., 2012). Wet-lab research
experience in biochemistry and molecular biology contributes meaningfully to their
collective ability to determine and select the desired information resources that can help
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their curation or annotation work (Burge et al., 2012). In certain cases, subject expertise
or domain knowledge is essential to ensure acceptable upstream phases of genomic
data management and planning (Bentley, 2006). Genomics scientists with a wide array
of experience, participate in comprehensive training and workshops in order to
improve their curation skills (Sanderson, 2011; Shimoyama et al., 2009). They also
consult the curation manual regularly to ensure that they follow curation standards in
identifying data elements, assigning nomenclature, and annotating genomic-related
data with biological information (Samuel et al., 2008).

It has been found that genomics scientists have shared certain requirements for
data quality, leading to the development of a general data quality model for genome
curation (Huang et al., 2012).Within genome curation, the context for both information
use and information operation is complicated. As a result of varieties of domain
knowledge exists among genomic scientists, the respective complexities of
domain knowledge and work experience might consequently affect scientists’
decision making. The relationship between domain knowledge types for genome curation
and data quality assurance activities remains unknown. Scientists from different domains
and backgrounds could make conflicting data quality decisions when assigning the same
genome curation tasks. It could result in the current gap in understanding of the curation
problems associated with data quality assurance when different domain knowledge is
exchanged among biology, bioinformatics, and computational science.

The purpose of this study is to understand the relationship between different
types of domain knowledge and scientists’ data quality requirements. Specifically, the
respective performances of three different user groups, who possess domain knowledge
in the fields of computational science, bioinformatics, and biology, will be examined in
order to identify their perceptions of data quality requirements. The findings could
benefit the development of domain sensitive data quality and skill models for genomic
research communities, yielding both improved resource integration andmore cost-effective
collaborative solutions.

Literature review
Scientists conducting genome curation work have been trained in their disciplinary
knowledge (e.g. biology, computer science) at the post-graduate degree level or higher.
Biological research has progressed to an intensive data process and evaluation using
multiple data mining tools. The data-driven approach has become a common research
practice for scientists (Reed et al., 2006; Goth, 2012). Data curation and manipulation
tools need to be customized by scientists to fit into a specific biological context (Lathe
et al., 2008; Huang et al., 2011; Pruitt et al., 2012). Biologists also need data analysis
support from computational scientists to process the massive data sets produced
through their research. The task is not easy because the traditions and cultures of these
domains are not the same (Wooley and Lin, 2005). Genomics scientists need much
closer scrutiny to explicate the characteristics of domain knowledge in both biology
and computer science. It is through such scrutiny that they can adopt effective
practices for data quality assurance and data exchange among distinct disciplines.

Domain knowledge in genome curation
Genomics research has grown and changed rapidly. Genomic data curation originally
started as sequence analysis only (Reed et al., 2006). It has since incorporated a wide
variety of data processes and analysis such as genome-wide association studies, micro
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arrays, protein-protein interactions, and literature text-mining (Cole and Bawden, 1996;
Bartlett and Toms, 2005; Ioannidis and Khoury, 2011; Lathe et al., 2008; Sanderson, 2011;
Shachak and Fine, 2008). Curating genomic data is a highly interdisciplinary process
requiring scientists to have diverse skills.

Domain knowledge can be defined as the degree of familiarity with a particular
domain or subject area (Allen, 1991; Ju, 2007; Wildemuth, 2004). It encompasses
declarative knowledge (knowing what), procedural knowledge (knowing how), and
conditional knowledge (knowing when and where), (Alexander, 1992; Hjørland and
Albrechtsen, 1995). Domain and discipline knowledge seem to “fall along a continuum
that is defined by both external and internal factors” (Alexander, 1992, p. 36).
Relationships within a domain, the rules of that domain, and its historical context all
need to be considered to embrace the complete and meaningful domain knowledge of a
discipline (Hjørland and Albrechtsen, 1995). Genome science is an interdisciplinary field
that requires collaborative work with both biologists and computational scientists.
Wooley and Lin (2005) distinguish biologists from computational scientists in their
research goals and working practices (see Table I).

Computational science develops algorithms and software tools to support data retrieval,
organization and analysis (Fenstermacher, 2005). However, there are distinct sets of rules
for data configuration and operations between biology and computer science (Wooley and
Lin, 2005). Biologists are particularly interested in seeking “signal in the noise of their
experimental data” (Wooley and Lin, 2005, p. 367). Since biological research is driven by
experiment and observation, its goals consist of finding solutions to individual and specific
problems. In contrast, computational scientists are trained to “search for boundary
conditions and constraints” (Wooley and Lin, 2005, p. 367). Computational science research
is driven by analytical methods and techniques, and its research goals are the development
of solutions that can solve many problems. Computational scientists who work with
biological data are trained to “take categorical statements literally, whereas biologists use
them informally” (Wooley and Lin, 2005, p. 367).

