
Journal of Documentation
The fallacy of the multi-API culture: Conceptual and practical benefits of
Representational State Transfer (REST)
Ruben Verborgh Seth van Hooland Aaron Straup Cope Sebastian Chan Erik Mannens Rik Van de
Walle

Article information:
To cite this document:
Ruben Verborgh Seth van Hooland Aaron Straup Cope Sebastian Chan Erik Mannens Rik Van de
Walle , (2015),"The fallacy of the multi-API culture", Journal of Documentation, Vol. 71 Iss 2 pp. 233 -
252
Permanent link to this document:
http://dx.doi.org/10.1108/JD-07-2013-0098

Downloaded on: 10 November 2016, At: 20:14 (PT)
References: this document contains references to 38 other documents.
To copy this document: permissions@emeraldinsight.com
The fulltext of this document has been downloaded 319 times since 2015*

Users who downloaded this article also downloaded:
(2015),"Documenting virtual world cultures: Memory-making and documentary practices in the City
of Heroes community", Journal of Documentation, Vol. 71 Iss 2 pp. 294-316 http://dx.doi.org/10.1108/
JD-11-2013-0146
(2015),"Data literacy: in search of a name and identity", Journal of Documentation, Vol. 71 Iss 2 pp.
401-415 http://dx.doi.org/10.1108/JD-02-2014-0026

Access to this document was granted through an Emerald subscription provided by emerald-
srm:563821 []

For Authors
If you would like to write for this, or any other Emerald publication, then please use our Emerald
for Authors service information about how to choose which publication to write for and submission
guidelines are available for all. Please visit www.emeraldinsight.com/authors for more information.

About Emerald www.emeraldinsight.com
Emerald is a global publisher linking research and practice to the benefit of society. The company
manages a portfolio of more than 290 journals and over 2,350 books and book series volumes, as
well as providing an extensive range of online products and additional customer resources and
services.

Emerald is both COUNTER 4 and TRANSFER compliant. The organization is a partner of the
Committee on Publication Ethics (COPE) and also works with Portico and the LOCKSS initiative for
digital archive preservation.

*Related content and download information correct at time of download.

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 2
0:

14
 1

0
N

ov
em

be
r

20
16

 (
PT

)

http://dx.doi.org/10.1108/JD-07-2013-0098

The fallacy of the
multi-API culture

Conceptual and practical benefits of
Representational State Transfer (REST)

Ruben Verborgh
iMinds, Multimedia Lab, Ghent University, Ghent, Belgium

Seth van Hooland
Information and Communication Science Department,

Université Libre de Bruxelles, Brussels, Belgium
Aaron Straup Cope and Sebastian Chan

Cooper-Hewitt National Design Museum, New York, New York, USA, and
Erik Mannens and Rik Van de Walle

iMinds, Multimedia Lab, Ghent University, Ghent, Belgium

Abstract
Purpose – The purpose of this paper is to revisit a decade after its conception the Representational
State Transfer (REST) architectural style and analyzes its relevance to address current challenges from
the Library and Information Science (LIS) discipline.
Design/methodology/approach – Conceptual aspects of REST are reviewed and a generic
architecture to support REST is presented. The relevance of the architecture is demonstrated with
the help of a case study based on the collection registration database of the Cooper-Hewitt National
Design Museum.
Findings – The authors argue that the “resources and representations”model of REST is a sustainable
way for the management of web resources in a context of constant technological evolutions.
Practical implications –Whenmaking information resources available on the web, a resource-oriented
publishing model can avoid the costs associated with the creation of multiple interfaces.
Originality/value – This paper re-examines the conceptual merits of REST and translates the architecture
into actionable recommendations for institutions that publish resources.
Keywords Web applications, Information architecture, Hypermedia, REST, Uniform interface,
Web APIs
Paper type Research paper

1. Introduction
1.1 General context
“We shall be questioning concerning technology, and in so doing we should like to
prepare a free relationship to it.” With this agenda in mind, Heidegger opens his 1954
essay on the essence of technology and humanity’s deeply entangled relation with it
(Heidegger, 1954). Interpretations of this essay notoriously vary, but his key message is
to raise awareness regarding our inability to step outside technological thinking. With
this message, Heidegger is often mistaken for a Luddite, but there is tremendous value

Journal of Documentation
Vol. 71 No. 2, 2015

pp. 233-252
©Emerald Group Publishing Limited

0022-0418
DOI 10.1108/JD-07-2013-0098

Received 23 July 2013
Revised 18 February 2014

Accepted 25 February 2014

The current issue and full text archive of this journal is available on Emerald Insight at:
www.emeraldinsight.com/0022-0418.htm

The described research activities were funded by Ghent University, the Institute for the
Promotion of Innovation by Science and Technology in Flanders (IWT), the Fund for Scientific
Research Flanders (FWO Flanders), and the European Union.

233

The fallacy of
the multi-API

culture

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 2
0:

14
 1

0
N

ov
em

be
r

20
16

 (
PT

)

in the quest to see technology for what it really represents. By doing so, we can try to
manage its impact on our lives.

Much of the same thinking underpins the introduction of Roy T. Fielding’s (2000)
doctoral thesis, which formalized the concept of the Representational State Transfer
(REST) architectural style for distributed hypermedia systems such as the web.
Fielding criticizes in his introduction the “design-by-buzzword” context in which web
applications are developed. In a distributed network such as the internet, innovation
through fast-paced technological changes comes at a cost. The expense of adaptation
considerably drives up the costs of our information industry.

More than a decade later, the desire for new applications continues to grow, particularly
for rich web applications and mobile applications (Kroski, 2008). The re-use of web content
in these contexts requires an automated access to the content in a more rigidly structured
format than HyperText Markup Language (HTML), such as for example JavaScript Object
Notation (JSON) (Severance, 2012). If the incentives are important enough, the owner of the
web content typically invests in developing a Web API that replies in the JSON format.
A Web API or Web Application Programming Interface is a set of protocol constructs
offered by a web application through which third-party web or software applications can
interact with it. It typically has a large functional overlap with the possibilities offered to
visitors offered by the web site, but a Web API makes those available to pieces of software
as well, such as JavaScript components on an internal or external web site, mobile
applications, desktop applications, and others. A related concept is Web service, which
predates the term “Web API”, and refers to a means to enable programming over the web.
In practice, definitions notoriously vary; however, “Web services” have come to stand for
heavy-weight, enterprise, Extensible Markup Language (XML)-messaging-based solutions,
whereas “Web APIs” are more light-weight and targeted at web and mobile applications.

Interestingly, a Web API often does not offer new functionality in addition to the HTML
version; it mostly provides the same content and actions, but makes them available in
another format. The logical consequence of building new APIs in response to changing
requirements is that a separate API will be necessary for each and every purpose. If, for
example, a web site wants to make content available in Resource Description Framework
(RDF), it would also need an RDF API next to the existing HTML and JSON APIs.
Additionally, to meet social network demands, it might also need special APIs, and may be
even others for specific device types. In the end, the multiplication of APIs results in a web
site’s content being scattered across applications which all need to be maintained separately.

Uniform Resource Locators (URLs) can serve as a window to observe the fast-
evolving and hype-driven environment. The multi-API culture has manifested itself
over the years in the appearance of implementational details within URLs. For instance,
imagine a URL containing/showObject.php?id¼3685. The presence
of showObject points to a specific script and php indicates the use of a specific
technology. In the short term, these characteristics are not necessarily problematic as
the URL fulfills the function of uniquely identifying a resource. However, if we allow
the underlying technology to influence the naming scheme, each change in technology
can possibly change the URL which serves to identify a resource. This concrete
example is a painful illustration of the need to decouple as much as possible the
identification of resources and the concrete technologies used to manage them.

