
International Journal of Web Information Systems
The Modelery: a model-based software development repository
Rui Couto António Manuel Nestor Ribeiro José Francisco Creissac Freitas de Campos

Article information:
To cite this document:
Rui Couto António Manuel Nestor Ribeiro José Francisco Creissac Freitas de Campos , (2015),"The
Modelery: a model-based software development repository", International Journal of Web Information
Systems, Vol. 11 Iss 2 pp. 205 - 225
Permanent link to this document:
http://dx.doi.org/10.1108/IJWIS-12-2014-0045

Downloaded on: 01 November 2016, At: 23:10 (PT)
References: this document contains references to 24 other documents.
To copy this document: permissions@emeraldinsight.com
The fulltext of this document has been downloaded 145 times since 2015*

Users who downloaded this article also downloaded:
(2015),"Formal and semi-formal verification of a web voting system", International Journal of Web
Information Systems, Vol. 11 Iss 2 pp. 183-204 http://dx.doi.org/10.1108/IJWIS-11-2014-0042
(2015),"Development of mobile applications from existing Web-based enterprise systems",
International Journal of Web Information Systems, Vol. 11 Iss 2 pp. 162-182 http://dx.doi.org/10.1108/
IJWIS-11-2014-0041

Access to this document was granted through an Emerald subscription provided by emerald-
srm:563821 []

For Authors
If you would like to write for this, or any other Emerald publication, then please use our Emerald
for Authors service information about how to choose which publication to write for and submission
guidelines are available for all. Please visit www.emeraldinsight.com/authors for more information.

About Emerald www.emeraldinsight.com
Emerald is a global publisher linking research and practice to the benefit of society. The company
manages a portfolio of more than 290 journals and over 2,350 books and book series volumes, as
well as providing an extensive range of online products and additional customer resources and
services.

Emerald is both COUNTER 4 and TRANSFER compliant. The organization is a partner of the
Committee on Publication Ethics (COPE) and also works with Portico and the LOCKSS initiative for
digital archive preservation.

*Related content and download information correct at time of download.

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
3:

10
 0

1 
N

ov
em

be
r 

20
16

 (
PT

)

http://dx.doi.org/10.1108/IJWIS-12-2014-0045


The Modelery: a model-based
software development repository

Rui Couto, António Manuel Nestor Ribeiro and
José Francisco Creissac Freitas de Campos

Department of Informatics, University of Minho, Braga, Portugal

Abstract
Purpose – This paper aims to present the Modelery, a platform for collaborative repository to support
model-based software development. The Modelery is a Web platform, composed both by a Web page
and Web services for interoperability.
Design/methodology/approach – By performing a study in the existing platforms, it was possible
to achieve a set of issues to tackle. The issues enabled the possibility to define a set of requirements that
allowed the authors to design a new platform, and to perform a model-driven software development
process, which started from the requirements until reaching the final software solution.
Findings – With this work, it was possible to perform a survey on the currently available artifacts
repositories, categorize them and identify their shortcomings. This was essential to define the set of
requirements for a new platform to overcome the identified issues. This process leads to a platform able
to improve the currently available solutions, and validated in the scientific community. In this paper, the
authors also explore the applications of the repository. First, they use the Modelery to replace an older
model’s repository. Second, they have enabled the communication between other tools and the Modelery
via Web services.
Originality/value – This work presents a new Web repository for software artifacts aimed at
supporting researchers and software developers. The presented platform is an improvement over other
platforms on the integration of artifacts repository, social functionalities and scientific publications
integration. The authors conclude this paper by comparing the achieved platform in terms of
functionalities, against the other analyzed platforms.