Biology Computational science

Working
objectives

Understand the mechanism of development
for living organisms, and then use that
understanding to determine examples of
application areas for biological data

Identify the unknown patterns within
massive biological data sets

Seek signals in the noise of their
experimental data

Search for boundary conditions and
constraints

Provide solutions to individual and specific
problems

Develop universal solutions to solve many
problems

Working
practices

Research is driven by experiment and
observation

Research is driven by analytical methods
and techniques

Question the mathematical soundness of
their approach by providing exceptions
to their cases

May underestimate the complexity of the
biological problems, oversimplify biological
models and give out universal statements
that fall short of expected exceptions

Limited freedom to establish rules Open to the establishment of their own rules
for developing algorithms

Use categorical statements informally Take categorical statements literally

Sources: Wooley and Lin (2005)

Table I.
Examples of
working objectives
and practices in
biology and
computational
science
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Because of the constraints imposed by nature, biology has limited freedom to establish
rules. These constraints are consistent with the rules applied to the biological
phenomena. In contrast, computer science is open to the establishment of one’s own
rules provided that doing so allows sense to be made of the algorithm (Wooley and Lin,
2005). Biologists might focus on understanding the mechanism of development for
living organisms, and then use that understanding to determine examples of application
areas for biological data (Wooley and Lin, 2005). In contrast, computational scientists are
data scientists. They are more engaged in attempts to identify the unknown patterns
within massive data sets (Wooley and Lin, 2005). As programmers, computational
scientists could easily underestimate the complexity of the biological problems, and
therefore both oversimplify biological models as well as give out universal statements
that fall short of expected exceptions (Wooley and Lin, 2005). However, biologists,
particularly those untrained in quantitative sciences, always question the mathematical
soundness of their approach by providing exceptions to their cases (Wooley and Lin,
2005). During the genome curation process, both the biologist and the computational
scientists collaborate with each other. During this process, however, they may experience
conflicts and disagreements in defining curation roles and thus yield contested
interpretation of curated data.

Previous research indicates that scientists’ domain knowledge affects their
information seeking behavior and their interactions with information systems and
software tools (Brown, 2003; Hemminger et al., 2007; Vibert et al., 2009; Wu et al., 2012).
It can be assumed that biologists have a high level of declarative knowledge of biology,
whereas computational scientists have a high level of procedural knowledge of
computer systems. Although both biologists and computational scientists might be
expected to know how to use computer programs or curation tools, computational
scientists probably enjoy a broader knowledge of tools and programs. However, when
a biologist interacts with a new curation tool, s/he holds the advantage over a
computational scientist of knowing the particular semantics (the words or terminologies
about biological concepts) used in that program (Bartlett and Toms, 2005; Chilana et al.,
2009). In other tasks such as accurately predicting the options available in a generic help
menu or in the functions of menu interface designed for automatic genome annotation
systems, the biologist may be at a disadvantage compared to the computational scientist
(Chilana et al., 2009; Shachak and Fine, 2008).

Domain knowledge affects scientists’ decisions in the determination of data
processing strategies, data-quality assurance activities, analytic tools selection, and
result evaluation (Chilana et al., 2009; Ju, 2007; Vibert et al., 2007, 2009; Wu et al., 2012).
The scientists with biology domain knowledge could easily find the exceptions or
special cases (Wooley and Lin, 2005) for which annotation tools and guidelines might
not yet be available. Similarly, computational scientists can benefit from the wet-lab
experiences of biologists to develop both complex software tools and standardized
workflows (Chilana et al., 2009). Scientists need to remain open to explore new research
opportunities in a typical domain as an “outsider,” and develop strategies for exploring
and translating information from unfamiliar domains to manage their interdisciplinary
information work (Palmer and Neumann, 2002). Development of a comprehensive
data curation model can help yield the high-quality curation products that both
biology and computational science require. Such a data model encourages experts from
two domains to work closely with each other thereby reducing domain crossing
barriers while merging knowledge across disciplinary boundaries (Haythornthwaite,
2006; Klein et al., 1997).
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Data quality and domain knowledge
There are different working domains and scholarly contexts through which data
quality can be both operationalized and defined. It has been argued that data quality as
a concept is contextual and must be evaluated within the context (Strong et al., 1997;
Stvilia et al., 2007). An aspect of a DQ concept is defined as a DQ dimension
(Huang et al., 2012; Stvilia et al., 2007; Wang and Strong, 1996). Several studies
have assessed specific DQ dimensions in different domains. One study explored
progress in the accuracy assessments of automated genome curation tasks (Brent,
2008), whereas another examined in an online interactive community, for patterns of
credibility (Lankes, 2008). Wang and Strong (1996, p. 6) provided a definition for
quality, describing it as “fitness for use.” This indicated the importance of defining data
quality within context of use (Strong et al., 1997; Stvilia et al., 2007). The need to
comprehend the extent to which user satisfaction is realized has the potential
to characterize data quality within a particular context (Evans and Lindsay, 2005;
Huang et al., 2012).

According to research, sets of DQ dimensions that have been determined to be
important, include those pertaining to gene-ontology curation behaviors (MacMullen,
2006), online scholarly information (Rieh, 2002), and consumer health information
(Frické and Fallis, 2004; Stvilia et al., 2007). Genomics scientists suggest that
trust-related dimensions such as Unbiased and Believability are important in genome
curation when they indirectly assess the quality of curation data (Huang et al., 2012).
Data quality aspects related to trust help scientists gauge the degree of confidence they
can have. Studies have shown that domain knowledge could facilitate researchers in
evaluating the trustworthiness of reference sources (Vibert et al., 2009). Data standards,
metadata schemas, and curated databases were developed to facilitate the accessibility
of disparate genomic data sets (Barrett et al., 2012; Willis et al., 2012). DQ models were
developed to describe and capture the overall value structure and the context for DQ
for a genome curation community (Huang et al., 2012), a Wikipedia community (Stvilia
et al., 2007) and online health information consumers (Stvilia et al., 2008).