1.2 Relevance to the Library and Information Science (LIS) discipline and research question
Even though REST has been primarily discussed within the computer science domain
(Khare and Taylor, 2004; Pautasso et al., 2008; Vinoski, 2007; Zuzak and Schreier, 2012),

234

JDOC
71,2

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 2
0:

14
 1

0
N

ov
em

be
r

20
16

 (
PT

)

its implications for the LIS discipline are evident and have already been discussed in a
number of papers. The earliest reference discusses the evolution of the JISC Information
Environment from a SOAP-based approach toward RESTful services to facilitate the
integration of heterogeneous information resources within a common virtual infrastructure
(Powell, 2005). Guy (2009) documents, also within the JISC context, the benefits and
challenges of APIs for the dissemination of information resources. In the wake of the Linked
Open Data (LOD) movement, a number of publications addressed the use of REST for the
publication of controlled vocabularies on the web. Most notably, Panzer (2008) describes
the challenges involved for the online publication of the Dewey Decimal Classification and
the role of REST. Within the same conference proceedings, Summers et al. (2008) detail their
work on the publication of LCSH as Linked Data. Within a more recent working paper,
Summers gives an overview of best practices for the publication of Linked Data for libraries,
archives and museums, in which REST is also discussed (Summers and Salo, 2013).

Although REST has been considered in the existing LIS literature, no previous
publication has provided a thorough introduction on the topic. This paper specifically
examines the relevance of REST more than a decade after its development. We will
investigate what conceptual and practical benefits REST offers for collection holders to
develop a future-oriented, forwards-compatible web architecture. REST potentially has
a mayor role to play, as it focuses attention on “scalability of component interactions,
generality of interfaces, independent deployment of components, and intermediary
components to reduce interaction latency, enforce security, and encapsulate legacy
systems” (Fielding, 2000).

In particular, we will assess the relevance of REST in connection with the growing
popularity of LOD. Recent initiatives such as OpenGLAM[1] and LOD-LAM[2]
illustrate how these evolutions are percolating into the cultural heritage domain. Both
the US and the EU flagship digital library projects, respectively, the Digital Public
Library of America[3] and Europeana[4], are currently embracing Linked Data
principles (van Hooland et al., 2012). As the above example with the URL containing
/showObject.php?id¼3685 demonstrated, the culture of multiple APIs
holds a danger for the longevity of URLs, undermining the successful implementation of
Linked Data principles. This paper will therefore analyze what role REST can play within
the development of an information architecture capable of issuing and maintaining
persistent identifiers for the objects an institution manages.

1.3 Methodology
In order to side step a purely conceptual discussion regarding the benefits of the model,
the paper introduces a case study in which the REST principles are implemented. The
confrontation between the model and the empirical reality of the use case avoids the
risk of presenting a merely dogmatic stance regarding the value of REST principles.
While doing so, the paper also wants to keep away from the “black box problem.”
Mentioned by Ramsey and Rockwell in the context of the Digital Humanities
domain, the term refers to the difficulty of adequately describing the value of the
implementation of a technology. When presenting research,“[…] either the technique is
encapsulated inside the black box of magical technology or it is unfolded in tedious
detail obscuring the interpretation – tedious detail which ends up being a black box of
tedium anyway” (Ramsay and Rockwell, 2012).

To bypass this problem, the paper has very consciously tried to find within the
presentation of the use case an optimal balance between the provision of sufficient
practical, technical, and conceptual background and details. Through a combined

235

The fallacy of
the multi-API

culture

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 2
0:

14
 1

0
N

ov
em

be
r

20
16

 (
PT

)

practical and technical understanding, researchers, and practitioners from the LIS
discipline can evaluate the conceptual added value of REST principles.

Within the context of this paper, we chose the cultural heritage sector as an
application domain. Libraries, archives, and museums have been very active over the
last decade to make their resources available on the web. As other sectors, these
institutions have suffered from the fast-evolving technological landscape (Boydens and
van Hooland, 2011). The recent interest in Linked Data within this community
described in Section 1.2 stresses the importance of having a robust information
architecture. Within the cultural heritage sector, a choice was made to present a
paradigmatic use case, which aims “to develop a metaphor or establish a school for that
domain that the case concerns” (Flyvbjerg, 2006). The Smithsonian Cooper-Hewitt
National Design Museum is very actively reflecting upon the use of the web to make its
resources as easily available as possible. In many regards, the museum is one of the
most interesting international players in regards to collection dissemination on the web,
making the Cooper Hewitt a relevant choice as a case study. More details regarding the
use case and to what extent the results are generalizable to other institutions are
presented in Section 5.

1.4 Outline of the paper
To understand the obstacles that have made active use of this architecture difficult
until today, a brief overview of online information architecture from the web’s
beginning until now is given in the next section. In Section 3, we will provide a detailed
explanation of the conceptual model for long-term sustainability. Section 4 introduces a
generic architecture to implement this model, discussing the impact of change on
systems that use this architecture. The proposed architecture is then illustrated with
the help of a real-life use case (Cooper-Hewitt Museum) in Section 5, helping the reader
to understand the added-value of REST for the documentation of cultural heritage
collections. We conclude the paper in Section 6.

2. Short history of web architecture
2.1 Relevance of original Hypertext Transfer Protocol (HTTP) design
In the early days of the web, only documents written in HTML could be distributed
because the communication mechanism at the time, version 0.9 of the HTTP, solely
supported HTML (Berners-Lee, 1991). In 1993, Mosaic was the first browser to support
embedding images in hypertext documents, thereby starting the multimedia era on the
World Wide Web. By the time HTML 2 arrived, implementations of HTTP were able to
deal with different types of content. The HTTP 1.1 specification, released in 1999,
offered forward-compatible support for all possible content types and detailed central
concepts such as connections, messages, methods to view and manipulate information,
authentication, and caching (Fielding et al., 1999).

Although the underlying transfer protocol supported arbitrary content types, native
browser support was only provided for simple types such as text, HTML, and basic
image formats (GIF and JPEG). The scripting language JavaScript could offer a higher
degree of interactivity, but its presentational possibilities remained confined to those of
HTML. Therefore, several plugins (notably Flash Player and Java) were developed that
basically could render and manage a specific content area of HTML pages (Wilde,
1999). HTTP always remained the transport protocol of data.

Below is an example HTTP request, sent by a client to a server. In the top line, we
notice a method (GET), the relative URL of the requested resource (/objects/

236

JDOC
71,2

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 2
0:

14
 1

0
N

ov
em

be
r

20
16

 (
PT

)

35460799/), and the HTTP version (1.1). Below this initial line, we see several
key/value pairs separated by a colon, attaching metadata to the request. For instance,
we see the user’s browser (User-Agent), accepted document types (Accept),
and language preferences (Accept-Language):

GET /objects/35460799/ HTTP/1.1
Host: collection.cooperhewitt.org
Connection: keep-alive
Cache-Control: no-cache
Accept: text/html,application/xhtml+xml,

application/xml;q¼0.9,*/*;q¼0.8
Pragma: no-cache
User-

Agent:Mozilla/5.0(Macintosh;IntelMacOSX10_6_8)
AppleWeb
Kit/537.36

(KHTML,likeGecko)Chrome/28.0.1500.71Safari/5
37.36

Accept-Language: en-US,en;q¼0.8

To this, the server replies with an HTTP message that includes a status code 200,
indicating success. The reply also contains metadata fields, for instance, the type of the
reply body (text/html). At the end of the message, the requested document
is added:

HTTP/1.1 200 OK
Vary: Accept-Encoding
Content-Length: 6796
Content-Type: text/html; charset¼utf-8

ohtmlW
…

This is the essence of HTTP communication: a client sends a request message, to which
the server replies with an answer message that contains the document.

