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Abstract
Purpose – Learning to rank algorithms inherently faces many challenges. The most important
challenges could be listed as high-dimensionality of the training data, the dynamic nature of Web
information resources and lack of click-through data. High dimensionality of the training data affects
effectiveness and efficiency of learning algorithms. Besides, most of learning to rank benchmark
datasets do not include click-through data as a very rich source of information about the search
behavior of users while dealing with the ranked lists of search results. To deal with these limitations,
this paper aims to introduce a novel learning to rank algorithm by using a set of complex click-through
features in a reinforcement learning (RL) model. These features are calculated from the existing
click-through information in the data set or even from data sets without any explicit click-through
information.
Design/methodology/approach – The proposed ranking algorithm (QRC-Rank) applies RL
techniques on a set of calculated click-through features. QRC-Rank is as a two-steps process. In the first
step, Transformation phase, a compact benchmark data set is created which contains a set of
click-through features. These feature are calculated from the original click-through information
available in the data set and constitute a compact representation of click-through information. To find
most effective click-through feature, a number of scenarios are investigated. The second phase is
Model-Generation, in which a RL model is built to rank the documents. This model is created by
applying temporal difference learning methods such as Q-Learning and SARSA.
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Findings – The proposed learning to rank method, QRC-rank, is evaluated on WCL2R and LETOR4.0
data sets. Experimental results demonstrate that QRC-Rank outperforms the state-of-the-art learning to
rank methods such as SVMRank, RankBoost, ListNet and AdaRank based on the precision and
normalized discount cumulative gain evaluation criteria. The use of the click-through features
calculated from the training data set is a major contributor to the performance of the system.
Originality/value – In this paper, we have demonstrated the viability of the proposed features that
provide a compact representation for the click through data in a learning to rank application. These
compact click-through features are calculated from the original features of the learning to rank
benchmark data set. In addition, a Markov Decision Process model is proposed for the learning to rank
problem using RL, including the sets of states, actions, rewarding strategy and the transition function.

Keywords Click-through data, Learning to rank, Reinforcement learning

Paper type Research paper

1. Introduction
Because of the drastic growth of the Web information, Web search engines have become
an essence of the information era. Information retrieval (IR) is defined as a ranking
process in which a set of documents are ordered based on their relevance to the users’
information need. In recent years, “Learning to Rank” has emerged as an active and
growing area of research in both IR and machine learning research. Consequently,
several learning to rank algorithms have been proposed, such as RankSVM (Herbrich
et al., 2000; Joachims, 2002), RankBoost (Freund et al., 2003), AdaRank (Xu and Li, 2007)
and ListNet (Cao et al., 2007). Although these ranking methods have shown reasonable
performance based on the evaluation criteria on benchmark data sets, but they have not
taken advantage of the click-through data as a source of users’ feedbacks (Dou et al.,
2008). One reason could be scarcity of explicit click-through data in the released and
publicly available benchmark data sets.

Given lack of sufficient data sets with click-through information, one of the aims of
this research is proposing a framework for generating click-through data from the
information presented in the learning to rank data sets. We have also looked at
effectiveness of various features in click-through data and experimentally proposed
subsets of features that are more useful in learning to rank. This research also utilizes
reinforcement learning (RL) methods to learn and adapt to the desired ranking for users.

The main contributions of this research could be summarized as:
• proposing a novel click-through feature generation framework from benchmark

data sets that lack click-through information;
• analyzing the performance of the proposed click-through features using various

scenarios on LETOR4.0 and WCLR benchmark data sets;
• designing a RL model with for temporal learning methods for ranking; and
• demonstrating the viability of using click-through features with the proposed

method.

The rest of this paper is organized as follows: Section 2 provides an overview of the
application of click-through data and RL methods in the learning to rank problem.
Section 3 describes the fundamental ideas of the proposed method. Section 4 presents the
details the evaluation settings and analytical discussion of the results. Finally, Section 5
provides the conclusion and future work.
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2. Related works
Joachims (2002) for the first time introduced the application of click-through data as an
alternative to the explicit relevance judgments in the RankSVM system. The RankSVM
system still is one of the most powerful ranking methods. Later, it was observed that
considering a user’s queries as chains rather than considering each query individually
produces more reliable inferred relevance judgments from the click-through data
(Radlinski and Joachims, 2005; Macdonald and Ounis, 2009; Macdonald et al., 2013).

The research in this area can be divided into three major categories. The first
category includes those works that investigate the effect of the implicit feedback of users
on the performance of learning to rank algorithms (Agichtein et al., 2006a, 2006b; Dou
et al., 2008). The second category consists of research that intends to enhance the quality
of click-through data. The last category includes those investigations that utilize
click-through data to improve the performance of learning to rank algorithms.

Xu (2010) is an example research in second category. Xu (2010) tries to find what kind
of input is required and how to obtain such an input using the implicit or explicit
feedback for learning to rank approaches. Another example is Radlinski (Radlinski and
Joachims, 2007), who presents an active exploitation strategy for collecting users’
interaction records from search engine click-through logs. His proposed algorithm is a
Bayesian approach for selecting rankings to present users so that interactions result into
a more informative training data. In Xu et al. (2010), a method is proposed, which
automatically detects judgment errors by using the click-through data. The sparseness
of the click-through data is a major challenge in learning to rank approaches that have
been investigated by researchers such as Gao et al. (2009). They have proposed two
techniques for expanding click-through features to address the sparseness.

Most of research also has focused on using click-through data to improve the
performance of the learning to rank methods. Ji et al. (2009) have chosen a minimalistic
approach and by exploiting user click sequences based on a limited number of features
have proposed a global ranking framework. Interestingly, Dupret and Liao (2010) have
used click-through data exclusively for generating a relevance estimation model. The
model was utilized to predict the document relevance. Click-through data are also
utilized to provide deep structured latent semantic models for web search (Huang et al.,
2013). These models project queries and documents into a common low-dimensional
space, where the relevance of a document given a query is readily computed from the
distance between them. Click-through data have been successfully used in various areas
of IR, including user modeling (Wang et al., 2014; Agichtein et al., 2006a, 2006b), query
suggestion (Ma et al., 2008) and image retrieval (Bai et al., 2013; Jain and Varma, 2011).
Hofmann et al. (2013) also have tried using historical data to speed up online learning. In
the online learning to rank, the retrieval system learns directly from interactions with its
users. This approach integrates estimations derived from historical data with a
stochastic gradient descent algorithm for online learning to rank (Hofmann et al., 2013).