Keywords Advanced Web applications, Collaborative Web repository, Model-driven development,
Models repository, Software engineering, Web information system

Paper type Research paper

1. Introduction
Research into software development processes typically produces large amounts of
artifacts, from documentation and different kinds of models to the actual code[1].
Organizing and sharing those artifacts has been shown to be somehow a difficult task,
due to the lack of effective support. We are particularly interested in the development of
tools and techniques to support software engineering and reengineering (Couto et al.,
2012; Campos et al., 2012; Campos and Harrison, 2009), and the problems faced by teams
applying them. The amount of produced artifacts when using these tools, and (in many

This work was carried out in the context of project Languages And Tools for Critical rEal-time
Systems (Ref. NORTE-07-0124-FEDER-000062), financed by the North Portugal Regional
Operational Programme (ON.2 - O Novo Norte), under the National Strategic Reference
Framework (NSRF), through the European Regional Development Fund (ERDF), and by national
funds, through the Portuguese funding agency, Fundação para a Ciência e a Tecnologia (FCT).

The current issue and full text archive of this journal is available on Emerald Insight at:
www.emeraldinsight.com/1744-0084.htm

The Modelery

205

Received 9 December 2014
Revised 5 January 2015

Accepted 8 January 2015

International Journal of Web
Information Systems

Vol. 11 No. 2, 2015
pp. 205-225

© Emerald Group Publishing Limited
1744-0084

DOI 10.1108/IJWIS-12-2014-0045

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
3:

10
 0

1 
N

ov
em

be
r 

20
16

 (
PT

)

http://dx.doi.org/10.1108/IJWIS-12-2014-0045


cases) the distributed nature of the teams, begs the question of how to adequately store,
catalog, archive and share such artifacts. It becomes all too easy to lose track of existing
versions, the relations between artifacts and even the artifacts themselves.

The use of standard version control systems, such as Subversion (SVN), has shown to
be inadequate (France et al., 2006a). In fact, it is not our objective to have a system with
version control capabilities, as delta updates. Instead, we aim toward a repository for a
diversity of artifacts. By artifacts, we are referring to the inputs and outputs of a
software (re)engineering process, but mostly models. Examples of artifacts include
different types of models, test cases, pattern catalogs, processes descriptions, software
prototypes, meta-models or database schemes. Despite being a repository able to store
generic software engineering artifacts, we will mainly refer to models in this paper.

Three main functionalities are considered relevant in this context:
(1) repository functionalities (archive, catalog, categorize, search, explore and share

capabilities);
(2) social functionalities (groups support, associating groups with artifacts); and
(3) scientific publications support (management and association with scientific

publications).

We classify such a platform as a collaborative Web repository. On the one hand, it
allows multiple researchers to collaborate in a project through a Web environment. On
the other hand, it provides archiving capabilities (i.e. a repository). We consider a Web
information system to be the best solution to access this type of system. It ensures that
the users will be able to access it from almost any device with a Web browser, without
the need to install any software. Some Web 2.0 functionalities, such as dynamic content
and user-supported contents (i.e. forums), improve both the interaction of the users with
the platform, and among them.

In this paper, we present and discuss the implementation of the Modelery, a platform
aimed at providing the functionalities just discussed. A previous version of the platform
was described by Couto et al. (2014a). This paper extends that work by reviewing the
related work introducing new platforms, and presenting the improvements on the
Modelery over the last version. Improvements include a new presentation framework
(Java Server Faces), which led to the reimplementation on part of the tool and
implementation of the major functionalities as Web services. The reimplementation led
also to simplification and refination on some functionalities, as, for instance, the artifacts
search.

The paper is structured as follows: Section 2 reviews related work, with the analysis
of a number of similar tools; Section 3 builds on that to present the requirements for the
platform; in Section 4, the tool is described; we then present an applicability study of the
framework in Section 5; finally, Section 6 presents some discussion about what has been
achieved, and Section 7 concludes the paper with some pointers for further work.

2. Related work
Current collaborative repository tools can be categorized into two main approaches:
data repositories and process model repositories. In this section, we analyze existing
tools in each category, evaluating how suitable for our purposes they are. This analysis
also provides valuable input regarding the requirements for this type of platform.

IJWIS
11,2

206

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
3:

10
 0

1 
N

ov
em

be
r 

20
16

 (
PT

)



Table II (Section 6) presents the comparison of the discussed platforms regarding their
functionalities. This section presents the most relevant tools.