2.2 Unique identifiers and locators for resources
The previous section indicates the importance of identification and location on the web.
The difference between these two aspects can be illustrated by identifiers that perform
only one of two functions. For instance, a social security number uniquely identifies a
person: given this number, there will be at most one individual who corresponds to it.
However, a social security number does not provide the means to locate a person directly.
In contrast, a home address allows to locate a person, but because several people might
live at any given address, this address alone is insufficient to identify a single person.
Furthermore, addresses can change over time, whereas a social security number does not.

The web’s most well-known identification mechanism, the URL, was specifically
designed to support identification and location at the same time. A URL can indeed serve
as an identifier for something on theweb, as is the casewithhttp//collection.
cooperhewitt.org/objects/35460799/. Additionally, the URLwill
detail how to retrieve the resource it identifies because of its special structure. To
retrieve a representation of the collection object, we initiate a connection to the host

237

The fallacy of
the multi-API

culture

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 2
0:

14
 1

0
N

ov
em

be
r

20
16

 (
PT

)

(collection.cooperhewitt.org) and then issue an HTTP request
with the remainder of the URL (/objects/35460799/), as illustrated above.

Uniform Resource Identifiers (URIs) are a generalization of the URL concept. They
only allow unique identification, but not always location. Very broadly speaking, any
distinguishable concept in the universe can be assigned a URI. URLs are a particular
kind of URIs, but infinitely many others exist. For instance, ISBN numbers can be written
as URIs, with the ISBN No. 978-0062515872 corresponding to urn:isbn:978-
_0062515872. Note how this number indeed identifies a book, but does not
directly allow to retrieve a copy of it.

More recently, the concept of URI has been generalized to IRI, the Internationalized
Resource Identifier. URIs are limited within the ASCII character set, whereas IRIs allow
the inclusion of Unicode characters.

2.3 Appearance of Web services and multiple APIs
Around 2005, the diversity of the browser landscape started increasing. New browsers
emerged, and more and more devices started joining the web: personal digital
assistants, smartphones, and eventually tablets. web sites that previously only targeted
the average computer with a de facto standard configuration, suddenly needed to
become compatible with various browsers and screen sizes. More complicated
applications were developed that make use of more and more Web APIs.

The response to this change has been to add more interfaces to the existing
infrastructure: an API was created for each type of client. This multi-API approach can
be seen in Figure 1, which clearly illustrates the substantial overhead in development and
maintenance costs. At first, each API has to be designed and implemented separately.
Next, if new functionality is required, each API has to be updated. Furthermore, it is
difficult for different types of clients to communicate to each other, as they all interact
with the database in a different way. Finally, if a back-end system requires changes to the
database, all interfaces – and possibly the client-side code to those interfaces – have to be
updated. This multi-API might have been the right approach to respond to short-term
change, but it is no longer sustainable on a web in constant change.

2.4 Role of linked data and need for uniquely addressable resources
From the year 2000 onwards, it became clear that humans were not going to be the only
consumers of the web. Software developers wanted to create tools that could use the
web as a source of information and as a platform to perform actions. Web services were

Main Web Server

Mobile Server

JSON API Server

Linked Data Server

Database

Desktop
Web Browser

Mobile
Web Browser

JavaScript
Application

Linked Data
harvester

Collection
Management

System

Other
back-end
interface

Note: New interfaces must be built and maintained for each type of client (desktop/mobile
/application/harvester/, etc.) that accesses the collection. Furthermore, as each interface
directly depends on the database, changes enforced by the internal Collection Management
System will have to be dealt with in all interfaces separately

Figure 1.
The costly model
of the multi-API

238

JDOC
71,2

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 2
0:

14
 1

0
N

ov
em

be
r

20
16

 (
PT

)

created using technologies based on the XML, and they allowed software clients to act
on them automatically. There was, however, a clear barrier between the resources
intended for humans (HTML) and those for machines (XML) (Verborgh et al., 2013).
Today, services are called “Web APIs” as they are migrating to the JSON format, which
is easier to be handled by JavaScript applications.

While Web APIs mostly focus on performing tasks over the web (adding, modifying,
or annotating information) Linked Data principles focus on making data machine
accessible (Bizer et al., 2009). Although HTML can define the structure of document
data, it does not provide information about its content. Therefore, Linked Data is
expressed in the RDF data model, allowing software applications to interpret this
content and transform it in numerous ways. For this model to be successful, we need
persistent identifiers under the form of URLs. The persistence of URLs is necessary to
guarantee that we can build new data sets upon them, ensuring that the identifiers
remain valid. Other reasons for persistent URLs are discussed by Gomes and Silva
(2006) and McCown et al. (2005).

3. The REST model and its implications
3.1 Definition
Rather than a specific technology or standard, REST is an architectural style that “has
been used to guide the design and development of the architecture for the modern Web”
(Fielding, 2000). It is important to note that REST is a style for system architectures,
dictating several architectural constraints, rather than a technology, or architecture in itself.
The most widespread architecture that is subject to these constraints is of course theWorld
Wide Web itself, whose transfer protocol HTTP is governed by the REST principles.

However, this does not imply that every web site therefore conforms to the REST
constraints by default. On the contrary, many web-application frameworks enforce a
style that is not compliant with the REST architectural principles. Similar to the situation
where an urban architect designs a neighborhood according to several structural
constraints, individual web sites can (and do) disregard the governing principles, just like
individual office buildings in the complex can be designed by different architects.
Although not the desired overall solution, it occurs frequently on the web, where it is not
a question of aesthetics but a matter of integration and scalability. In this section, we will
investigate two groups of REST constraints: the client-server constraints and the
uniform interface constraints, which are highly specific to this architectural style.

3.2 Client-server constraints
The first set of constraints make REST architectures client-server systems, where a client
sends requests to a server that offers a service the client is not able (or willing) to perform
itself (Sinha, 1992). On the web, the principle actors in these roles are web browsers and web
servers. The rationale behind the choice for client-server is separation of concerns (Hürsch
and Lopes, 1995), which works in both directions. On the one hand, the client does not need
to offer all services by itself, as this can be delegated to the server. The server, on the other
hand, only needs to provide the minimum of information necessary for a client to be able to
perform its intended action. On the web, this translates to web servers providing resources a
browser does not have pre-installed, such as web pages and images for example. Browsers,
on the other hand, are fully responsible for the presentation of the content, so the server
does not need to spend time on that (Yeager and McGrath, 1996).

This illustrates how separation of concerns is crucial for scalability: the information
is distributed, and so is processing power. The presented form of scalability has

239

The fallacy of
the multi-API

culture

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 2
0:

14
 1

0
N

ov
em

be
r

20
16

 (
PT

)

another dimension, namely time: clients and servers can evolve independently, as long
as the contract does not change. For example, while web servers have been sending
HTML for decades, new devices such as mobile phones can still use it – despite a
changed presentation concept – because the devices themselves are responsible for
rendering the HTML (Berners-Lee et al., 1992).