RL methods are rarely applied to resolve the learning to rank problem. A related
work is Derhami et al. (2013), in which based on the PageRank’s random surfer model, a
general ranking method is proposed in an RL structure. However, because this ranking
algorithm does not deal with feature vectors of query-document pairs, it could not be
categorized as a learning to rank algorithm. Another application of RL for the ranking
problem is A3CRank algorithm, which aggregates the ranking results from a few
ranking algorithms such as TF-IDF, BM25 and PageRank (Zareh Bidoki et al., 2010). In
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a study by Hofmann et al. (2013), an RL model is proposed to assist IR systems to learn
from users’ interactions. Specifically, it presents an interleaved comparison method for
online learning to rank problem.

This research also is concentrated on the application of RL techniques and learning to
rank using the click-through data. In a study by Keyhanipour et al. (2007), a method
called WebFusion is introduced, in which learning to rank from click-through data and
information fusion have been successfully combined within an intelligent meta-search
engine environment.

3. Proposed approach
The proposed learning to rank algorithm consists of two phases – Transformation and
Model-Generation – that will be described in the next subsections. Briefly, within the
Transformation phase, a feature generation mechanism will be applied to the
benchmark data set and a compact representation will be generated as triplets of
queries, results and a subset of clicks through features. Then, in the Model-Generation
stage, a RL model is generated the learning to rank problem. During this step, temporal
difference learning mechanisms such as Q-Learning and SARSA are used to find
near-optimal solutions for the compact representation of the first phase. Following is the
outline of the proposed learning to rank algorithm, which summarizes the proposed
learning to rank method, which is called QRC-Rank:

The proposed learning to rank method: QRC-Rank
Input:

a learning to rank benchmark data set which consists of a set of query-document
pairs with their feature vectors and relevance judgments (i.e., the training set, T )
Output:

an action table, A, which provides the most appropriate action (degree of relevance),
for the state corresponding to a query-document pair
Procedure of the QRC-Rank:

Step 1. Transformation:
1. Selection of the scenarios needed for the calculation of click-through features

from training set T.
2. Generation of click-through features from T based on the suggested scenarios.

This process generates a secondary data set T= from T, which includes the generated
click-through features corresponding to query-document pairs.

Step 2. Model-Generation:
3. Generating a Markov Decision Process Model for the learning to rank problem,

including the sets of States, Actions, Rewarding Strategy and also the Transition
Function.

4. Applying Temporal-Difference learning methods, Q-Learning and SARSA, on
the proposed Markov Decision Process Model to realize the most relevance label for each
query-document pair.

For better clarification, the same process is graphically illustrated in Figure 1.

3.1 Transformation phase
In the context of IR, ranking a set of documents in respect to a given query is influenced
by a variety of features, which are related to this query-document pair. Some of these
features are: term-frequency, inverse document-frequency and PageRank. Any given
benchmark data set prepared for the learning to rank problem consists of the values of
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such features, which are calculated for some pairs of queries and documents, as well as
the relevance degree of a document with respect to a specific query. There are two
problems with these data sets to achieve a learning to rank algorithm. First, because of
the presence of a large number of features, these data sets usually are high-dimensional.
Usage of a large number of features leads to the inefficiency of the derived ranking
algorithms in real-world situations. Second, these data sets usually do not contain the
click-through data. Click-through data is an important source of implicit feedback of the
users of Web search engines (Dou et al., 2008; Xu et al., 2010).

The goal of the Transformation phase is to generate click-through information for the
benchmark data sets even if they lack such information. In this phase, a compact
representation of original benchmark data set is produced based on a triplet of query (Q),
ranked list of results (R) and features related to clicks of users (C) (Joachims, 2002). In this
phase, eight features are defined in three groups: Q, R and C. These features are:

Q � �Repetition, QScore, ResultsAmount�
R � �AbsoluteRank, StreamLength�

C � �Specificity, Attractiveness, ClickRate�

Q contains features related to the nature of the queries of users. Repetition deals with the
frequency of query terms in different parts of a Web document, including URL, title and
content. QScore refers to the score of a document with respect to a given query. The
QScore is generated by query-dependent ranking algorithms such as vector space and
language models. Finally, ResultAmount indicates the number of results retrieved for a
specified query.

In the same way, features of the category R highlight the characteristics of the Web
documents independent of any query. In this category, AbsoluteRank shows the
absolute rank of a given Web document. Undoubtedly, in calculation of this feature,
query-independent specifications such as PageRank play an important role.
StreamLength is a structure containing the length of document’s URL length, its title
length and the length of a document’s content.

The category C, includes those features which deal with the users’ click-through data.
Specificity is an indication of the uniqueness of a given document for a set of queries. In
other words, for a given Web document, Specificity shows how many users have clicked
on this document for a given set of queries. The Attractiveness feature is an indicator of

Original 
Benchmark 

Dataset

Transformation 
PhaseTransformed 

Benchmark 
Dataset

Model Generation 
PhaseReinforcement Learning 

Model of Learning to 
Rank Problem 

Figure 1.
Steps of the
QRC-Rank algorithm
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the number of Web users’ attention to a given document during their search interactions.
Attractiveness distinguishes between Web documents that are clicked first or last from
those clicked during the rest of the search session. Surprisingly, these features could be
calculated in the presence or even absence of click-through data.

The computation of the above-mentioned features is completely dependent on the
amount of the information available in a specific benchmark data set. In the next section,
a few scenarios would be presented for the calculation of the above features for two
standard benchmarking data sets: LETOR4.0 and WCL2R.

3.2 Model-generation phase
In Model-Generation phase a model will be created for ranking web documents using RL
techniques. The input data for this phase comes from the Transformation phase, which
is an eight-dimensional data set, containing the generated click-through features in
categories Q, R and C.