Lee and Strong (2003) have argued that three knowledge modes are related to
data quality dimensions. According to Lee and Strong (2003), the declarative, or
knowing-what, may be defined as understanding the activities through which the
data production processes are realized. Procedure, or knowing how, is defined as
understanding procedures needed to respond to known DQ difficulties and obstacles (Lee
and Strong, 2003). Knowing-why is defined as contextual knowledge that can formulate
the questions to understand related purposes and the ability to analyze underlying
principles (Lee and Strong, 2003). During the data process, it has been found that the
prioritization of DQ dimensions differs among users with varying knowledge modes
(Lee and Strong, 2003). The genome curation community in fact requires a set of DQ skills
to guarantee data quality itself. Genome curation work requires excellent written and
verbal communication skills to facilitate the acquisition and description of genomics data.
Knowledge in biology and/or bioinformatics also helps to evaluate quality control of
experimental data. Genome curation work is data-driven; much of the scientists’ time is
spent on data wrangling or “munging,” ie. dealing with the large scale of genomic data for
data preprocessing, integration, data cleaning and validation (Heer and Kandel, 2012;
Reed et al., 2006). Through a survey of DQ professionals who hold a series of professional
employment positions, Chung et al. in 2002 created a practical educational framework.
The framework described three useful DQ categories, each one pertaining to a particular
set of capabilities of DQ skills, specifically technical, adaptive, and interpretive.
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Domain experts obtain domain-specific knowledge, work-related experience, and
trainings. This experience or knowledge can also support data-quality related activities
and allow domain experts to make greater use of data-quality information than those
without related knowledge (Fisher et al., 2003). Users with experience or domain
knowledge might be sensitive in detecting both errors and missing data (Klein et al.,
1997; Sanbonmatsu et al., 1992), adaptive in using contextual and relevant information
(Sanbonmatsu et al., 1992; Payne et al., 1993), and proficient in organizing information
(Mackay and Elam, 1992). Domain knowledge could guide users to effectively test the
validity of their discovered knowledge (Owrang and Grupe, 1996). Domain knowledge
could also improve the performance of information seeking (Marchionini et al., 1993;
Tabatabai and Shore, 2005; Vibert et al., 2007). Users with excellent domain knowledge
may have greater accessibility to desired information, more flexibility to handle
relevant information, and better contribution to knowledge representation (Rouet et al.,
1997; Vibert et al., 2009). The processing of extensive knowledge of information sources
in their disciplines aids domain experts in the evaluation of both the usefulness and
trustworthiness of documents (Vibert et al., 2009).

Differences in knowledge and experience across domains also create barriers to
a consensus in work activities or processes in an interdisciplinary collaborative work
environment (Wooley and Lin, 2005). Paradigms in a particular domain can be referred
to as concrete problem solutions, procedures of experiments, and theoretical models
shared by the scientists in a community (Kuhn, 1974; Eysenck, 1991). However,
counting on paradigms to formalize scientific thinking might possibly limit the
development and evolution of a discipline (Watt, 2000). In addition, prior experience or
knowledge is not always a positive (Fisher et al., 2003). For example, experience or work
knowledge might affect users’ perceptions and expectations for data quality (Klein
et al., 1997), and may cut off the decision process unacceptably early (Dukerich and
Nichols, 1991). Sometimes, users with sufficient knowledge might show less attention
to related information (e.g. data quality information) than those who do not have
such knowledge (Yates et al., 1991). They might also be more inclined to perform tasks
less accurately than users without prior experience (Gilliland et al., 1994). Genome data
curation is performed by scientists with different domain knowledge and skills.
Domain knowledge differences in genomics scientists could influence the beliefs
and expectations of data quality assurance activities for genome-curation specific
annotation tasks and activities.

Research questions
This was an exploratory study. It sought to understand the relationship
between perception of DQ dimensions and skills and domain knowledge among
genomics scientists. Specifically, the study investigated the following two research
questions:

RQ1. How do genomics scientists with different domain knowledge of genomic
curation processes prioritize DQ dimensions?

This question is explored through comparing survey rankings of DQ dimensions
among biologists, bioinformaticians, and computational scientists in genome curation.

RQ2. How do genomics scientists with different domain knowledge of genomic
curation processes prioritize DQ skills?
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This question is investigated by comparing the survey rankings of DQ skills among
biologists, bioinformaticians, and computational scientists in genome curation.

Methods
The study collected and analyzed survey data. The survey questions were collected
and modified from the previous DQ dimensions and skills items found in the literature
(Chung et al., 2002; Wang and Strong, 1996). Survey participants were genomics
scientists who had published journal articles related to genome annotation, curation,
and genomic research. Participants were given two scenarios that represented and
conceptualized genome curation activities. These scenarios were developed by using
scenario-based task analysis (Carroll, 1997; Diaper, 2004; Go and Carroll, 2004; Huang
et al., 2012). Participants were provided the same set of written requirements for
genome curation that can be used for understanding user perception (see Appendix 1).
Scientists thus can perceive the data quality requirements provided by a common set of
curation tasks as scenarios. The first scenario asked scientists to pick the top five DQ
dimensions, from a total 17 DQ dimensions; the second scenario asked for the ranking
of the top five DQ skills, from a total of 17 DQ skills (Table II and Table III). In addition,
the subjects were asked to open-ended comments on the clarity and comprehensibility
of the survey questions, as well as additional concerns about data quality or skills
in genome curation. The 149 survey respondents were further grouped by their
domain knowledge, specifically biology, computational science, and bioinformatics.