3.3 Uniform interface constraints
In contrast to the client-server constraints, which are shared among many distributed
systems, the uniform interface constraints are defining for the REST architectural style.
This uniform interface between components can be seen as the lowest common denominator
to access all services provided by servers in the same generic way. This simplifies the
architecture and makes client-server messages easy to interpret, since no message is specific
to a certain application domain. The REST architectural style defines four constraints that
realize the behavior of the uniform interface: identification of resources, resource
manipulation through representations, self-descriptive messages, and hypermedia as the
engine of application state. We will describe each of them in detail, accompanied by an
example that does not comply with REST and by an example that does.

3.3.1 Identification of resources. The essential unit of information in REST
architectures is a resource, a conceptual entity that must be uniquely identifiable. On
the web, this means that each resource must have its own URL. As trivial as this might
sound, this practice is not applied everywhere. A typical sign of not identifying
resources by URLs is if the browser’s back button is broken – clicking it does not bring
you back to the page you visited previously. Berners-Lee (1998) has stressed the
importance of deliberate design to ensure longevity of URLs. More recently, these ideas
have been formalized by Sauermann and Cyganiak (2008):

• Non-REST compliant: a link on a museum web page brings us to an object of its
collection at the URL http://example.org/collection/
showObject.aspx. If we follow a link to another object, the page’s
content changes, but the URL remains the same. This means that the information
of what object we are viewing is maintained outside of the URL. As a result, we
cannot bookmark the URL for later usage, nor can we send it to somebody else.

• REST compliant: a museum web page shows a certain object of its collection at
the URL http://example.org/objects/18353113/.
Another object is accessible at /objects/35460799/, and similarly,
each object has its own URL, which we can share or bookmark for later usage.

The important difference with, for instance, database systems is that the URL relation is
conceptual. This has been illustrated in Figure 2. The entities of our application domain are

Collection Object
“Toy Theater”

Collection Object
“Spun Chair”

Collection Object
latest addition

Collection Object
“Toy Theater”

Collection Object
“Spun Chair”

/objects /18353113/ /objects / latest / /objects /35460799/

Note: Which entity the resource points to can change and so can
the entity itself; the semantics of the mapping, however, cannot

Figure 2.
Resources (colored)
are conceptual
mappings, pointing
to entities (white)

240

JDOC
71,2

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 2
0:

14
 1

0
N

ov
em

be
r

20
16

 (
PT

)

indicated on top in white; they are objects in a collection and exist independently of the web
application we built on top of it. On the bottom row, resources and their corresponding URL
can be seen. For instance, the conceptual mapping Toy Theater will always correspond
to the object with that name in the collection through the URL /objects/
18353113/. Interestingly, the conceptual mapping latest addition will always point to
the most recently acquired object in the collection, but the identity of that concrete object
will of course change over time. This indicates the conceptual nature of resources.

3.3.2 Resource manipulation through representations. Now that a shared concept of
identification between client and server has been established, the next question is
how information can be transferred between them. An essential property of REST
architectures is that resources themselves are not transferred; instead, client,
and server exchange a representation of a resource. This contrasts with file
systems, wherein an identifier (file name) always corresponds to a specific physical
representation (the file). On the web, an identifier (a URL) corresponds to a
conceptual entity (a resource), which can have different representations, depending
on the capabilities of the client. For instance, a resource can be represented in
HTML for human viewers, and in JSON for consumption by software such as
JavaScript applications in the browser:

• Non-REST compliant: a museum provides access to the HTML version of
an object in its collection at http://example.org/objects/
18353113/. However, the JSON version must be accessed through
http://api.example.org/getObjectJson.php?
id¼18353113, and an API key is necessary for all requests.

• REST compliant: the object is accessible through http://example.
org/objects/18353113/ and, depending on the request, the
server replies with HTML or JSON. In the future, RDF might be supported
through this same URL.

Note how in the non-compliant example the identification happens on the technical
level instead of the conceptual level. The URL identifies “the HTML representation of
object 18353113” instead of “object 18353113.” This makes the exchange of URLs
between different systems difficult, as the choice for a specific representation is tied to
the URL. Furthermore, the addition of new representation formats (such as RDF) would
imply that new URLs have to be assigned again, not to mention the complexity of
removing support for old representation formats. Without this constraint, we indeed
arrive at a multi-API: every type of client needs its own interface to the collection.
The purpose of REST is exactly to provide a uniform interface whose contract can be
maintained in the long term.

The concept is illustrated in Figure 3. Every resource can be accessed and
manipulated through different representations. The data format of a representation is
often referred to as amedia type (Freed and Borenstein, 1996) and sometimes known as
a hypermedia type if the document type natively supports hypertext controls such
as links (Amundsen, 2011). Because we almost exclusively deal with HTML
representations of resources on the web, many people mistakenly assume a resource
can only have a single representation. However, as the figure shows, other
representations of the same resource might be served, such as JSON and RDF.
Client and server agree on the employed representation by the process of content

241

The fallacy of
the multi-API

culture

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 2
0:

14
 1

0
N

ov
em

be
r

20
16

 (
PT

)

negotiation (Klyne, 1999). In HTTP, this is usually implemented by letting the client
specify its media type preferences, which the server then combines with its own
preferences to serve the optimal media type for the interaction (“server-driven
negotiation”; Fielding et al., 1999). An important aspect of representations is that
they ease technological transitions, since supporting different types of clients comes
down to providing additional representations.

3.3.3 Self-descriptive messages. The uniform interface of REST architectures is
considerably simplified by requiring all messages to be self-descriptive. Concretely, this
means that every message should contain all information necessary to understand and
process it independent of possible preceding messages (Fielding, 2000):

• Non-REST compliant: a collection web site provides a search function. When
searching for “toy”, we see the first page of search results /objects?
filter¼toy. To reach the second page, we have to click a button that
submits the text nextpage to the server.

• REST compliant: on the first page of search results/objects?filter¼
toy, there is a link to the second page /objects?filter¼toy&
page¼2.

In the non-compliant example, we notice the message is not self-descriptive. The text
nextpage does not fully define the request: the next page of what should be
shown, and what page is the user currently at? Since this information is not present in
the request, it must be maintained somewhere else, but the client does not have any
control over that. Hence, he cannot predict what will happen when a nextpage
request is sent out. In contrast, the compliant example uses messages that fully
define the request: the query is toy and we require Page 2. In order to have self-
descriptive messages, interactions must be stateless. In general, the client should
not assume the server remembered anything about the previous interaction and
should therefore resend request details such as resource identifier, authentication
details, media type preferences, etc.

To contribute to self-descriptiveness, HTTP only defines a limited number of
methods that may be used in messages, such as GET (retrieving a representation of a
resource), POST (creating or annotating a resource), PUT (storing a resource), and
DELETE (removing a resource). Furthermore, the specification describes whether or
not these methods have qualities such as safeness and idempotence that need to be

Collection Item

JSON

/objects /18353113 / /objects /18353113 /photos /1/

RDF HTML JPEG PNG PDF

Photograph

“Toy Theater” “Toy Theater”

Note: Representations can include (links to) other resources, as is
the case here with the HTML representation. Note how the target
of the link is the resource (which is stable) and not any particular
representation (which can be different)

Figure 3.
A representation
(circle) captures the
state of a resource
(rectangle) and
consists of data
and metadata

242

JDOC
71,2

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 2
0:

14
 1

0
N

ov
em

be
r

20
16

 (
PT

)

respected (Davis, 2012). This limited set of methods makes it easy for any party to
understand a message by itself, in contrast to programming languages where custom
method names can be associated with specific semantics (Van Roy and Haridi, 2004).