In this phase, a Markov Decision Process (MDP) model is generated as a triple of
{States, Actions, Rewards}. The proposed MDP model is:

State � �Q, R, C � �

�Repetition, QScore, Results Amount, AbsoluteRank, StreamLength,
Specificity, Attreactiveness, ClickRate �
Action � DifferentRelevanceLevels

Reward � �ABS(action � classLabel)

Based on the above definition of the learning to rank problem, any query-document pair
specifies the current state of the learning agent as an eight-dimensional space of
click-through features. In each state in this space, the learning agent may select an action
from the set of possible actions (Relevant, Non-Relevant […]). Finally, the agent receives
a numerical reward, which indicates the distance between the true relevance label of the
corresponding query-document pair and the label, which was selected by the agent
during its most recent action. For this definition, we can perceive that the Markov
property, which is the independence of receiving a reward at a particular state from the
previous states and actions, withholds (Sutton and Barto, 1998). This is because of our
episode generation policy, in which data items are selected from the training set by the
uniform distribution probability. Each data item belonging to an episode will be visited
independent of other data items. Formally, we have:

Pr �st�1 � s', rt�1 � r�st, at, rt, st�1, at�1, …, r1, s0, a0� � Pr �st�1 � s', rt�1 � r� st, at�

In the above equation, by doing action at in the state st at time-step t, the learning agent
receives a reward rt�1, and the surrounding environment transforms into the state st�1.
Because the Markov property withholds in the proposed RL model, the learning agent
can benefit from temporal-difference learning methods such as Q-Learning and SARSA.
These methods use various updating mechanisms to bring up to date their estimations
about the appropriateness of doing possible actions in different states (Szepesvari,
2010). Suppose Q(st, at) is the estimation of the learning agent about the goodness of
doing action at while being in state st at time-step t. SARSA estimates the values of the

453

Learning
to rank

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
1:

37
 0

1 
N

ov
em

be
r 

20
16

 (
PT

)



accomplished actions in visited states, based on the recently achieved reward, as well as
its estimation about the goodness of doing next action in the new state, Q(st�1, at�1) . In
this way, SARSA is an on-policy RL algorithm with the below updating rule:

Q(st, at) ¢ Q(st, at) � ��rt�1 � �Q(st�1, at�1) � Q(st, at)�

In contrast, using the Q-learning algorithm, the RL agent learns an optimal policy
independent of its current action selection policy, provided that does enough
exploration. In fact, Q-Learning renews its estimation about Q(st, at) regarding the
immediate reward, as well the goodness of the most suitable action in the next visiting
state. Thus, for the Q-Learning algorithm, the updating rule is defined as:

Q(st, at) ¢ Q(st, at) � ��rt�1 � �max
�

Q(st�1, a) � Q(st, at)�
In the above formulae, � is a constant step-size parameter and � ��0,1� is the discount
rate. As it was mentioned previously, each training episode conations of a fixed number
of data items (query-document pairs), which are selected by equal chance from the
underlying benchmark data set. This strategy will guaranty the Markov property in the
proposed representation of the learning to rank problem. In this framework, the RL
agent tries to find the best action, which is the most suitable relevance label for each
state, in an iterative manner.

4. Evaluation framework
4.1 Benchmark data sets
The main capability of our proposed QRC-Rank system is its ability to extract required
click-through features from any given benchmark data set during the Transformation
phase. We believe utilizing such click-through features are one of the contributors to
higher performance of QRC-Rank in comparison to other well-known ranking methods.
To evaluate the performance of the QRC-Rank system, we have used two benchmark
data sets LETOR4.0 which does not include click-through features, as well as the
WCL2R data set, which contains such features.

Microsoft’s LETOR 4.0 is a set of benchmark data sets published for research on the
learning to rank problem in July 2009 (LETOR4.0 Data sets, 2009). It consists of two data
sets named as MQ2007 and MQ2008, which are designed for four different ranking
settings: supervised, semi-supervised, list wise ranking and rank aggregation. There are
about 1,700 queries in MQ2007 and 800 queries in MQ2008 with a number of
human-labeled documents (Qin et al., 2007). LETOR4.0 data set provides a feature vector
containing 46 features for each pair of query-document. These features cover a wide
range of common IR features and information such as term frequency, inverse document
frequency, BM25, Language Models for IR (LMIR), PageRank and HITS. However,
LETOR4.0 data sets do not contain any click-through data (Alcantara et al., 2010). In this
research, the “supervised ranking” part of LETOR4.0 is utilized, which is MQ2008. It is
organized in fivefold structure, including training, validation and testing data and
contains for each pair of query-document, a relevance label based on the human
judgment in three relevance levels. The larger the relevance label, the more relevant the
query-document pair. Each row of the LETOR4.0 data set is related to a query-document
pair. The structure of a typical row of the LETOR4.0 is represented in Figure 2.
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In the above figure, the first column is the relevance label of the document to that
query. The second column is query Id; the following columns are Ids of features plus
their values which are real values normalized between [0,1] for each feature. At the end
of the row is comment about the pair, including Id of the document.

A second set of experiments also was conduct on WCL2R data set. WCL2R is released in
October 2010 by a consortium of Federal University of Minas Gerais, Brazil, and the
University of Pompeu Fabra, Spain (Alcantara et al., 2010). WCL2R is intended to focus on
the click-through data alongside traditional IR features. It contains two snapshots of the
Chilean Web, which were crawled in August 2003 and January 2004 by the TodoCL (2002)
search engine. The data is structured in ten folds, containing training, validation and testing
data. Human judgments are presented in four relevance levels (WCL2R, 2010). The structure
of each row of the WCL2R is similar with those of the LETOR4.0, which is depicted in Figure
2. However, the values of the features are not normalized in the WCL2R data set.

Table I provides an overview of LETOR4.0 and WCL2R collections. Training a
ranking model in the LETOR4.0 data set is more difficult than those of the WCL2R data
set. The main reason is that WCL2R has explicit click-through data, whereas such data
are not available in the LETOR4.0. The second reason is the presence of only 6.13
per cent of total relevant documents per any given query in the LETOR4.0 data set,
whereas this quantity is about 29.8 per cent in the WCL2R data set.

4.2 Experimental settings
The first phase of QRC-Rank system is computing the click-through features. In this
research, we have looked at different scenarios for calculating these features. As
explained below some of these calculations are based on smoothing of the values.
Additionally, a binary discretization based on the mean of the values has been applied to
the features of all of these scenarios.

Tables II and III list the scenarios that we have test for calculating the click-through
features on WCL2R and LETOR4.0 data sets. In these scenarios, a limited number of
features of WCL2R and LETOR4.0 data sets are used, and their list is presented in
Appendix 1 (Alcantara et al., 2010) and Appendix 2 (LETOR4.0’s Features List, 2009). In
Tables II and III, the primitive features are denoted by “Fi”, where i stands for the ID of
the feature in the corresponding Tables AI and AII.