Groups Data-quality dimensions

Accuracy Accuracy: sequence records are correct and free of error
Unbiased: sequence records are unbiased and objective
Believability: sequence records are regarded as credible and believable

Accessibility Accessibility: sequence records are easily and quickly retrievable for access
Traceability: the derivation history of the sequence records is documented and
traceable
Appropriate amount of information: the volume of the sequence records is
appropriate for this scenario

Usefulness Interpretability: sequence records are in appropriate languages, symbols, and units,
and the definitions are clear for interpretation
Understandability: sequence records are easily understandable
Ease of manipulation: sequence records are easy to manipulate and make it easy to
carry out various tasks described in this scenario
Consistency: sequence records are presented in a consistent format
Value-added: sequence records contain additional annotations from the tasks in this
scenario and these annotations are beneficial and add value

Relevancy Relevancy: sequence records contain information relevant to the scenario
Concise representation: sequence records are concisely represented
Completeness: annotated sequence records are not missing and are fully annotated
according to the steps described in this scenario
Up-to-date: sequence records are sufficiently up-to-date for this scenario
Reputation: sequence records are highly regarded and reputable in terms of their
source or content

Note: Lists of data-quality dimensions and their groupings based on previously reported data quality
dimensions and skills models
Sources: Chung et al. (2002), Wang and Strong (1996), Huang et al. (2012)

Table II.
List of data quality
dimensions for
top-five rankings
and their categories
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Scientists who selected trainings in both biology and computer science related
disciplines were grouped as “Bioinformatics” (n¼ 38). Bioinformaticians have
knowledge proficiency in both biology and computer science domains. Additionally,
those who chose computer science and related disciplines were grouped as
“Computational Science” (n¼ 24). Last, scientists with biology training and wet-lab
experience were grouped as “Biology” (n¼ 87). For curation experience, the majority
(90 percent of the participants) of the scientists in this study had one year or more work
experience in genome curation, and 40 percent had more than five years’ experience.
With regard to age, 88 percent of the participants were between 30 and 40 years old.

Groups Data-quality skills

Adaptive skills User requirement: ability to translate subjective user requirements for data quality
into objective technical specification (such as use of quality function deployment)
Data entry improvement: skills and ability to analyze and improve the data entry
process in order to maintain data quality
Organization policies: ability to establish and maintain organizational policies and
rules for data quality management
Change process: ability to manage the change process/transitions resulting from the
data quality management project
Data quality cost/benefit: skills and ability to conduct cost/benefit analysis of data
quality management
Information overload: understanding the information overload that managers often
face and ability to reduce information overload

Interpretative
skills

Data error detection: ability to detect and correct errors in databases

Software tools: experience and ability to use diverse commercially available data
quality software packages

DQ literacy
skills

Data quality dimensions: quality dimensions are concepts/"virtues" that define
data quality. Data quality dimension skills are the ability to define and describe
diverse dimensions of data quality (such as relevancy, believability, accessibility,
ease of understanding)
Data quality measurement: data quality measurement is an operationalization of a
data quality dimension. Data quality measurement skills are the ability of assessing
the variation along the dimension
Data quality implication: understanding pervasiveness of data quality problems and
their potential impacts

Technical skills Data quality audit: ability to conduct data quality auditing (formal review,
examination, and verification of data quality)
Statistical techniques: ability to apply statistical techniques to manage and control
data quality
Data mining skills: data mining and knowledge discovery skills for analyzing data in
a data warehouse
Data warehouse setup: ability to integrate multiple databases into an integrated data
warehouse
Analytic models: ability to apply diverse analytic models (such as regression model
and multidimensional model) for data analysis
Structural query language (SQL): skills and ability to apply SQL to estimate the
accuracy of data

Note: Lists of data-quality skills and their groupings based on previously reported data quality
dimensions and skills models
Sources: Chung et al., (2002), Wang and Strong (1996), Huang et al. (2012)

Table III.
List of data-quality
skills for top-five

rankings and
their categories
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Distribution and collection of the survey was conducted online through the
Qualtrics software (www.qualtrics.com). The survey data was analyzed with STATA
11 software (College Station, Texas, USA) to perform descriptive statistics and χ2

analysis. The author computed the percentiles for the occurrences for each of the 17 DQ
dimensions and DQ skills being ranked by the users as the top five DQ dimensions or
skills. Next, the computed percentiles of each DQ dimension and skill were ranked from
the largest to the smallest, and then the cumulative percentage for each DQ dimension
and skill were also calculated (see Appendix 2 and 3). The cumulative percentage for
each DQ dimension or skill was calculated as follows:

Yi ¼
Xk

i¼1

Xi
XN
j¼1

Xj

,

X represents the percentile value for a DQ dimension or DQ skill for the number of
top-five ranking occurrences divided by the total top five ranking occurrences. Yi is
defined as the cumulative percentage for the ith ranking of DQ dimensions or skills
accumulated from the percentiles from the first DQ dimension or skill ranking to the
ith. i takes values from 1 to k. k is the number of DQ dimensions or skills accumulated
from the fisrt to ith rank. The value of jth is from 1 to N. N is the total number of DQ
dimensions (N¼ 17) or skills (N¼ 17). For that reason, the value of Y for the last
accumulated ranking (17th) for DQ dimensions or skills is 100 percent (see Appendix 2
and 3). Only those DQ dimensions or skills with cumulative rankings less than
90 percent were kept as those greater than 90 percent only count for a trivial
portion – specifically, less than 10 percent of total occurrences in top five ranking
chosen by the users – and can be ignored.