3.3.4 Hypermedia as the engine of application state. Closely tied to the concept of
statelessness is the question how to transition from one state to another. This REST
constraint, known as the hypermedia constraint indicates that all state changes should
happen through hypermedia. Media types such as HTML natively support controls
that allow users to navigate and this constraint mandates that the server inserts
controls that lead to next steps a user can take. While this is mostly the case on the
human web, as we are constantly clicking from one place to another, this is far less
frequent in representation formats targeted at machines:

• Non-REST compliant: the JSON representation of a collection object at
http://example.org/objects/35460799/ is:http://example.org/objects/35460799/ is:
{

"title": "Spun Chair",
"producer": {
"name": "Herman Miller Furniture Company",
"id": 18049013

}
}

There is no URL in this representation. As such, a client using the JSON
representation cannot retrieve more details about the producer through
hypermedia, i.e., by following links. Instead, the web API documentation has to
be consulted by a developer to understand how a producer’s details can be
retrieved through the ID 18049013.

• REST compliant: the JSON representation of an object contains the URL to the
producer’s metadata:
{

"title": "Spun Chair",
"producer": {
"name": "Herman Miller Furniture Company",
"url": "/people/18049013/"

}
}

This allows a client application to access the producer’s details without inspecting
the documentation, similar to how people navigate HTML documents through links
without prior instruction.

In the non-compliant example, we notice the interaction using JSON is not driven by
hypermedia, but by out-of-band information that has to be interpreted separately, even
though the interaction using HTML happens fully through hypermedia. Thereby, the
web application gives a different affordance (Norman, 1988) to people and software
clients: the HTML representation affords navigating to the producer, whereas the JSON
representation does not. This increases the production cost of clients, because the
documentation is to be consulted at each step, and also makes the contract between a
client and a server more fragile – if something changes, the implementation of the client
has to change. In contrast, if the client is following links, then these links can simply be
updated without requiring a change in the client code.

243

The fallacy of
the multi-API

culture

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 2
0:

14
 1

0
N

ov
em

be
r

20
16

 (
PT

)

In those cases where the interaction is not driven by hypermedia, the client often
needs to resort to assumptions about the server’s URL structure. For instance, it might
assume that the producer with internal ID 18049013 can be retrieved by
concatenating this ID to the string /people/, i.e., http://example.
org/people/18049013. However, such an assumption endangers the loose
coupling between clients and servers, since a server’s used URL mechanism is out-of-
band information. Such practices implicitly augment the contract between a client and
a server with exact knowledge of the latter’s URL structure, which is undesired.
Berners-Lee (1996) captured this in his “Opacity of URIs” Axiom: “The only thing you
can use an identifier for is to refer to an object. When you are not dereferencing,
you should not look at the contents of the URI string to gain other information”. So while
the server can put a certain structure in the URLs it offers – as encouraged by Berners-
Lee (1998) – the client cannot use any information except the URL as a whole. In the past,
the Axiom has been misinterpreted as “URIs must not contain any elements that can be
connected to the resource in a meaningful way” (Panzer, 2008), but this would clearly
be in contradiction with other work (Berners-Lee, 1998; Sauermann and Cyganiak, 2008)
and current practice on the (semantic) web. Even though the majority of URIs do contain
certain semantically relevant elements, clients should never rely on their presence.

When designing representations, developers often wrongly assume that software
clients do not need these affordances. However, the hypermedia principle that any piece of
information is linked to other pieces has been crucial to the success of the human web;
we should therefore not underestimate its impact on the web for software clients.
This importance is captured by the following definition: “[hypertext is] the simultaneous
presentation of information and controls such that the information becomes the affordance
through which the user (or automaton) obtains choices and selects actions” (Fielding, 2008,
emphasis added). The revolution of the web is indeed that information has become
actionable; it is no longer a static piece of text but an interface that affords people and
software clients to obtain more information of their choice. In order to enable this
powerful mechanism, the fourth and last constraint of the uniform interface thus
demands that any representation – be it HTML, JSON, or RDF – contains the links
that lead to possible next steps. Note that this is also the driver behind Linked
Data: any piece of information should link to others that augment its context.

4. A sustainable REST architecture for HTTP servers
4.1 A generic architecture to support change
AsREST is an architectural style rather than an actual architecture, several implementations
are possible. Our goal is to maximize the longevity of our server implementation and to
minimize the amount of effort needed to react to change. Hence, we will discuss a generic
architecture that implements the REST architectural style and that is easily extensible for
various use cases in which data and metadata have to be exposed in a sustainable way,
which is compatible with the current data infrastructure in the cultural heritage domain.
The UML diagram in Figure 4 shows the different components and their relation. We will
follow the route of a message exchange through this architecture:

• Step 1: sending the request – the client creates the request, which consists of a
URL that identifies a resource and an HTTP method specifying the action. To the
request message, it adds metadata such as its preferences regarding the content
type. This request is sent to the HTTP Server through the HTTP protocol.

244

JDOC
71,2

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 2
0:

14
 1

0
N

ov
em

be
r

20
16

 (
PT

)

• Step 2: receiving and parsing the request – inside the server, the RequestHandler
is listening for incoming requests and receives the Client’s HTTP request, which
it parses into components: method, URL, and metadata.

• Step 3: identifying the resource – the RequestHandler asks the Resolver to map
the URL it extracted from the message to an internal identifier of the resource.
This fully decouples the external URL from the internal naming scheme, ensuring
that both can evolve independently.

• Step 4: retrieving and/or modifying the resource – the RequestHandler uses
the internal resource identifier to retrieve the correct resource from the
ResourceManager. If the issued HTTP method demands a modification, and the
user is permitted to perform it, then the underlying database is updated first.

• Step 5: generating the representation – based on the Client’s content type
preferences indicated in the HTTP message, the RequestHandler selects a
RepresentationGenerator out of the available generator list (which can be
extended). A specific generator, for instance the HtmlGenerator, takes the
Resource and serializes it as a Representation in a specific format. If the Resource
contains references to other Resources, their internal identifiers are converted to
URLs by the Resolver and then embedded in the representation.

• Step 6: sending the representation – the RepresentationGenerator sends the
representation back to the Client. The Client can now follow links in this
representation, in response to which the cycle starts again at Step 1.

4.2 The impact of change
The essential aspect in the described architecture is the decoupling of components to
avoid the propagation of change. We will now investigate different change scenarios
and see how they impact the system.