2.1 Data repositories
Data repositories are common among the database research communities. They are the
extension of a database management system, with emphasis on metadata management.
The repository consists of a “shared database of information about engineered artifacts
produced and used by an enterprise” (Bernstein and Dayal, 1994). Model management
systems are also related with data repositories, addressing problems of models
representation and processing (Dolk and Konsynski, 1984).

Repository for Model Driven Development (ReMoDD) is a Web platform developed
by the Department of Computer Science and Engineering of Colorado State University
(France et al., 2006b). This platform aims to support ways to share models, information,
case studies and knowledge among multiple audiences, for instance teachers,
researchers and students. The platform provides the basic repository functionalities. It
has artifacts listing and browsing, sorted by several criteria: name, description,
categories, author(s) or update data. There are no further artifacts’ discovery
functionalities. By opening a model, it is possible to visualize its details, post comments
and download it. The artifacts details provide only general information and lack, for
instance, the authoring tool, scope and version. The groups functionality is also not
deeply integrated. Finally, at the moment, the platform is not accepting registrations.

The Software-artifact Infrastructure Repository (SRI), from the University of
Nebraska, is another repository in this case specifically for software artifacts. It is meant
for “supporting rigorous controlled experimentation with program analysis” (Do et al.,
2005). It contains Java, C, C�� and C# software systems. It supports storing and
searching artifacts, as well as showing details and downloads. This repository is not
directly suitable for our needs, as it allows only four types of documents. Also, the search
and browsing functionalities are somehow limited.

A number of other platforms include some form of repository but are more focused in
supporting specific aspects of a software engineering process. The ATL
Transformations zoo is a static repository of ATL (a model transformation language;
Jouaulta et al., 2006) transformation programs, presented in the form of a list of artifacts.
It is accessible both in a Web page and via the Eclipse integrated development
environment (IDE). Despite its static nature, the integration with the IDE is a feature that
we found interesting and worth exploring. GenMyModel (Dirix et al., 2013) provides
model editing and storing functionalities. This commercial platform is more focused in
model editing than in the repository functionalities. Colex is a model repository that
focuses in model versioning and conflict resolution (Brosch et al., 2010). This repository
targets specifically models expressible in XML metadata interchange (XMI) (OMG,
2014).

Software engineering is not the only area where repositories have been used.
ECOBAS is a Web information system designed for ecology and environmental sciences
(Cavalcanti et al., 2002). It not only supports online modeling and simulation, but also
offers some interesting repository functionalities. It provides both a Web interface and
local client. The Web interface allows users to search a model by name, by subject or by
free text. Viewing the models’ information is similar to other repositories. It is possible
to select a model from a list, and its details are presented. The focus of this platform on

207

The Modelery

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
3:

10
 0

1 
N

ov
em

be
r 

20
16

 (
PT

)



ecological and environmental context makes it unsuitable for our purposes. However,
analyzing the tool made us aware of the importance of having an open platform. A
flexible platform should provide support for a large variety of models, regardless of their
application area. Another limitation of ECOBAS is the information shown about each
model, which despite being detailed misses some relevant information, such as a visual
representation.

We consider model organization, storing and categorization as the core of a model
repository. Such functionalities are also found in books managing systems, as is the case
of Shelfari. This platform provides a digital library to store and organize books. Book
entries can be searched, listed, added, removed and rated. Cataloging is done through
several aspects, such as subject, author and tags. The concept of group is also present,
where a set of users sharing the same interests about a particular subject can discuss it.
While not directly usable for our needs, the tool provides useful hints for developing a
new platform, as the task of cataloging artifacts shares some concepts with cataloging
books.

2.2 Business process model repositories
Business process model repositories are based on workflow and conceptual modeling.
They provide a repository and execution environment for those models (Rosa et al.,
2011).