The selected DQ dimensions and skills within the top 90 percent accumulated
ranking lists were further grouped into categories based on previous reported data
quality dimensions and skills models (Chung et al., 2002; Wang and Strong, 1996;
Huang et al., 2012) as represented in Table II and III. Finally, the aggregated percentage
was computed for each category, for both DQ dimensions and skills models, by adding
up the percentile of each dimension or skill in a category. The researchers then ranked
these categories in decreasing order based on their aggregated percentages
(Appendix 2 and 3).

Findings
χ2 analysis of the genome curation survey results for the top-five DQ dimensions and
skills selections and rankings found differences in priorities of specific DQ skills and
dimensions. Some of these differences were statistically significant. Those DQ
dimensions and skills that were affected by domain knowledge were identified.
Furthermore, there are specific DQ trade-offs for a typical group of DQ dimensions and
skills found in different user groups, particularly among computational scientists and
biologists. DQ trade-offs occurred when the DQ expectations of scientists did not match
the actual needs in the domain. Data curation models or policies can in fact be defined
more specifically to meet the domain dependent needs, suggesting that new curation
procedures and data standards need to be developed in order to accommodate different
requirements among users.

The descriptive statistical analysis of the survey data for the occurrences of each DQ
dimension revealed the top-five most important DQ dimensions for each group of
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scientists, ranked from highest to lowest. Table IV and V showed the descriptive
summary of the rankings for all the DQ dimensions and skills in different domain
experts. Particularly, the statistical significant ones and their χ2 values were bold/italic,
and cells of the top five rankings were also highlighted for each group. The five most
important dimensions for computational scientists were: accuracy, accessibility,
completeness, understandability, and appropriate amount of information. According to
biologists, the five most important DQ dimensions were: accuracy, accessibility,
completeness, believability, and up-to-date. Last, bioinformaticians ranked the top-five
DQ dimensions as: accuracy, accessibility, completeness, believability, and
interpretability. It is worth noting that for all three groups accuracy, accessibility,
and Completeness were among the most important DQ dimensions. Interestingly,
computational scientists did not rank Believability as one of the top five, but both
biologists and bioinformaticians did. In contrast, computational scientists ranked
understandability as of particular importance. Biologists were interested in believability
and currency (“Up-to-date”) and bioinformaticians cared more about interpretability.

χ2 analysis (Table IV) found several significant differences in data quality
perceptions among scientists with different domain knowledge. Compared to biologists
and bioinformaticians, computational scientists held a higher expectation in
understandability and a stronger need for concise representation. Bioinformaticians
expressed a particular interest in interpretability. Unlike computational scientists, both
biologists and bioinformaticians ranked believability as one of the five most important
dimensions. Biologists also ranked traceability higher than other two groups (Table IV).

As for DQ skills (Table V), all three user groups shared the belief that data error
detection, data mining skills, DQ quality measurement, and statistical techniques were
very important DQ skills for genome curation work. Biologists have a stronger need for
two DQ literacy skills: DQ measurement, DQ implication. Bioinformaticians care about
DQ literacy skills specifically DQ measurement, and DQ dimensions (Table V). While
there are some shared preferences between groups, the results also indicated as well,
that the ranking of skills varied. Computational scientists ranked from highest to
lowest, what they felt to be the most important DQ skills as data-error detection, DQ
measurement, statistical techniques, data mining skills, and DQ implication. Among
biologists, the top five DQ skills were ranked from highest to lowest as data-error
detection, DQ measurement, data mining skills, statistical techniques, and DQ implication.
And bioinformaticians ranked the top five most important to least as DQ error detection,
data mining skills, statistical techniques, DQ dimensions, and DQ measurement.

Among these groups, data quality error detection was found to be the most important
skill when performing annotation work within the genome annotation context. When
looking at the ranking patterns among biologists, computational scientists, and
bioinformatics, the importance rankings include data quality literacy skills as well as
interpretative skills. Interestingly, importance rankings as demonstrated in Table V,
indicate a strong demand by computational scientists for statistics techniques.

χ2 analysis results also suggest that there is a stronger preference for data
warehouse setup and information overloading skills for biologists than computational
scientists and computational biologists care more about structure query language
(SQL) than the other two groups. It is worth noting however, that bioinformaticians,
as indicated in Table V, have higher expectations regarding Data mining skills than
do biologists.

In regard to domain knowledge-based differences evidenced in the rankings of four
DQ dimension categories (Figure 1), all three user groups regarded the accuracy group
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as the primary DQ concerns in genome curation work. Rankings also indicated that
biologists care more about the data accessibility issues than the other two groups.
Both computational scientists and bioinformaticians care more about usefulness of
current curation than the biologists.

The study also compared the rankings of the four DQ skills categories by
participants with different domain knowledge based on previous data skills models
(Table III). The results are shown in Figure 2. The findings indicated that computational
scientists consider adaptive skills more important for genome curation work than did
the other two user groups. All three user groups, however, regarded technical skills as
important for dealing with genome curation.

Discussion
This study determined that scientists with different domain knowledge prioritize
DQ dimensions and/or skills differently. The first research question focussed on DQ
dimension perception gaps among users with different domain knowledge. Significant
perception differences were found among all three groups in the categories of relevant
information (concise representation) and useful information (interpretability,
understandability) (Figure 1). Believability was indicated among the top-five DQ
dimensions for both biologists and bioinformaticians, but not for computational
scientists. Users with different domain knowledge also assigned different priorities
among the DQ skills requirements. These differences are observed among the technical
skills; specifically data mining skills, data warehouse set-up, and SQL. Because users
with different domain knowledge held specific sets of prioritized DQ dimensions and
skills requirements, the contextualized data quality models were defined based on the
domain knowledge of the users.