First, note that current applications on the back-end, such as a CollectionManagement
System, are unaffected: they continue to interface with the Data Server. The HTTP
Server acts as an intermediary between the client and the Data Server, shielding off the

Data Server

HTTP Server

ResourceManager

Resource

<<interface>>
RepresentationGenerator

+ represent(r : Resource)
: Representation

RequestHandler

Resolver

Representation

HtmlGenerator JsonGenerator XmlGenerator

«call»

«call» «call»

«call»

«create»

Client HTTP

1

2

3

4

5

6

Collection
Management

System

Other
back-end
interface

Note: The multiple implementations of RepresentationGenerator provide support for
different representations. Internal applications, such as a Collection Management System,
continue to access the Data Server directly

Figure 4.
The Client exchanges
HTTP messages with
the RequestHandler,

the entry point to the
HTTP Server and

interface to the Data
Server

245

The fallacy of
the multi-API

culture

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 2
0:

14
 1

0
N

ov
em

be
r

20
16

 (
PT

)

implementation details of the latter. If a new Data Server is chosen to replace the current
system, the Client is still able to issue HTTP requests as before. In other words, URLs
point to the same resources, regardless of how they are stored at the server. The
RequestHandlerwill have to be adapted to the newData Server, and possibly the Resolver
will convert identifiers in a different way. No other components are affected: this major
change can be dealt with by relatively minor adaptations in existing components. Most
importantly, no Client implementations (web site scripts, applications, etc.) have to
change, so independent evolution of client and server is possible.

Supporting new types of clients can happen by developing a new Representation
Generator. Figure 4 already shows generators for HTML, JSON, and XML. Suppose we
want to offer support for Linked Data by offering RDF, then only an RdfGenerator has
to be created and plugged into the system. No other changes are required. Compare this
to the multi-API paradigm, in which it would be necessary to build an entirely new API in
order to support RDF. The development costs would be much higher, plus documentation,
and support would need to be provided. Instead, we reuse the existing API and architecture.
Importantly, URLs remain the same as well, again avoiding changes on the client. Clients
continue to indicate their preferences, and if the RDF format is a match, then the
RdfGenerator is automatically selected by the RequestHandler.

These two scenarios indicate that the architecture is resilient to change. Because
there is no direct coupling between URLs, representations, and the internal data store,
the system can gradually grow. This is a requirement for a system in an environment
that is steadily evolving under constant technological change.

5. Use case: implementing REST at the Cooper-Hewitt Museum
5.1 The Cooper-Hewitt collection and its collection management database
The Cooper-Hewitt National Design Museum was founded at the end of the nineteenth
century and harbors a collection of historical and contemporary design. In 2011, the
museum closed for a three-year long renovation, rethinking the collection in terms of
different narratives for different visitor groups. A major part of this transformation is
to remain true to its mandate to be there for everyone: both the expert and the general
public. This is translated into a technical challenge: the collection and its metadata
must be offered in flexible ways inside and outside of the museum. Not only is the
agility to rapidly fulfill emerging user demands a requirement, it is also the ambition of
the museum to promote the discovery of new unforeseen requirements.

Over the years, Cooper-Hewitt has used TMS as collection management software in
combination with eMuseum to drive the public front-end of the collection. This
software environment does not offer any of the amount of flexibility necessary for the
information flow and agility described above. The museum needs to move faster than
allowed by the internal architecture of TMS and the dictates of eMuseum’s pricing
model. As a generic software solution marketed toward a broad range of cultural
heritage institutions, TMS is designed to be very flexible toward individual exceptions
in the data model, at the cost of a rather complex relational database design. The
problem is that this makes the data non-transparent and thus difficult to approach from
outside TMS.

Despite all of its shortcomings, a pragmatic choice was made to keep TMS for the
curatorial tasks it has been performing over the years and by doing so the database
continues to serve as the system responsible for metadata creation and management.
However, in order to address the agility concerns and to have maximum flexibility on
the front-end web site, eMuseum is abandoned. Data are exported from TMS into a

246

JDOC
71,2

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 2
0:

14
 1

0
N

ov
em

be
r

20
16

 (
PT

)

limber environment which can be in an α release perpetually. The first goal therefore
was to generate an automatically generated Comma-Separated Value (CSV) export
from TMS. The export is then ingested in a PHP web-application framework which
gives the freedom to rapidly build interfaces and indexes, custom tailored to needs
which can evolve rapidly.

This agile approach allowed the museum to bypass the complexities of data
modeling. One conceptual requirement which became paramount, however, is the
issuing of persistent identifiers and making almost everything a first-class resource on
the web. In other words, as many facets as possible of the collection should be expressed
as URLs, for example:

http://collection.cooperhewitt.org/countries/
france and http://collection.cooperhewitt.org/
objects/colors/ff1493/,

respectively, give access to all objects manufactured in France or which have deep
pink (represented by the color code ff1493) as their dominant color palette.

Persistent identifiers under the form of URLs also are fundamental if Cooper Hewitt
wants to realize its vision of holding hand with as many partners as possible on the
web. The museum has been actively reconciling its metadata with authorities such as
Virtual Authority Files (VIAF) but also with knowledge bases like wikipedia and
freebase. For example, the museum does not have a biography of the American
designer Ray Eames, but it provides through the reconciliation process a link to his
wikipedia page. Other cultural heritage institutions, such as the Museum of Modern Art
(MoMA) are also actively reconciling their metadata with the same knowledge bases
and authorities. This approach makes it then feasible at a second stage to make it
explicit what artists, places, etc. are shared across institutions.

The following sections will demonstrate how REST principles were used to implement
this infrastructure and to guarantee a stable environment for issuing persistent URLs.

5.2 Use of REST principles to publish the collection
Properly designing a URI space has a profound impact on the persistence of identifiers
(Berners-Lee, 1998). Careful design ensures that the server can maintain a URI in the long
term. The URI space for the Cooper-Hewitt collection has been chosen as follows: the
base URL for is http://collection.cooperhewitt.org/, which
is on a different subdomain then the main web sitewww.cooperhewitt.org/.
This easily separates the contentmanagement system of themainweb site, which focuses on
a different type of content, from the collection. Furthermore, this limits the number of URIs
that should be accounted for, as all non-collection-related information (such as museum news
and events) are allocated in a different URI space. Within the collection, /objects/
35460799/ is an example of an object URL. People and organizations involved
with objects in various roles are accessible through URLs such as /people/
18049013/. In addition to these two main types of resources, collection resources also
occur: lists of objects. For instance, /people/18049013/objects/manufacturer/ lists all objects
where the organizationwith ID 18049013 is themanufacturer. Conversely, /objects/35460799/
people/ lists all people and organizations involved in the object with ID 35460799. This
makes it straightforward for humans to understand the URL structure, but also for a
Resolver to extract the necessary bits of information. For instance, the URI pattern
/people/{personid}/objects/{relationname} can capture
the structure of the former and pass the personid and relationname values

247

The fallacy of
the multi-API

culture

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 2
0:

14
 1

0
N

ov
em

be
r

20
16

 (
PT

)

to a ResourceManager. As indicated earlier, knowledge about this structure only resides on
the server side; all URLs are opaque to the client (Berners-Lee, 1996). Instead, the client should
use hypermedia controls supplied by the server to navigate from one resource to another.

For the public collection web site, the HTML representation is of central importance.
Based on a PHP templating engine, the properties of the retrieved resource are
embedded in a generic structure that is consistent with the rest of the web site. The
HTML representation of a collection links to related resources such as people and
organizations, and embeds an image of the item if available.