Apromore (Rosa et al., 2011) is one example of a business process model repository.
While it was possible to test a first version of the repository, that version has since then
been deprecated and taken offline. A new version of the tool is under development but is
currently unavailable to test. Hence, the current analysis refers to the deprecated
version. Apromore provides model storage and management functionalities (both view
and create/edit). The models’ discovery functionalities are adequate, as they support
listing, searching and filtering of models (by criteria). All the models’ details are
available, and it supports rating the models. This tool provides an intuitive user
interface for model management. However, groups are not supported, and all models
exist at the same level, being available to all users (there is no visibility concept). This
platform is closer to a repository than to a collaborative environment. Additionally, it
supports only the storage of models created directly in the platform.

A number of commercial platforms exist which provide some level of repository
functionality, although that is not their main focus. Examples include ARIS
(Architecture of Integrated Information Systems), an enterprise architecture
management with an emphasis in business process models; Adonis (Karagiannis and
Kühn, 2002), which is focused in business process management; and ModeleR (Pérez
et al., 2012), an example from the environmental management and ecological research
domains. One of the features of this latter system is its support for model execution. We
are not considering server-side model execution at this stage.

2.3 Discussion
None of the analyzed tools was found suitable to fulfill the needs of a collaborative Web
repository which can fully support the archiving, sharing and dissemination of models
or other software engineering artifacts. Briefly, it is possible to say that the tools are for
a specific domain, are for a specific language, are closed (for registration) or are too
limited in functionalities. A platform that seems promising is ReMoDD. However, a set

IJWIS
11,2

208

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
3:

10
 0

1 
N

ov
em

be
r 

20
16

 (
PT

)



of limitations (not the least of which is the fact that it is currently not accepting further
registrations) makes it inadequate for our objectives. Additionally, the platform lacks
Web 2.0 functionalities to encourage collaboration between researchers (Brosch et al.,
2010).

3. Requirements for a collaborative Web repository
Combining the functionalities we had initially identified with the information extracted
from the analysis above allowed us to define a set of requirements to guide the
development of a new community-supported (i.e. the models are provided) Web
repository. This section presents these requirements.

To start with, the platform will require what Rosa et al. (2011) designate as the
standard repository functionalities, which include data storage, access control and
simple search queries. Those requirements are not enough when developing a new
system, if we want it to be better than existing solutions. Hence, it was decided that the
new platform should include some other functionalities, such as advanced search
functionalities.

3.1 Artifacts repository
The main functionalities that we look forward to in a repository are model archiving and
cataloging. Archiving models in a centralized platform will help keep track of their
location and their sharing with others. Cataloging the models allows storing them in a
meaningful manner, and eases the process of finding them at a later stage. Cataloging
also enables the possibility of other people finding the models. While a user account is
required to upload and manage models, read access to the repository is open to all.

Searching models by text is the most direct approach to perform searches. It is the
norm in repositories and search engines in general. Textual search should support
finding models through either their name or description. This approach will increase the
probability of finding models within the repository.

Models are prone to changes and updates, and such a factor is essential when
developing a repository. To support such behavior, we propose supporting several
versions of the same model.

The decision of making a model public (accessible to everyone) or private is left to the
user. Hence, the user might decide to keep a model private, for instance while in
development, or only available to a subset of users. If a model is public, it should be
accessible to anyone. If a model is private, only the author should be able to see and
modify it. Finally, to support collaboration, it must be possible to restrict a model’s
access to a group.

Users with access to a model should also be allowed to add comments and ratings, as
well as being notified when new versions are deposited in the platform. This is where the
collaborative functionalities start, in the sense that different users may cooperate in the
development or improvement of a model.

We consider interoperability between applications to be essential. While using the
Web page to interact with the repository might be the easiest way for human
interactions, the same is not true for applications communications. Also, the
interoperability allows to further extend the platform and to allow alternative methods
to access the models (as is the example with ATL zoo). To support the interoperability,

209

The Modelery

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
3:

10
 0

1 
N

ov
em

be
r 

20
16

 (
PT

)



we propose the implementation of a set of Web services to perform the most common
operations in the repository.