Domain knowledge and DQ dimensions perception
Knowing-what knowledge required scientists to define the genome related biological
research questions/curation goals. This requires theoretical biological knowledge to
understand what to do with genomic data. Knowing-how, formally known as procedure
knowledge, refers to the ability to carry out a task through sequential procedures, such
as running the sequential tasks for genome sequences analysis. Procedural knowledge
required scientists to develop automatic annotation tools and procedures for the
support of genome curation work. Having obtained this knowledge, scientists may then
focus on the development of a practical solution to the curation problem related to
genome curation work. Knowing why knowledge is defined as the understanding of the
reasons and principles underlying the work practice (Lee and Strong, 2003). In genome
curation work, scientists who hold knowledge of both biology and computer science
are at a greater advantage of understanding the purpose of the curation work in both
genome curation activities and procedures. That is why genomics scientists require
cross-domain knowledge/skills both in biology and computational science for curation
work. Biologists are trained by means of wet-lab experiments, making an extra effort to
understand the context of data derived by an unfamiliar technique. Learning new lab
techniques takes many years to master, making high-quality data appraisal difficult.
Biologists are most likely interested in interpretation of the curation data through
their knowledge of biology, in the help of computational scientists or programmers
in data interpretation, and in explanation of the curation requirements for software
development. Biologists examine authoritative data sources and evaluate their
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annotation. They therefore care more about the believability of the data sources.
Biologists also pay attention to the exceptions/special cases of biological knowledge
(Wooley and Lin, 2005). It is important to develop genome curation systems that enable
the trace function to fully capture the update of curated biological knowledge for
data access and preservation (Shimoyama et al., 2009). Computational scientists or
programmers, however, obtain training in both the procedures and data mining
protocols of the genome curation process and related issues in data management.
They focus more on developing a technical and practical solution to a biological
problem in data curation.

Depending on the curation problems and selected approaches, scientists might
experience a mismatch of their understanding in a single aspect of data quality for their

DQ dimension
Perception

Computational
science Bioinformatics Biology

Accuracy (0.29)

Accuracy (0.17)

Believability (0.06)

Unbiased (0.06)
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Note: Only those with cumulative rankings of less than 90 percent were kept
(see Appendix 2)

Figure 1.
Domain knowledge

based DQ
dimension priorities
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curation needs. For instance, accessibility barriers might be perceived differently
among users. Some scientists might think certain genomic data simply physically
unavailable rather than inaccessible. However, other scientists might interpret the
barriers as being technical, based on the following reasons: the coded data may be
barely interpreted; data may be represented in different formats which are unrecognized;
and a large volume of data is in fact hard to locate (Strong et al., 1997). Arguably,
biologists analyze poor quality data every day, which may make a plausible argument for
allowing 100 percent access to all data, even the poor data, because this is important to the
domain. “Big data” models may tolerate lower data quality in favor of massive increases
in data quantity.

Similarly, there is a distinction between being mutually understood and logically
sound data interpretation. Bioinformatics scientists from the domains of biology and
computer science, care more about the interpretation of the curation data to the extent
that data is recorded in appropriate languages, symbols, units, and the degree to which
definitions and classifications are clear. Data and information can be mutually
understandable within a user group, but may not be interpretable outside that group
because of unfamiliarity of specific language, scientific symbols, and data formatting
structure. Genomics scientists with knowledge of bioinformatics ranked interpretability
significantly higher than did the two other groups. It is also presumed that scientists
occupying both biology and computer science domains, do in fact command sufficient
knowledge of both fields to “assess the integrity of the data and to grasp their meaning”
(Borgman, 2012, p. 1072). Computational scientists were found to care more about
understandability of the curation records than other two groups. They might focus on
offering help to design user analysis tools for better use/reuse of curated data.
Computational scientists usually require more insightful biological knowledge, background
readings, and reference materials to ensure their data curation that makes good biological
sense and is understandable, both in intermediate and final curated records/outputs.

The curated data sources could be lab reports, field notes, archival records, and
other information objects. Genomics scientists have to use various sources of information
to digitize and integrate the disparate pieces of genomic data. The represented curation
should be concise and well-organized, as “one-point access” of a richly curated repository
(Chilana et al., 2009, p. 76). Computational scientists ranked Concise representation
highly, and believed the improvement of the genome curation and its data representation
in a concise and coherent fashion could improve understandability of data, and
therefore reduce the burden of the flood of information being processed. Scientists with
domain knowledge of computer science or bioinformatics could aid the development
of data formats and metadata standards to support both external data linkage, and
heterogeneous data referencing. Survey data suggested that the usefulness of curated
data could improve the support of user-friendly browsing, retrieving and data
manipulation in an online collaborative environment. Similar findings were also observed
in the following open-ended survey comments:

Moving between concise and detailed representations may be helpful.

Having Graphics [is] nice [to browse].

These accessions should have been linked to the page.

Well described but data not structured; therefore it will be difficult to parse in automatic ways.

In addition, currency (“Up-to-date”) was ranked highly by biologists. It might be
concluded that curated genomic data should be frequently updated and reassessed
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because of the rapid changing nature of biological knowledge (Huang et al., 2012).
Curated information should be the most current information, with interoperation from
different database platforms, as the examples below from the survey comments show:

Cross-compatibility with other public database, and the up-to-date relevant linkage to
external databases […]

This curation record has the most recent detail as both protein and CDS sequences are
available with accessible hyperlinks.