As the web site also needs to provide an interface to web applications, machine-
interpretable representations are also needed. Furthermore, the Cooper-Hewitt wants to
use their own API inside the museum, to avoid the duplicate effort of making another
interface to TMS. This refers to both back-end operations of registrars and curators, as
well as public-facing interactive media and experiences inside the galleries and future
exhibitions. Having an evolvable, machine-accessible interface on the public web site
was therefore a logical decision. The JSON format has been chosen because of its
simple integration with web applications, the native language of which is JavaScript.
A JsonGenerator fulfills this role. In accordance with the REST principles, the JSON
representations are accessible through the same resource URI. In order to test the
implementation of the REST principles, the command line tool cURL can be used.
By executing the following instructions in command line:

curl http://collection.cooperhewitt.org/
objects/35460799/-
H "Accept: text/html",

we receive an HTML representation. If we ask for JSON:

curl http://collection.cooperhewitt.org/
objects/35460799/-
H "Accept:application/json",

then we will receive a machine-readable representation of the same resource. This
means that the same URL can be exchanged between different systems, regardless of
whether the consumer of this URL is a human or a machine. Consequently, any
operation performed on or with this resource (such as adding annotations) will have the
same effect for all involved parties.

Should the Cooper-Hewitt decide to support Linked Data in the future as well, then it
will merely be a matter of creating a new generator, for instance for RDF/Turtle. The
same URLs will continue to work; and machine clients that can make use of the extra
semantics of RDF will be able to retrieve the RDF representation and perhaps act in
more complex ways with it than with the JSON representation. For instance, since RDF
uses URI identifiers internally, it might prove interesting to follow those URIs and try
to find more information about the referenced concepts (Figure 5).

6. Conclusions
This paper brought attention to the relevance of REST principles for the LIS discipline.
More in particular, we focused on how the REST architectural style can contribute to
the longevity of URLs, which are playing a central role within the application of Linked
Data principles and the automated usage of documents and their metadata.

We started out by precisely defining a Web API and indicated that today’s strategy
of building new APIs to support each individual technological change is not a desirable

248

JDOC
71,2

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 2
0:

14
 1

0
N

ov
em

be
r

20
16

 (
PT

)

long-term strategy. The conceptual introduction to the client-server and uniform
interface constraints underlined the importance of providing people and software clients
with equal affordance on information in a transparent way, allowing information to be
exchanged between different parties regardless of a concrete format. Based on this, a
general architecture was presented with the help of a UML diagram. This schematic
outline demonstrated how the HTTP Server functions as a buffer between the Client and
the Data Server. The decoupling allows both parties to evolve independently and to avoid
the propagation of change.

In order to illustrate the practical benefits of this information architecture, a use case was
presented based on the collection database of the Cooper-Hewitt National DesignMuseum. In
the context of the current renovation of the museum, a fundamental rethinking of how the
museum is providing access to its objects and metadata took place. For strategic reasons, it
was decided not to invest in a migration or a remodeling of the current collection registration
database. TMS will be used over the years to come for metadata creation and management,
but an automated export is pulled from TMS into a PHP web-application framework. This
approach gives the freedom to rapidly build custom interfaces for needs which might evolve
rapidly. However, in this agile context there is a need to serve and maintain persistent
identifiers for objects and different facets of the objects. The URLs play a central role in
creating connections with other institutions and providing the user community the
opportunity to build services on top of these identifiers. The conceptual idea of serving
representations (and not resources) is demonstrated with an example from the use case. By
doing so, the case study illustrated how an institution can make use of REST to facilitate
both human and machine consumption, without investing in multiple APIs.

Note: Following the REST principles, the JSON representation is available at the same URL
through content negotiation

Figure 5.
An HTML

representation of
a collection item on
the Cooper-Hewitt

web site

249

The fallacy of
the multi-API

culture

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 2
0:

14
 1

0
N

ov
em

be
r

20
16

 (
PT

)

http://www.emeraldinsight.com/action/showImage?doi=10.1108/JD-07-2013-0098&iName=master.img-001.jpg&w=336&h=232

Confronted with the current economic downturn, many libraries, archives, and
museums simply not have the luxury to spend years on the development of the perfect
software, meeting all needs for the documentation of their resources. The pragmatic
approach of the Cooper-Hewitt museum to feed an automated export from a less than
perfect collection management database into a PHP web-application framework is a
valuable example for both practitioners and researchers. Through the use of REST
principles, the museum manages to decouple the access provided to its objects and
metadata from the specific technology used. HTTP is the interface to the web, and
when the REST principles are applied, it is the only interface any application needs.
The conceptual introduction and the practical use case hopefully can serve as an
example for other cultural heritage organizations and stimulate further research in the
use of the REST architectural style by other LIS researchers.

Notes
1. http://openglam.org (accessed July 20, 2013).

2. http://lodlam.net (accessed July 20, 2013).

3. http://dp.la (accessed July 20, 2013).

4. http://europeana.eu (accessed July 20, 2013).

References

Amundsen, M. (2011), “Hypermedia types”, in Wilde, E. and Pautasso, C. (Eds), REST: From
Research to Practice, Springer, New York, NY, pp. 93-116.

Berners-Lee, T. (1991), “The original HTTP as defined in 1991”, available at: www.w3.org/
Protocols/HTTP/AsImplemented.html (accessed July 23, 2013).

Berners-Lee, T. (1996), “Universal resource identifiers – axioms of web architecture”, available at:
www.w3.org/DesignIssues/Axioms.html (accessed July 23, 2013).

Berners-Lee, T. (1998), “Cool URIs don’t change”, available at: www.w3.org/Provider/Style/URI.
html (accessed July 23, 2013).

Berners-Lee, T., Cailliau, R., Groff, J.F. and Pollermann, B. (1992), “World-wide web: the
information universe”, Internet Research, Vol. 20 No. 4, pp. 461-471.

Bizer, C., Heath, T. and Berners-Lee, T. (2009), “Linked data – the story so far”, International
Journal on Semantic Web and Information Systems, Vol. 5 No. 3, pp. 1-22.

Boydens, I. and van Hooland, S. (2011), “Hermeneutics applied to the quality of empirical
databases”, Journal of Documentation, Vol. 67 No. 2, pp. 279-289.

Davis, C. (2012), “What if the web were not RESTful?”, Proceedings of the Third International
Workshop on RESTful Design, ACM, New York, NY, pp. 3-10.

Fielding, R.T. (2000), “Architectural styles and the design of network-based software
architectures”, PhD thesis, University of California, Irvine, CA.

Fielding, R.T. (2008), “REST APIs must be hypertext-driven”, available at: roy.gbiv.com/
untangled/2008/rest-_apis-_must-_be-_hypertext-_driven (accessed July 23, 2013).

Fielding, R.T., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P. and Berners-Lee, T. (1999),
“Hypertext transfer protocol – HTTP/1.1”, available at: www.ietf.org/rfc/rfc2616.txt
(accessed July 23, 2013).

Flyvbjerg, B. (2006), “Five misunderstandings about case-study research”, Qualitative Inquiry,
Vol. 12 No. 2, pp. 219-245.

250

JDOC
71,2

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 2
0:

14
 1

0
N

ov
em

be
r

20
16

 (
PT

)

http://www.emeraldinsight.com/action/showLinks?system=10.1108%2F00220411111109476&isi=000289019500005
http://www.emeraldinsight.com/action/showLinks?crossref=10.17487%2Frfc2616
http://www.emeraldinsight.com/action/showLinks?crossref=10.4018%2Fjswis.2009081901&isi=000270369900001
http://www.emeraldinsight.com/action/showLinks?crossref=10.4018%2Fjswis.2009081901&isi=000270369900001
http://www.emeraldinsight.com/action/showLinks?crossref=10.1007%2F978-1-4419-8303-9_4
http://www.emeraldinsight.com/action/showLinks?crossref=10.1177%2F1077800405284363&isi=000235894100001
http://www.emeraldinsight.com/action/showLinks?system=10.1108%2F10662241011059471

Freed, N. and Borenstein, N. (1996), “Multipurpose internet mail extensions (MIME) part one:
format of internet messsage bodies”, available at: http://tools.ietf.org/html/rfc2045
(accessed July 23, 2013).