3.2 Publications management
The main approach to disseminate scientific results is through scientific publications.
As space is typically limited, it becomes useful to be able to point to outside sources for
models and other artifacts resulting from the research. In this context, it makes sense to
manage references to scientific publications inside the platform, supporting their
association with available models. As a model might also be referred in several articles,
we propose a bi-directional relationship between models and publications. With this
functionality, it should then be possible to reference or search for models related with
specific publications, or conversely, search publications related with specific models.

3.3 Collaborative functionalities
It is common for the research process to involve interaction among several persons and
ideas as well as with previous works. It is also well-known that collaboration and
sharing of information improves research results. From multiple people, different
approaches emerge and sometimes best results are found by combining several people’s
ideas. This is the basis of collaborative platforms (Wang et al., 2010).

One solution to support collaboration in the repository would be to integrate social
functionalities with the models. The concept of groups of users, allied with forum
functionalities, seems an appropriate requirement. By creating groups where the users
can discuss ideas, and associating models to them, we aim to foster a collaborative
behavior among the users of the platform.

In the same way that models have a visibility option, it makes sense to have the same
option for groups. Hence, it should be possible to make a group (as well as its models)
restrict to a set of users. With this approach, only the subset of persons related with the
project will have access to the group’s information. This is, especially, useful for private
projects, or projects still under development. When a model is part of a group, it would
be adequate to allow both the author and the members of the group to update it.

3.4 Levels of sharing
Not all models and groups are developed for the same purpose. Some of them are
intended to be public, other restricted to a subset of persons (and updateable by all these
persons, or by the author only) and other completely private. Also, the groups may
themselves either be public or private. The distinction between all these visibility levels
is crucial to cover a broader audience of developers. Also, an author might decide to keep
a model private while developing it, and make it public once finished, thus retaining
control over the development process.

3.5 Version control
It is easy to think of version control functionalities (e.g. for models) as adequate for the
platform. However, at this point, such functionality will not be considered. First,
implementation of version control functionalities is known to be a hard task (France
et al., 2006a). Then, models can be described in many languages (some of them domain-,
community- or research group-specific), which results in known versioning problems
(France and Rumpe, 2007). By merging these two factors, we face a complex problem
that we decided not to address at the moment. Furthermore, we are more interested in

IJWIS
11,2

210

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
3:

10
 0

1 
N

ov
em

be
r 

20
16

 (
PT

)



cataloging models (where the models should be more stable and ready to be used by
other users), than in a centralized development tool, as is the case of control version
systems. Instead of managing version control, the platform should support users in
performing version control themselves, allowing them to manually register new
versions of the models. These versions are to be sequentially numbered.

4. The Modelery
To answer the above requirements, we have developed the Models Refinery
(Modelery)[2] platform. Our platform combines the proposed functionalities in a Web
environment accessible through the browser, as depicted in Figure 1. Additionally, it
offers a set of Web services for supporting interoperability and integration with external
modeling environments. The platform was developed according to a model-driven
methodology, and used the Modelery itself to keep track of the source models.

4.1 Artifacts repository
The models (artifacts) repository functionality was the major concern in designing and
developing the platform. The Modelery archives and makes available not only the
models, but also their meta-data. This meta-data (Table I) constitutes the model’s entry,
provided by the user when submitting to the repository.

While any user might search and view (public) models, registration is required to
create a new one. Figure 2 presents the user interface for adding a model. Mandatory
fields are signaled with an asterix (“*”). Hence, for example, a model must always have
a name and an author. The model file must also be specified, and it is then uploaded and
stored online in the platform. The model’s author is able to both update the model (by
submitting a new version – with the previous version being kept on record), and to edit
the models’ meta-data.

In accordance with the identified requirements, the platform supports a number of
features that help manage and share models: groups, publications and visibility options.