Domain knowledge and DQ skills perceptions
Curating genomic data requires highly-developed interdisciplinary skills, including a
capacity for critical thinking and problem solving, and for cross-disciplinary thinking.
Most of the scientists in this study are scholars with PhDs (81 percent), obtaining
educational training or research experience in either biology or other related fields.
It also requires skills in information, communication, and technology. Biological
experts have a high level of proficiency in domain knowledge – biology. They are more
confident in making judgments, evaluation, or comments for curation program outputs
(Chilana et al., 2009). They are good at interpreting curation results, but need to consult
computational scientists or programmers to obtain complicated programming tools for
data mining, the switching between different database platforms, and the locating of
relevant curation resources. Computational scientists offer technical support and
translate curation problems into actionable programming tools. They need to work
closely with biologists to ensure that their curation program outputs are consistent
with the original biological problem (Chilana et al., 2009). The survey data suggests a
trend in genome curation work for the engagement of more scientists with both
computer science and biology domain knowledge. Bioinformaticians with knowledge of
both domains have advantages integrating biological knowledge into applicable
solutions of curation. Computational scientists regard the use of curation of data
mining and database tools (e.g. Data warehousing, SQL) as important, since their jobs
involve data wrangling, integration and retrieval in large-scale databases (Heer and
Kandel, 2012).

All three user groups value highly the DQ technical skills. This finding indicated
that curating genomic data requires a great number of data mining and statistical
analysis tools to support data curation related tasks. The DQ adaptive skills mattered
more to computational scientists than the other two groups (Figure 2). Adaptive skills
are those that allow computational scientists or programmers to actively interact with
other users, which helps facilitate understanding of users’ requirements, and translate
the curation problems into practical solutions.

Data quality literacy reflects the ability of users to understand data quality related
concepts, knowledge and skills. Particularly, data quality literacy skills such as DQ
dimensions and DQ implication were ranked highly among biologists. This finding
suggests that grasping the necessary knowledge of data quality concepts, the related
assessment methods, and their ways to identify potential data quality problems are
prerequisites for scientists to secure high quality curation work. Computational
scientists and biologists might have sufficient skills when operating with their own
domains, but they might be also interested in the cross-disciplinary skills required for
scientific data management and data quality assurance. Such skills, as well as other
annotation and data mining skills, could facilitate the curation activities, data quality
assurance, and data provenance services in genome curation work.
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The trends regarding quality assurance and knowledge creation activities (e.g. data
annotation) ultimately evolves into higher expectations for bioinformatics literacy,
including data quality literacy on the part of users. According to a recent survey (Burge
et al., 2012), the biocuration community believes that a genome curator, having both
research experience and a strong biological or computational background, would
benefit their work tremendously. The differences among users’ perceptions need to be
benchmarked, collected, and communicated. The empirically-based community feedback
is needed to design appropriate strategies for improvement in curation quality.

The findings of this research can help develop curation domain-specific data quality
models. Computational scientists ranked usefulness higher than accessibility, whereas
biologists did the opposite (Figure 1). This may also suggest the presence of trade-offs

DQ Skills
Perception

Computational
Science

Bioinformatics Biology

Technical (0.28)

Data mining (0.10)

Statistical techniques (0.10)

DQ Audit (0.08)

Technical (0.39)
Data mining (0.14)

Statistical techniques (0.11)

Data warehouse (0.05)

Analytical model (0.04)

Technical (0.31)

Data mining (0.10)

Statistical techniques (0.08)

DQ Audit (0.07)
DQ Audit (0.05)

Analytical model (0.06)

Literacy (0.25)
DQ measurement (0.10)

DQ implication (0.09)

DQ dimension (0.07)

Interpretative (0.27)

Data error detection (0.19)

Software tools (0.08)

Literacy (0.27)
DQ measurement (0.10)

DQ implication (0.09)

DQ dimension (0.08)

Adaptive (0.23)
User Requirement (0.07)

Data entry Improve. (0.07)

Organization Policy (0.05)

Inform Overload (0.05)

Literacy (0.23)

DQ dimension (0.09)

DQ measurement (0.09)

DQ implication (0.05)

Interpretative (0.23)

Data error detection (0.17)

Software tools (0.06)

Interpretative (0.23)

Data error detection (0.14)

Software tools (0.09)

Adaptive (0.11)

Organization policy (0.06)

Data entry improve. (0.05)

Adaptive (0.19)

Data entry improve. (0.08)

User requirement (0.06)

Organization policy (0.05)

·
·
·

·
·
·

·
·

·

·

·
·

·

·
·

·
·

·
·

·
·
·

·
·

·

·
·

·

·

·
·

·
·
·

·
·

Note: Only those with cumulative rankings of less than 90 percent were kept
(see Appendix 3)

Figure 2.
Domain knowledge
based DQ skills
grouping priorities
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among different data quality dimensions is related to the users’ domain knowledge.
Literature suggests that data quality activities are not free, it requires the user's
priorities, including participation in a possible trade-offs based on the different
dimensions of quality optimization (Ballou and Pazer, 1995; Stvilia et al., 2007). The
identified data quality trade-offs are reasonable. This is provided that the overall data
quality is of sufficient and good enough for its use in the research practice.
For example, accessibility is expensive when dealing with a high volume of the data.
These data quality trade-offs can be justified when organized and curated data is
difficult to obtain and access with given time restrictions. Biologists required sufficient
computational skills or knowledge to access and retrieve the data they want, but they
may have to accept and tolerate raw and unstructured curated data in exchange for
having timely access to important information. Similarly, computational scientists
possess advanced skills in genome related data wrangling (Heer and Kandel, 2012),
they focus on making their collected data more usable by adding more curated
information.