Three different scenarios based on the click-through features of the WCL2R
benchmark data set that have been experimented with are explained in Table II.

rel qid:QID 1:F1 2:F2… 46:F46#docid:DocID comments Figure 2.
Structure of the

LETOR4.0 data set

Table I.
Summary of

specifications of
LETOR4.0 and

WCL2R data
collections

Data set
No. of

features
No. of

queries

No. of
query-

document
pairs

Relevance
levels

Average no.
of documents

per query

Average no.
of relevant
documents
per query

LETOR4.0-MQ2008 46 784 15211 3 19.40 1.19
WCL2R 29 79 5200 4 61.94 18.01
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Table II.
Click-through feature
calculation scenarios
for WCL2R
benchmark data set

Scenario ID Computation mechanism

WCL2R-DF1 and WCL2R-DF2

Q: �Repetition � F3 � F6 � F9,
QScore � F13 � F15 � F16,
ResultsAmount � No. data items with: qid � q

R: �AbsoluteRank � F14,
StreamLength � F10 � F11

C: �Specificity � F22/F23,
Attractiveness�F17/F18,
ClickRate � F20 � F28 � F29

WCL2R-DF3

Q: �Repetition � F3,
QScore � F13 � F15 � F16,
ResultsAmount � No. data items with: qid � q

R: �AbsoluteRank � F14,
StreamLength � F10

C: �Specificity � 1/F23,
Attractiveness � F17 � F24,
ClickRate � QScore � AbsoluteRank � Attractiveness

Table III.
Click-through feature
calculation scenarios
proposed for
LETOR4.0
benchmark data set

Scenario ID Computation mechanism

LETOR4-DF1 and LETOR4-DF2

Q: �Repetition � F15,

QScore � �
i�37

40

Fi,

ResultsAmount � No . data items with: qid � q

R: �AbsoluteRank � F41,
StreamLength � F16

C: �Specificity � F44,
Attractiveness � F41,
ClickRate � QScore � AbsoluteRank

LETOR4-DF3

Q: �Repetition � F15,

QScore � �
i�37

40

Fi,

ResultsAmount � No . data items with: qid � q

R: �AbsoluteRank � F41,
StreamLength � F20

C: �Specificity � F44 � F45,
Attractiveness � F41 � F42,
ClickRate � Attractiveness � QScore � AbsoluteRank
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Each of these three scenarios provides an interpretation of the click-through features.
For example, in the WCL2R-DF1 scenario, a document’s Repetition feature is calculated
by the multiplication of TF-IDF values over the whole of that document, its title and its
URL. For this scenario, the QScore of a given document is computed by the product of
BM25 rank, HITS Hub and HITS Authority values of that document, which all of these
rankings are query-dependent. AbsoluteRank score is equal to the PageRank score of the
corresponding document, which is a query-independent ranking algorithm. A given
document is assumed long if both of its content and its title are lengthy. This
characteristic is stored in the StreamLength feature. A document is assumed specific, if
for a few queries it was clicked by many users in many search sessions. In addition, a
document is supposed to have a higher degree of Attractiveness if it was commonly
clicked in the beginning of users’ search sessions rather than being clicked at the end of
search sessions. Finally, the ClickRate feature of a particular document is calculated by
multiplying the total amount of users’ clicks on it, number of non-single click sessions
and number of non-single click queries.

The main difference between WCL2R-DF1 and WCL2R-DF2 scenarios is that in the
former, smoothing is accomplished by:

Fi
= � Fi � 	i, where: 	i � 0.01 � Average (Fi

1:N)

In the above equation, 	i is a fraction of average over all values of feature Fi. However,
for the latter, the Dirichlet prior smoothing mechanism (Zhai and Lafferty, 2001) is used:

Fi
= � Fi � 	i, where: 	i � 0.01 � SecondMin (Fi)

In WCL2R-DF3 scenario, the Specificity of a document is defined as the inverse of the
number of distinct queries for which that document was clicked. Besides, in this
scenario, a given document is considered to achieve a higher Attractiveness value if it is
the first clicked item in many search sessions, and it has received many single clicks in
dissimilar sessions. Furthermore, the ClickRate of a given document is related to its
attractiveness, query-dependent and query-independent ranking scores. Although
WCL2R-DF3 scenario uses only 31 per cent of original features, its performance is
substantially better than those of best-known ranking methods.

In a similar way, three scenarios are defined for the LETOR4.0 benchmark data set,
and they are listed in Table III. LETOR4.0’s features is presented in the Appendix 2
(LETOR4.0’s Features List, 2009).

The main difference between the LETOR4-DF1 and LETOR4-DF2 scenarios is that
in the former, smoothing is done based on the above-mentioned Dirichlet prior
smoothing (Zhai and Lafferty, 2001), whereas in the latter, no smoothing is done.
Because there is no explicit feature in LETOR4.0 data set related to the click-through
data, in LETOR4-DF1 and LETOR4-DF2 scenarios, it is assumed that ClickRate of a
specific document is related to its query-dependent and query-independent ranking
scores. This assumption is completed in the LETOR4-DF3 scenario, by taking into
account the effect of the Attractiveness feature. As it will be described in the next section,
performance of these scenarios is related to the maturity of their interpretation from
click-through features. It is worth mentioning that all of these scenarios use only a
limited number of the original features of the data set, whereas according to the
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experimental results, their performances are comparable or even better than those of the
well-known ranking algorithms.

Table IV provides a comparison of different scenarios based on the number of
features generated and or used in each scenario. As it can be observed, these scenarios
provide a very compact representation of the data set’s features because they utilize only
very few features from the data set plus eight features that they generate.

4.3 Evaluation metrics
Various measures have been used for the evaluation of performance of IR systems such
as Kendall-Tau (Kendall, 1948), P@n, NDCG@n and MAP (Manning et al., 2008). The
following evaluation criteria are used in this research:

4.3.1 Precision at position n (P@n). This indicates the ratio of relevant documents in
a list of the first n retrieved documents. The main aim of this metric is to calculate the
precision of retrieval systems from users’ perspective. Because users visit only top
documents from the list of results, this evaluation criteria only consider the n top
documents. Suppose, we have binary judgments about the relevance of documents with
respect to a given query. In this way, each document may be either relevant or irrelevant
with respect to a specific query. Then, P@n is defined as:

P@n �
#relevantdocs in top n results

n

4.3.2 Mean average precision. For a single query q, Average Precision (AP) is defined as
the average of the P@n values for all relevant documents, where n goes from 1 to the
number of retrieved documents:

AVG(q) �
� j�1

�Dq� (r(j) � P@j)