Two complementary ways to specify the context of a model are provided. First, a
model can be part of a group. This possibility enables us not only to aggregate a set of

Figure 1.
The Modelery’s main

page

211

The Modelery

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
3:

10
 0

1 
N

ov
em

be
r 

20
16

 (
PT

)

http://www.emeraldinsight.com/action/showImage?doi=10.1108/IJWIS-12-2014-0045&iName=master.img-000.jpg&w=335&h=175


models in a specific group, allowing for their categorization, but also to restrict access to
a set of persons who may view or update them, that is the members of the group. Second,
the platform provides also a means to identify the publications in which a model is
involved. This constitutes a further dimension through which to classify and access
models.

A visibility level can be defined for each model. The visibility level defines if the
artifact is visible to everyone, visible to the group members or visible only to the author.
Besides visibility levels, the platform supports also the definition of which users might
update the model. Here, the owner of a model may let a group update it, or restrict
updates to himself/herself. The visibility level and who may update a model are
independent properties, as the model may be visible to the group, but only the author
might have permission to update it.

Table I.
Artifact meta-data

Item Description

Name The name of the artifact
Author The author of the artifact, automatically associated
Date Date of submission
Description A description of the artifact
Institution Institution where the artifact was produced
Tool Tool which originated this artifact
Tags A set of tags, associated with the artifact
Language The language in which the artifact was created (for instance, programming language)
Publications List of publications associated with the artifact
Visibility Visibility of the artifact: only to author, to group or public
Updateable Whom may update the artifact: only the author, or the group
Group The group which the artifact may belong
Image An image representing the artifact
File The artifact file itself

Figure 2.
Adding a model

IJWIS
11,2

212

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
3:

10
 0

1 
N

ov
em

be
r 

20
16

 (
PT

)

http://www.emeraldinsight.com/action/showImage?doi=10.1108/IJWIS-12-2014-0045&iName=master.img-001.jpg&w=335&h=175


Once the models have been added, they can be searched for. By selecting the search
option, a listing of the existent models is presented, as depicted in Figure 3. The user
may then input some text, and the listing will be filtered according to the search criteria,
presenting only those models whose name or description match the text being input.

Because models can evolve over time, a user might wish to follow the progress of a
specific model that he/she has found or added to the platform. To ease the user’s access
to those relevant models, the platform implements a model “tracking” functionality.
Users are provided with a list of references to the models they have chosen to follow.
Other functionalities aimed at providing an overview of the state of the repository
include a dynamic main page, which presents information such as the last submitted
models and most downloaded models, and a tag cloud. This provides an overview of the
contents of the repository, emphasizing most relevant models.

4.2 Publications management
As mentioned above, the Modelery supports the management of publication entries. The
publications are registered with their name, abstract and URL for the article location, as
shown in Figure 4. Contrary to what is provided for models, publications management
does not support uploading the publication itself into the platform. We consider this to
be a more efficient approach, as the platform’s focus is not the publications themselves.
As publications may have more than one author, they are not automatically associated
with the user who created them. Information of the authors is in the publication
document itself. Publications’ data can be input manually or obtained from a DOI. The
information can be exported to LaTeX.

The relation between the models and the publications can be explored starting from
different dimensions in the repository. On the one hand, publications may refer a specific
model or list of models, and it is possible to list the models associated with a publication.
On the other hand, a model may be referred to in multiple publications, and it is possible
to view all its associated publications. This functionality provides a convenient way to
explore publications along with models, and at the same time, it also provides more
information for a given model. The same is also true for the tools, that is view the tool

Figure 3.
Searching for a

model

213

The Modelery

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
3:

10
 0

1 
N

ov
em

be
r 

20
16

 (
PT

)

http://www.emeraldinsight.com/action/showImage?doi=10.1108/IJWIS-12-2014-0045&iName=master.img-002.jpg&w=335&h=175


associated with a model, or the models associated with a tool. It also allows exploration
of the support material (i.e. the models) of the publications. Besides these browsing
facilities, the textual search functionality is also provided for publications.

4.3 Collaborative functionalities
Collaborative functionalities are achieved by using Web 2.0 functionalities to promote
interaction among users (Pérez et al., 2012). This is achieved through a number of means.
Users are automatically associated with any group, model, comment or update that they
create. This allows other users to know who is the author of a given model, or the owner
of a specific group.