Genomics scientists, like scholars from other scientific disciplines, require sufficient
data curation and process skills to conduct tremendous data manipulation work. This
study collected empirical data through a survey of members in a particular scientific
community. It reports members’ perceived priorities for data quality criteria and
identified related DQ skills in the context of genomic data curation work (see Figures 1
and 2). The findings of this study can be used in the development of genomic data
curation procedures, policies, and training modules. These curation artifacts could be used
by the current curation team and by future institutional end-users and participants, who
may themselves not possess extensive trainings in data curation and data management.

Conclusion
The way scientists solve problems in genome curation today is probably not the way
scholars and practitioners did so a decade ago. Since technology is growing, our
knowledge and abilities are also increasing, and our analytical methods are changing
as well. Genome curation work is a collaborative process executed through a dynamic
complex interaction among those scientists who hold diverse domain knowledge and
work experience. It requires scientists to read tremendous amounts of research
literature, and to obtain solid domain knowledge. It also requires scientists to be
flexible and adaptive to deal with different scales of genomic related data, to make
sound judgments regarding the annotated information in the genome context, and to
ensure the capture of all related information within the data model.

Scientists’ domain knowledge and experience in genome curation work eventually
impacts their priorities for the data quality criteria. Overall, scientists must process
enormous amounts of distributed data through many different tools developed to aid
them in knowledge discovery. This work will allow for richer knowledge representation
and manipulation. This study also has some limitations. The data was collected by
survey, rather than direct observation to collect the opinions of the scientists regarding
data quality skills and dimensions requirements used to develop the data quality
models for genome curation. The data are therefore only approximations of the
respondents’ actual value models for quality and for data quality skills used in practice.
Future research collection of additional empirical data through observations and
interviews can help determine the community’s data curation and quality assurance
practices. What is more, the importance of these concepts was recorded by survey
participants at the time of survey completion; the follow-up interview provides an
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opportunity to validate where modifications are necessary. It should also be pointed
out that the data quality skills used as the survey instrument were in fact based on
previous studies (Chung et al., 2002). As new data management technologies evolve
(e.g. computing with graphics processing units and “cloud” technologies), these items
and related constructs may require a revisit to update the priorities of the community
regarding data quality assurances skills.

Genomics research is data-intensive. Some significant differences were observed in
scientists’ perception of data quality requirements in genome curation work which
required calibration of their knowledge across different domains. This study found
that given a common curation task with the same data-quality information, genomics
researchers with diverse domain knowledge make different decisions regarding
data-quality trade-offs. Through this study, the identification of the variations of the
DQmodels based on domain knowledge can help better understand the function of data
quality in context of domain knowledge. It can also help identify related curation tools
and supports for the genomics research community, and to develop curation policies,
procedures, training modules, and strategies, and problem-solving paths tailored to the
curation work. Future studies could involve the collection of additional data and
the development of operational models of these trade-offs, allowing them being used in
practice to optimize quality assurance activities.
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Appendix 1. Two genome curation scenarios
Scenario 1: production, curation, and submission of expressed sequence tags (ESTs) data
In this scenario, you will generate primary sequence data. For this purpose, you will process,
curate, annotate, and submit sequence data as annotated sequence records in a public database.
Specifically, you will produce a cDNA library, and obtain 1,000 random sequence reads (ESTs)
from that cDNA library. The library contains clones from a model organism for which a genome
sequence is publicly available. As part of preparing these annotated records, you will be taking
steps which include annotation and data quality assurance steps to:

• process the raw data to remove vector or low quality sequences;

• annotate the sequences with regards to the genome location;

• predict gene products using routine bioinformatic tools such as BLAST alignments, open
reading frames (ORFs) predictions, and comparison of predicted proteins to protein motif
databases;

• produce additional annotation to link these predicted gene products to gene ontology,
molecular networks, or biochemical pathways; and

• submit these ESTs and associated annotations to two different databases, GenBank, and
your species specific database.
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*The phrase “sequence records” refers to both the primary DNA sequences themselves and all
the associated annotations.

Scenario 2: whole genome data curation in a model organism
In this scenario, you will generate genome annotation records for a particular model organism.
You will use the full spectrum of genome annotation approaches including: predicted gene and
protein annotation, sequences comparisons and alignments, genome variations analysis, the
organization and annotation of molecular networks and biochemical pathways. You will employ
these approaches using specialized databases, bioinformatics software, and literature mining to:

(1) Create sequence records for release to the public:

• Curate, annotate genome sequence data features from the sequence data by iden-
tifying the gene features (e.g. promoters, gene length, terminators) and genomic
properties (e.g. motifs, repeats) from the sequence data.

• Create explicit comments to the sequence data organized along a schema that needs
to be specified (e.g. gene name, gene function, enzyme identifier, bibliographic
reference, experimentally identified feature, ESTs, etc.)

• Compare, correct, reannotate, or externally link the sequence data to the data
available in other databases or scientific literature.

(2) Conduct data quality control by corresponding with collaborators regarding missing or
inaccurate information.

(3) Assist in problem identification and recommend enhancements to the procedures in
genome annotation work.

*These two scenarios were adopted from Huang et al. (2012).
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