�Rq�

In this formulation, rj is the relevance score assigned to a document dj with respect to a
given query q, being one, if the document is relevant and zero otherwise; Dq is the set of
retrieved documents and Rq is the set of relevant documents for the query q. Then, mean
average precision (MAP) would be the mean of average precisions of all queries of the
utilized benchmark data set as:

MAP �
� q�1

�Q�
Avg(q)

�Q�

Table IV.
Comparison of
different scenarios of
the proposed ranking
method based on the
number of consumed
and generated
features, which are
first and second data
items in each
parenthesis

Dataset No. of features No. of features per QRC-Rank scenarios (consumed, generated)

WCL2R 29 WCL2R-DF1 (16,8) WCL2R-DF2 (16,8) WCL2R-DF3 (9, 8)
LETOR4.0 46 LETOR4-DF1 (9, 8) LETOR4-DF2 (9, 8) LETOR4-DF3 (10,8)

IJWIS
12,4

458

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
1:

37
 0

1 
N

ov
em

be
r 

20
16

 (
PT

)



The abovementioned ranking evaluation criterias (P@n and MAP) consider only binary
degrees of relevance in the evaluation of query-document pairs.

4.3.3 Normalized discount cumulative gain at position n (NDCG@n). By assuming
different levels of relevance degrees for data items, the NDCG of a ranked list at position
n (NDCG@n) would be calculated as follows:

NDCG@n � 2
r1 � 1 � �

j�2

n
2rj � 1

log (1 � j)

In this formulation, rj stands for the relevance degree of the jth document in the ranked list.

5. Experimental results
In this section, the experimental results of applying the QRC-Rank algorithm on the WCL2R
and LETOR4.0 benchmark data sets and the analytical comparison of the results with those
of the well-known ranking algorithms are presented. All of the reported results for the
LETOR4.0 data set are based upon the usage of the LETOR’s Eval-Tool (Qin et al., 2007). For
the WCL2R experiments, based on the structure of this data set, an adapted copy of the
Eval-Tool is utilized. It is noticeable that the results are achieved on a PC with a 2.0 GHz dual
core processor, 2MB of cache and 3GB of RAM.

For each data set, the results of the QRC-Rank are compared with those reported for
the baseline ranking algorithms. As it will be observed in the next subsections, the
performance of the baseline algorithms on the WCL2R and LETOR4.0 benchmark data
sets are different. This is mainly because of the nature of the ranking algorithms, as well
as the structure of these data sets. As mentioned in Section 4, the utilized data sets
provide different sets of features for the learning to rank problem. Specifically, in the
WCL2R data set, some click-through data are available beside standard IR-related
features, but the LETOR4.0 data set does not include click-through data. On the other
hand, various ranking methods use different parts of evidence in their ranking
functions. Consequently, successful ranking algorithms on these data sets are different.

5.1 WCL2R results
Table V demonstrates the performance of a few well-known ranking techniques on upon
the precision evaluation criterion on the WCL2R data set (Alcantara et al., 2010).

In the above table, the first baseline algorithm is SVMRank, which uses the support
vector machine (SVM) technology for ranking documents (Joachims, 2002, 2006). The
main idea of SVMRank is to formalize learning to rank as the binary classification on
document pairs, where two classes are considered for applying SVM: correctly ranked
and incorrectly ranked pairs of documents. The second baseline algorithm is LAC
(Veloso et al., 2008), a lazy associative classifier that uses association rules to learn

Table V.
Comparison of

well-known ranking
methods based on

precision criterion on
the WCL2R data set

Baseline methods P@1 P@3 P@10 MAP

SVMRank 0.400 0.455 0.397 0.432
LAC 0.383 0.449 0.385 0.427
GP 0.362 0.435 0.387 0.422
RankBoost 0.378 0.416 0.369 0.412
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ranking models at the query-time. By generating rules on a demand-driven basis, only
the required information is extracted from the training data, resulting in a fast and
effective ranking method. The third baseline method is called GP. This method is based
on a genetic programming ranking algorithm (Almeida et al., 2007). Finally, the last
baseline algorithm, RankBoost, is a boosting algorithm that trains weak rankers and
combines them to build the final rank function (Freund et al., 2003).

Table VI demonstrates the precision achieved by the proposed ranking algorithm
using different configurations on the WCL2R data set.

Table VII provides details of the settings of different configurations of Table VI.
These settings include the parameters of the utilized temporal difference learning
algorithms, which are: q0, �, � and 	. It must be noticed that the action selection policy
for configuration QRC.W3 is 	-greedy, whereas it is Softmax for the other three
implementations of the QRC-Rank. For the Softmax action selection mechanism
(Szepesvari, 2010), in which the probability of choosing an action within a given state is
proportional to the current estimation of its goodness, the computational temperature, 
,
is set to be 10.

The results that are reported in Table VI, illustrate that QRC-Rank has achieved
higher precision and MAP values in comparison to the baseline methods on the WCL2R
benchmark data set. A significant improvement of about 20.17 per cent is obtained for
the proposed method in comparison to the best baseline algorithm, SVMRank on the
P@1 criterion. The improvement is about 23.02 per cent for the P@2 measure. Also, the
QRC-Rank has achieved a rise of about 2.36 per cent on the MAP criterion with
comparison with the SVMRank. Our proposed method has outperformed the RankBoost
algorithm by 7.33 per cent.

Moreover, the proposed method has achieved its best performance at the top of the
ranked lists of results, which are usually mostly visited by the Web users rather than
lower ranks that of less importance for the user. Based on the published results of the
eye-tracking studies (Granka et al., 2004; Miller, 2012), about 54 per cent of clicks of the
users of Google (1998), as the most widely used Web search engine, were on its firstTable VI.

Results of the
evaluation of
different
configurations of the
proposed method
based on precision
criterion on the
WCL2R data set

QRC-Rank
configuration P@1 P@2 P@3 P@4 P@5 P@6 P@7 P@8 P@9 P@10 MAP

QRC.W1 0.4427 0.4737 0.4636 0.4499 0.4467 0.4235 0.4106 0.3961 0.3863 0.4103 0.4303
QRC.W2 0.3921 0.4104 0.4225 0.4246 0.4113 0.4088 0.4033 0.4024 0.3919 0.3985 0.4066
QRC.W3 0.4706 0.488 0.4785 0.4603 0.4529 0.4424 0.4333 0.398 0.3878 0.4107 0.4422
QRC.W4 0.4807 0.4921 0.451 0.4309 0.424 0.4151 0.3943 0.3819 0.3694 0.407 0.4246

Table VII.
Configurations of the
proposed method
used for the
evaluation on the
WCL2R data set

QRC-Rank
configuration Method Scenario

Parameters

q0 � � �
No. of

iterations
Episode
length

QRC.W1 Q-Learning WCL2R-DF1 10 1/iteration 0.1 Softmax, 
:10 1000 100
QRC.W2 Q-Learning WCL2R-DF2 10 1/iteration 0.1 Softmax, 
:10 1000 100
QRC.W3 Q-Learning WCL2R-DF3 100 1/iteration 0.1 0.1 1000 100
QRC.W4 Q-Learning WCL2R-DF3 10 1/iteration 0.1 Softmax, 
:10 1000 100
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search results, and about 80 per cent of clicks were accomplished only on the top three
results.