A functionality that is essential for promoting collaborative behaviors is the
possibility of users to exchange messages inside the platform. The Modelery supports
both personal one-to-one messages, and more public messages in the groups. The
groups have a forum-like message system which can be either public or private. Finally,
it is also possible to comment the models.

Interaction between the users is also supported through the models in the platform.
Registered users may interact with a model by adding comments (e.g. suggesting
improvements, which will foster the evolution of the models). Additionally, users might
rate models on a 1-5 scale, thus expressing their assessment of the models.

4.4 Implementation
The Modelery was developed according to a multi-layer architecture, using a
model-driven approach. The business layer is composed of three main parts:

(1) the model (repository), which includes the models and all the related information;
(2) the user, which handles user-related data, such as accounts; and
(3) the groups, which supports the groups (forum) functionalities.

The Modelery class diagram is shown in Figure 5. The persistence is achieved through
the Hibernate framework, plus MySQL database.

Figure 4.
Adding a publication

IJWIS
11,2

214

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
3:

10
 0

1 
N

ov
em

be
r 

20
16

 (
PT

)

http://www.emeraldinsight.com/action/showImage?doi=10.1108/IJWIS-12-2014-0045&iName=master.img-003.jpg&w=335&h=175


Figure 5.
Modelery business

layer class diagram

215

The Modelery

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
3:

10
 0

1 
N

ov
em

be
r 

20
16

 (
PT

)

http://www.emeraldinsight.com/action/showImage?doi=10.1108/IJWIS-12-2014-0045&iName=master.img-004.jpg&w=225&h=511


The presentation layer was initially implemented using Java Server Pages (JSP) and
servlets over the business layer. Due to the relevance of usability considerations for the
platform’s success, an effort was made to create a responsive user interface (for instance,
avoiding full page reloads for small requests) to improve the experience of the users. In
a first iteration of the platform, this was mainly achieved resorting to Ajax (Zakas et al.,
2006), by performing modular page loadings. This also enabled us to provide more
lightweight Web pages and reduced bandwidth usage. Resorting to a combination of
HTML5 (Crowther et al., 2014), Cascading Style Sheets version 3 (CSS3) and jQuery, we
are able to improve the user interface by, for instance, providing early error detection
when filling fields in the Web page, and better feedback (including animations when
performing changes to the page contents). In the second iteration, the usage of
Primefaces[3] components with Java Server Faces has contributed to a more responsive
and efficient interface.

Additionally, the Web interface was developed according to Responsive Web Design
(Ethan, 2011) concerns, thus taking into consideration compatibility with old browsers.
Even if the visual aspect is not kept (mainly due to lack of CSS3 compatibility), all the
functionalities remain usable.

Following a multi-layer approach enables improvements or changes to specific
platform components with minimal or no impact on the others. Such was the case in the
second version of the platform, where the Java Server Faces (JSF) framework replaced
Java Server Pages (at the user interface level), and a set of Web services were added (see
the next section).

4.5 Interoperability
For all its benefits, using a Web-based repository means using an additional system.
Storing, loading and updating models might be easier to do inside the applications used
for developing the models themselves. With that in mind, in the second iteration of the
platform set of REST, Web services were developed, based on JSON (Javascript Object
Notation), to allow other applications to interact with the Modelery. The Modelery’s
multi-layer architecture eased the integration of the Web services component. A servlet
was developed which handles the HTTP POST requests.

Web services are grouped according to the business entities: groups, models and
publications. For each, there is a class which handles the specific requests, with each
method in the class corresponding to a specific Web service. The servlet then forwards
the requests to the corresponding classes and methods. For this to work, which class and
method is requested must be specified in the POST message. Alternatively, we could
have created a servlet for each request type, but such would have increased the
complexity of the solution.