Gomes, D. and Silva, M.J. (2006), “Modelling information persistence on the web”, in Bauknecht, K.,
Pröll, B. and Werthner, H. (Eds), Proceedings of the 6th International Conference on Web
Engineering, ICWE ’06, ACM, New York, NY, pp. 193-200.

Guy, M. (2009), “JISC good APIs management report”, technical report, JISC, Bristol.

Heidegger, M. (1954), “Die Frage nach der technik”, in von Herrmann, F.-W. (Ed.), Vorträge Und
Aufsätze, Vol. 8, Verlag Günther Neske, Pfullingen, pp. 13-55.

Hürsch, W. and Lopes, C. (1995), “Separation of concerns”, technical report, College of computer
Science, Northeastern University, Boston, MA.

Khare, R. and Taylor, R. (2004), “Extending the Representational State Transfer (REST)
architectural style for decentralized systems”, 26th International Conference on Software
Engineering, ICSE 2004, pp. 428-437.

Klyne, G. (1999), “Protocol-independent content negotiation framework”, available at: www.ietf.
org/rfc/rfc2703.txt (accessed July 23, 2013).

Kroski, E. (2008), “On the move with the mobile web: libraries and mobile technologies”, Library
Technology Reports, Vol. 44 No. 5, pp. 1-48.

McCown, F., Chan, S., Nelson, M.L. and Bollen, J. (2005), “The availability and persistence of web
references in D-Lib magazine”, CoRR, Vol. abs/cs///0511077.

Norman, D.A. (1988), The Design of Everyday Things, Doubleday, New York, NY.

Panzer, M. (2008), “Cool URIs for the DDC: towards web-scale accessibility of a large classification
system”, Proceedings of the International Conference on Dublin Core and Metadata
Applications, Berlin, pp. 183-190.

Pautasso, C., Zimmermann, O. and Leymann, F. (2008), “RESTful web services vs. ‘big’
web services: making the right architectural decision”, in Huai, J., Chen, R., Hon, H.-W.,
Liu, Y., Ma, W.-Y., Tomkins, A. and Zhang, X. (Eds), Proceedings of the
17th International Conference on World Wide Web, WWW ’08, ACM, New York, NY,
pp. 805-814.

Powell, A. (2005), “A service oriented view of the JISC information environment”, technical report,
UKOLN, Bath.

Ramsay, S. and Rockwell, G. (2012), Debates in the Digital Humanities, Minesota Press, “Chapter
developing things: notes towards an epistemology of building in the digital humanities”,
University of Minnesota Press, Minesota, pp. 75-84.

Sauermann, L. and Cyganiak, R. (2008), “Cool URIs for the semantic web”, available at: www.w3.
org/TR/cooluris/ (accessed July 23, 2013).

Severance, C. (2012), “Discovering javascript object notation”, Computer, Vol. 45 No. 4, pp. 6-8.

Sinha, A. (1992), “Client-server computing”, Communications of the ACM, Vol. 35, ACM,
New York, NY, No. 7, pp. 77-98.

Summers, E. and Salo, D. (2013), “Linking things on the web: a pragmatic examination of linked
data for libraries, museums and archives”, technical report, unpublished working paper,
available at http://arxiv.org/abs/1302.4591 (accessed January 31, 2015).

Summers, E., Isaac, A., Redding, C. and Krech, D. (2008), “LCSH, SKOS and linked data”,
Proceedings of the International Conference on Dublin Core and Metadata Applications,
Berlin, pp. 25-33.

van Hooland, S., Verborgh, R. and Van deWalle, R. (2012), “Joining the linked data cloud in a cost-
effective manner”, Information Standards Quarterly, Vol. 24, pp. 24-29.

251

The fallacy of
the multi-API

culture

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 2
0:

14
 1

0
N

ov
em

be
r

20
16

 (
PT

)

http://www.emeraldinsight.com/action/showLinks?crossref=10.1109%2FMC.2012.132&isi=000302458300001
http://www.emeraldinsight.com/action/showLinks?crossref=10.1109%2FICSE.2004.1317465
http://www.emeraldinsight.com/action/showLinks?crossref=10.1109%2FICSE.2004.1317465
http://www.emeraldinsight.com/action/showLinks?crossref=10.3789%2Fisqv24n2-3.2012.04
http://www.emeraldinsight.com/action/showLinks?crossref=10.1145%2F129902.129908
http://www.emeraldinsight.com/action/showLinks?crossref=10.17487%2Frfc2703
http://www.emeraldinsight.com/action/showLinks?crossref=10.1145%2F1367497.1367606
http://www.emeraldinsight.com/action/showLinks?crossref=10.1145%2F1367497.1367606
http://www.emeraldinsight.com/action/showLinks?crossref=10.1145%2F1145581.1145623
http://www.emeraldinsight.com/action/showLinks?crossref=10.1145%2F1145581.1145623
http://www.emeraldinsight.com/action/showLinks?crossref=10.5749%2Fminnesota%2F9780816677948.003.0010

Van Roy, P. and Haridi, S. (2004), Concepts, Techniques, and Models of Computer Programming,
MIT Press, Cambridge, MA.

Verborgh, R., Mannens, E. and Van de Walle, R. (2013), “The rise of the web for agents”,
Proceedings of the First International Conference on Building and Exploring Web Based
Environments, pp. 69-74.

Vinoski, S. (2007), “REST eye for the SOA guy”, Internet Computing, IEEE, Vol. 11 No. 1,
pp. 82-84.

Wilde, E. (1999), Wilde’s WWW: Technical Foundations of the World Wide Web, Springer,
New York, NY.

Yeager, N.J. and McGrath, R.E. (1996), Web Server Technology: The Advanced Guide for World
Wide Web Information Providers, Morgan Kaufmann, San Fransisco, CA.

Zuzak, I. and Schreier, S. (2012), “Arrested development: guidelines for designing rest
frameworks”, IEEE Internet Computing, Vol. 16 No. 4, pp. 26-35.

Corresponding author
Ruben Verborgh can be contacted at: ruben.verborgh@ugent.be

For instructions on how to order reprints of this article, please visit our website:
www.emeraldgrouppublishing.com/licensing/reprints.htm
Or contact us for further details: permissions@emeraldinsight.com

252

JDOC
71,2

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 2
0:

14
 1

0
N

ov
em

be
r

20
16

 (
PT

)

http://www.emeraldinsight.com/action/showLinks?crossref=10.1109%2FMIC.2012.60&isi=000305545200005
http://www.emeraldinsight.com/action/showLinks?crossref=10.1109%2FMIC.2007.22&isi=000243262700014
http://www.emeraldinsight.com/action/showLinks?crossref=10.1007%2F978-3-642-95855-7

This article has been cited by:

1. RUBEN VERBORGH, DÖRTHE ARNDT, SOFIE VAN HOECKE, JOS DE ROO, GIOVANNI
MELS, THOMAS STEINER, JOAQUIM GABARRO. 2016. The pragmatic proof: Hypermedia
API composition and execution. Theory and Practice of Logic Programming 1-48. [CrossRef]

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 2
0:

14
 1

0
N

ov
em

be
r

20
16

 (
PT

)

http://dx.doi.org/10.1017/S1471068416000016