Figure 3 depicts a comparison of the best configuration of the proposed algorithm,
QRC.W3, with the baseline methods on the P@n criterion in WCL2R data set.

To have a more precise insight about the performance of the proposed ranking
method, Tables VIII and IX present the comparison of its results with those of the
well-known ranking algorithms based on the NDCG measure on WCL2R benchmark
data set.

The above statistics show a reasonable improvement over the baseline methods
based on the NDCG measure. This improvement is especially noticeable on the top
positions of the ranked list. In this regard, in its best setting, the QRC-Rank algorithm
has achieved an improvement of about 15.44 per cent compared with SVMRank on the
NDCG@1 measure. The improvement for the NDCG@3 criterion is about 7.28 per cent
and for the NDCG@10 criterion is about 6.4 per cent. Figure 4 illustrates a graphical
representation of these statistics.

Figures 5 and 6, respectively, present the “Optimal Action Selection Rate” and
“Average Received Rewards” per iteration for the SARSA and Q-Learning
implementations of the QRC-Rank method on WCL2R data set. According to these
diagrams, both of the utilized RL methods have an almost identical performance.

In these experimentations, the elapsed times for SARSA and Q-Learning methods are
29.766983 and 31.080834 s, respectively.

5.2 LETOR4.0 results
For the MQ2008 part of the LETOR4.0 data set, performance of some of some
well-known ranking algorithms are reported based on the precision and NDCG criteria.

0.36

0.38

0.4

0.42

0.44

0.46

0.48

1 3 10

P@
n 

n

SVMRank

LAC

GP

RankBoost

QRC.W3

Figure 3.
Comparison of the

best configuration of
the proposed

algorithm against
baseline methods on
P@n criterion in the

WCL2R data set

Table VIII.
Evaluation results of

baseline ranking
methods based on
NDCG criterion on

the WCL2R data set

Baseline methods NDCG@1 NDCG@3 NDCG@10

SVMRank 0.314 0.353 0.395
LAC 0.296 0.360 0.403
GP 0.288 0.344 0.396
RankBoost 0.295 0.328 0.375
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Table IX.
Comparison of the
performance of
different
configurations of the
proposed method
based on NDCG
measure on the
WCL2R data set
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Tables X and XIII present the performance of the baseline ranking methods based on the
precision and NDCG criteria, respectively. It is noticeable that the reported performance
of baseline methods and those of the proposed algorithm are based on the average of
performance of five folds of the testing data Table X.

Table XI shows the detail settings of different implementations of the QRC-Rank
used during its evaluation on the LETOR4.0 data set. For the QRC.L3 setting, the
Optimistic Initial Values technique is used, which lets the RL method to do an
exhaustive exploration on possible actions in each state (Sutton and Barto, 1998).

In Table XII, precision of different configurations of the QRC-Rank is reported. It
could be observed that the proposed algorithm outperforms baseline methods based on
the precision measure. In comparison with the best baseline method, AdaRank-NDCG,

0.28

0.3
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LAC

GP

RankBoost

QRC.W3

QRC.W4

Figure 4.
Comparison of the

best configuration of
the proposed

algorithm against
baseline methods on
NDCG@n criterion
in the WCL2R data

set

Figure 5.
Comparison of the

performance of
SARSA and

Q-Learning methods
based on the

“Optimal action
selection rate” in the

WCL2R data set
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the proposed algorithm has achieved an improvement of about 8.56 per cent based on
the MAP criterion. This improvement is about 11.39 per cent compared with the
RankSVM-Struct method. However, on the P@n measure, sometimes baseline methods
have shown better performance than those of the proposed algorithm.

Figure 7 depicts the statistics presented in Table XII. As it can be observed, the
proposed method was the fourth-best method in the P@1 measure, but it reached the
second the best at P@2 by a negligible difference with top performer. However, after
P@2 QRC-Rank has outperformed the other ranking methods. Moreover, the slope of
degrading precision is smaller for QRC-Rank which means even in lower ranks, it is
much better than the others.

Tables XIII and XIV provides the comparison of the QRC-Rank method in different
settings based on the NCDG measure. As it can be seen in the table, the QRC-Rank’s
performance is slightly lower but comparable to those of baseline methods. This

Figure 6.
Comparison of the
performance of
SARSA and
Q-Learning versions
of QRC-Rank based
on the “Average
received rewards” in
the WCL2R data set

Table X.
Performance of
baseline methods
based on the
precision criterion on
the LETOR4.0 data
set

Baseline method P@1 P@2 P@3 P@4 P@5 P@6 P@7 P@8 P@9 P@10 MAP

AdaRank-MAP 0.443 0.417 0.390 0.368 0.345 0.322 0.299 0.280 0.262 0.245 0.476
AdaRank-NDCG 0.452 0.422 0.395 0.370 0.345 0.323 0.299 0.280 0.262 0.245 0.482
ListNet 0.445 0.412 0.384 0.365 0.343 0.320 0.301 0.279 0.263 0.248 0.478
RankBoost 0.458 0.411 0.392 0.364 0.340 0.321 0.302 0.285 0.265 0.249 0.478
RankSVM-Struct 0.427 0.407 0.390 0.370 0.347 0.327 0.302 0.282 0.265 0.249 0.470

Table XI.
Configurations of the
proposed method
used during
evaluation on the
LETOR4.0 data set

QRC-Rank
configuration Method Scenario

Parameters

q0 � � 	
No. of

iterations
Episode
length

QRC.L1 Q-Learning LETOR4-DF1 100 1/iteration 0.1 Softmax,
: 10 1000 100
QRC.L2 Q-Learning LETOR4-DF2 100 1/iteration 0.01 0.1 1000 100
QRC.L3 Q-Learning LETOR4-DF3 1E�10 1/iteration 0.1 0.1 1000 100
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situation is mainly because of the absence of explicit click-through features in the
LETOR4.0 data set. However, the drop in the performance is not alarming.

Figures 8 and 9 respectively depict the “Optimal Action Selection Rate” and
“Average Received Rewards” per different iterations on using SARSA and Q-Learning
methods in the implementation of the QRC-Rank on the LETOR4.0 data set. Based on
these diagrams, both RL methods have shown similar performance in the rate of
selecting best the action per iteration, as well as those of the average received rewards.

In this investigation, the elapsed time for SARSA was 30.50 s, but the same value is
31.91 s for the Q-Learning method.

5.3 Analytical discussion
As it was observed in the previous subsections, according to the MAP and NDCG
criteria, the proposed method either outperforms baseline ranking methods or shows a
very close performance in comparison with the well-known ranking methods. A closer
look shows that the usage of the proposed click-through features have had a decisive
role in the performance of the proposed ranking algorithm. In this regard, the
informativeness of the proposed click through feature that make up the scenarios and
act as a compact representation of the click-through features are compared with the
original features in both WCL2R and LETOR4.0 data sets. Figures 10 and 11 show these
comparisons on the WCL2R data set based on MAP and MeanNDCG criteria,
respectively. In these figures, proposed click-through features used in the QRC.W3
configuration are compared with the best feature of the WCL2R data set, F22 “Number
of Sessions Clicked” (Appendix 1). F22 has the highest contribution to the ranking based
on the MAP criteria among all original features in WCL2R data set. Table XII.

Performance of
different variants of

the proposed method
based on the

precision evaluation
criterion on the

LETOR4.0 data set

QRC-Rank
configuration P@1 P@2 P@3 P@4 P@5 P@6 P@7 P@8 P@9 P@10 MAP

QRC.L1 0.4233 0.3997 0.3761 0.3623 0.3506 0.3418 0.3329 0.323 0.3073 0.2953 0.49423
QRC.L2 0.4322 0.406 0.3807 0.3652 0.3564 0.3471 0.3383 0.3279 0.313 0.2999 0.49767
QRC.L3 0.4437 0.4188 0.4058 0.3885 0.3794 0.3659 0.3529 0.3424 0.3256 0.3122 0.52352

0.24

0.29

0.34

0.39

0.44

1 2 3 4 5 6 7 8 9 10

P@
n

n

AdaRank-MAP

AdaRank-NDCG

ListNet

RankBoost

RankSVM-Struct

QRC.L3

Figure 7.
Comparison of the

best configuration of
the proposed

algorithm against
baseline methods on
P@n criterion on the

LETOR data set

465

Learning
to rank

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
1:

37
 0

1 
N

ov
em

be
r 

20
16

 (
PT

)



Table XIII.
Performance of
baseline methods
based on the NDCG
criterion on the
LETOR4.0 data set
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Table XIV.
Performance of

different variants of
the proposed method

based on the NDCG
evaluation criterion

on the LETOR4.0
data set
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The same analysis is repeated on the LETRO4.0 data set, and its results are depicted in
Figures 12 and 13. In these figures, features of the QRC.L3 configuration are compared
with F39 “LMIR.DIR of whole document” (Appendix 2) which is the best original
contributing feature on the LETOR4.0 data set to ranking based on MAP criteria.

Based on the above statistics, some of the proposed click-through features are more
informative than the original features. As seen in the figures, proposed click-through
features related to the click-related category are more informative because they have
higher MAP and MeanNDCG values. This phenomenon confirms that click-through
data are useful in the learning to rank process (Macdonald and Ounis, 2009). To sum up,
the results of this analysis clearly show that proposed click-through features together
when combined in scenarios are more informative than the original features. These
proposed click-through features are working well with the explorative and exploitative
capabilities of the RL methods in finding the suitable rankings. This combination has

Figure 8.
Comparison of the
performance of
SARSA and
Q-Learning methods
based on the
“Optimal action
selection rate” on the
LETOR4.0 data set

Figure 9.
Comparison of the
performance of
SARSA and
Q-Learning methods
based on the
“Average received
rewards” on the
LETOR4.0 data set
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resulted in the higher performance of the proposed QRC-Rank method in comparison to
those of the baseline ranking methods.

As it is observed in Section 4, the set of the proposed click-through features is fixed
for all benchmark data sets. Nevertheless, the calculation scenarios of these features
may vary depending on the data provided by the utilized benchmark data set.
Comparing the set of primitive features used in the calculation of click-through features
on WCL2R and LETOR4.0 data sets shows that although there are some common
features such as TF-IDF, Document Length, PageRank and BM25 between successful
scenarios on these data sets, but there are also some major differences. For WCL2R,
effective scenarios have used some click-through data besides HITS-related features.
Conversely, successful scenarios on the LETOR4.0 data set have used Language Model
features, as well as some structural features such as In-link number, number of slashes
in a URL and length of the URL. Table XV provides a listing of the set of primitive
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0.2661
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0.3393

0.3859

0.240

0.260

0.280

0.300

0.320

0.340

0.360

0.380

0.400

Figure 10.
Comparison

primitive and
click-through

features based on the
MAP measure on
WCL2R data set

0.4188

0.3176
0.3353

0.3024

0.2688

0.3821

0.4612

0.3881

0.4615

0.250

0.280

0.310

0.340

0.370

0.400
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0.460

Figure 11.
Comparison

primitive and
click-through

features based on the
MeanNDCG measure

on WCL2R data set
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features that have been used in suitable scenarios for the calculation of click-through
features on WCL2R and LETOR4.0 data sets.

Analysis of the proposed method on WCL2R and LETOR4.0 data sets indicates that
suitable configurations of the proposed ranking method on these data sets are almost the
same. Specifically, on the LETOR4.0 data set, by using optimistic initial mechanism for
the initialization of the state-action values, [Q(s,a)], better results are achieved. This is
mainly because of the availability of fewer relevant documents per any given query in
the LETOR4.0 data set compared with the WCL2R data set. In this situation, by using
the optimistic initial values mechanism on the LETOR4.0 data set, the RL agent has the
chance to explore all of the possible actions in each state to identify the most appropriate
one. It is also observed that for the WCL2R data set, usage of the Softmax technique as
the action-selection policy is effective. In comparison, on the LETOR4.0 data set,
exploration with the 	-greedy mechanism is more useful. This observation could also be
interpreted using the nature of the investigated data sets. In the Softmax policy, the
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Figure 12.
Comparison
primitive and
click-through
features based on the
MAP measure on
LETOR4.0 data set
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Figure 13.
Comparison
primitive and
click-through
features based on the
MeanNDCG measure
on LETOR4.0 data
set
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probability of selecting different possible actions is related to their estimated goodness,
which is embedded in their Q(s,a) values. On the other hand, 	-greedy provides no
discrimination between non-optimal possible actions. In fact, while dealing with the
LETOR4.0 data set, the RL agent examines all of the so far identified as actions for
finding better ones during the learning process.

6. Concluding remarks and further works
Machine learning has been applied successfully to the field of IR. These learning to rank
algorithms are exhaustively dependent of the benchmark data sets. However, there are
some limitations with the available benchmark data sets. The main restriction is
originated from the lack of click-through data, which is the implicit feedback of users
about the retrieval performance of Web search engines. Besides, the high dimensionality
of data items in the benchmark data sets adds to the complexity and probably the
inefficiency. In this paper, a novel ranking algorithm named QRC-Rank is introduced.
QRC-Rank works both data sets that contain click-through information and those that
lack such information. QRC-Rank is a two phase retrieval system. In the first phase, it
processes the data set and generates a new data set that contains additional more
complex click-through information. The new click-through features reduce the high
dimensionality of search space because there are only eight such features are calculated.
Second, under scenarios these features are combined with each other to create a compact
representation. In this way, the proposed method can build click-through features even
when those informations are not explicitly present in the data set. The compactness of
the new secondary data set reduces the complexity of developing ranking functions.
Thereafter, the QRC-Rank algorithm builds a RL model based on these compact
representations of features. In this model, the RL agent tries to find the best appropriate
label for a given state, which corresponds to a visited query-document pair. Evaluation
of the proposed method based on the P@n, MAP and NDCG criteria on WCL2R and

Table XV.
Set of primitive

features used in the
calculation of click-
through features on

WCL2R and
LETOR4.0 data sets

WCL2R LETOR4.0
Feature ID Description Feature ID Description

F03 TF-IDF (term frequency � inverse
document frequency)

F15 TF (term frequency) � IDF
(inverse document
frequency) of whole
document

F10 DL (document length) F20 DL (document length) of
whole document

F13 BM25 F37 BM25 of whole document
F14 PageRank F38 LMIR.ABS of whole

document
F15 HITS hub F39 LMIR.DIR of whole

document
F16 HITS authority F40 LMIR.JM of whole

document
F17 First of session F41 PageRank
F23 Number of queries clicked F42 In-link number
F24 Number of single clicks in distinct sessions F44 Number of slash in URL

F45 Length of URL
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LETOR4.0 data sets demonstrate that QRC-Rank is able to significantly outperform
well-known ranking algorithms if click-through data is available in the data set. The
performance of the proposed algorithm is comparable with the baseline ranking
methods even in absence of click-through data (i.e. LETOR4.0 data set).

This research could be extended by applying information fusion techniques such as
ordered-weighted averaging in the calculation of scenarios based on the click-through
features. It would also be helpful if it would be possible to find ways to deal with the
inherit uncertainty and ambiguous of the relevance judgments provided by humans.
Perhaps methods of handling the uncertainty such as Dempster-Shafer theory (Shafer,
1976) and fuzzy integral operators (Grabisch, 1995) may be useful. In the meantime, one
can also look at generating other types of features or scenarios for the data set.
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Appendix 1

Table AI.
List of features in the

WCL2R benchmark
data set

Feature ID Feature name Feature type

F1 TF Standard features
F2 IDF
F3 TF-IDF (term frequency � inverse document frequency)
F4 TF (term frequency) of title
F5 IDF (inverse document frequency) of title
F6 TF-IDF (term frequency � inverse document frequency) of title
F7 TF (term frequency) of URL
F8 IDF (inverse document frequency) of URL
F9 TF-IDF (term frequency � inverse document frequency) of URL
F10 DL (document length)
F11 DL (document length) of title
F12 DL (document length) of URL
F13 BM25
F14 PageRank
F15 HITS hub
F16 HITS authority
F17 First of session Click-through features
F18 Last of session
F19 Number of clicks in a document for a query
F20 Number of sessions a document was clicked for a query
F21 Number of clicks
F22 Number of sessions clicked
F23 Number of queries clicked
F24 Number of single clicks in distinct sessions
F25 Number of single clicks in distinct queries
F26 Absolute number of single clicks in queries
F27 Number of single clicks in queries grouped by session
F28 Number of non-single click sessions
F29 Number of non-single click queries
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Appendix 2

Table AII.
List of features in the
LETOR4.0
benchmark data set

Feature ID Feature name

F1 TF (term frequency) of body
F2 TF (term frequency) of anchor
F3 TF (term frequency) of title
F4 TF (term frequency) of URL
F5 TF (term frequency) of whole document
F6 IDF (inverse document frequency) of body
F7 IDF (Inverse document frequency) of anchor
F8 IDF (inverse document frequency) of title
F9 IDF (inverse document frequency) of URL
F10 IDF (inverse document frequency) of whole document
F11 TF (term frequency) � IDF (inverse document frequency) of body
F12 TF (term frequency) � IDF (inverse document frequency) of anchor
F13 TF (term frequency) � IDF (inverse document frequency) of title
F14 TF (term frequency) � IDF (inverse document frequency) of URL
F15 TF (term frequency) � IDF (inverse document frequency) of whole document
F16 DL (document length) of body
F17 DL (document length) of anchor
F18 DL (document length) of title
F19 DL (document length) of URL
F20 DL (document length) of whole document
F21 BM25 of body
F22 LMIR.ABS of body
F23 LMIR.DIR of body
F24 LMIR.JM of body
F25 BM25 of anchor
F26 LMIR.ABS of anchor
F27 LMIR.DIR of anchor
F28 LMIR.JM of anchor
F29 BM25 of title
F30 LMIR.ABS of title
F31 LMIR.DIR of title
F32 LMIR.JM of title
F33 BM25 of URL
F34 LMIR.ABS of URL
F35 LMIR.DIR of URL
F36 LMIR.JM of URL
F37 BM25 of whole document
F38 LMIR.ABS of whole document
F39 LMIR.DIR of whole document
F40 LMIR.JM of whole document
F41 PageRank
F42 In-link number
F43 Out-link number
F44 Number of slash in URL
F45 Length of URL
F46 Number of child page
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