Figure 6 shows an example of an HTTP POST request and corresponding JSON
response. At the top, the architectures of the Modelery and uCat (Use cases analysis tool,
an external application, see Section 5.2) are shown. The Modelery Web services allow
communication with uCat, via the Modelery Connect and HTTP. The HTTP request is
shown below, where it is possible to see the several Web service parameters, such as the
method and class. Also, at the bottom, the corresponding response for the given request
(e.g. a model entry) is shown.

IJWIS
11,2

216

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
3:

10
 0

1 
N

ov
em

be
r 

20
16

 (
PT

)



The Web services are meant to be used as an integration of the Modelery core
functionalities in third-party applications. Hence, we consider that some functionalities,
such as creating user accounts, should be left in the Web page itself.

The list of available Web services is:

• List artifacts: Allows to list artifacts, filtered by the tool which originated them or
by name.

• Get an artifact: Allows to retrieve all the information related with an artifact.
• Create an artifact: Allows to create a new artifact.
• List tools: List the tools existing in the Modelery.
• Create a tool: Add a new tool.
• List the categories: List existing categories.
• List the group: List existing groups.
• List the languages: List existing languages.
• List the publications: List submitted publications.
• Create an update: Add an update to a model.
• Get a model update: Get a given model update.

This list of Web services is enough to support interaction with other applications, as we
show in the next section.

Figure 6.
Architecture of

Modelery and uCat,
and respective JSON
response and HTTP

POST request

217

The Modelery

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
3:

10
 0

1 
N

ov
em

be
r 

20
16

 (
PT

)

http://www.emeraldinsight.com/action/showImage?doi=10.1108/IJWIS-12-2014-0045&iName=master.img-005.jpg&w=343&h=243


Alongside the Web services, a Java library, the ModeleryConnect, was developed
which creates an abstraction layer over the usage of the Web services by providing
methods that correspond to the above-described functionalities.

5. Applications
This section describes two examples of use of the Modelery platform. In one case, the
platform was used to replace an existing repository, the main interest being to provide
access to models developed by the team and external collaborators in the specific topic
of human– computer interaction (HCI). The other case illustrates a concrete example of
the integration of repository functionalities, via the ModeleryConnect library, into our
own tools. With this, it was possible to further analyze how well the Web services allow
an integration of the tool with the Modelery.

5.1 HCIspecs repository
The use of models to reason about interactive computing systems or HCI is an active
field of research with different modeling languages and tools being used (see Bolton
et al., 2013 for a review of the area). HCIspecs is a repository focused specifically on this
type of models. It grew out of a need to make available models in such a way that they
could be easily shared and referenced to (e.g. in publications). The goal was also to make
it available to the community at large.

The first version of the platform presented models organized by tool and by paper.
However, the fact that it was implemented on top of a general-purpose Web content
management system (phpwcms[4]) meant that a very specific approach to adding
content had to be devised so that the end result was the one intended. Despite the
platform’s qualities, achieving the intended result meant using it in ways it had not been
designed to. The end result was that adding models and papers to the platform was a
non-trivial process, making it hard to maintain the platform and unrealistic to provide
writing access to other users.

Adopting the Modelery as the new platform for HCIspecs is simply a matter of
installing the platform and migrating the models. By adopting the modelery, we
immediately gained the possibility of enabling others to add models to the platform.
Additionally, we gained the possibility of supporting discussions on the models,
fostering interaction between the community. We are currently in the process of
migrating the models from the previous platform to the new one.

Additionally, we have added the capability of directly adding models to the
repository from our modeling tools. The next section discusses one such case.

5.2 Use-cases analysis tool
The uCat is a tool to support automatic data extraction from use-case specifications
(Couto et al., 2014b). Usage of the tool starts with the input of use-case specifications.
Such specifications are then translated into OWL, making it possible to perform
data inference on the use-case, namely, requirements pattern inference. Such
patterns enable the automatic generation of the architecture of software prototypes
for the described system. In uCat, use-cases are input as descriptions (persisted as
XML files). Such files are the models, which we wish to store in the Modelery. We
have integrated the uCat tool with the Modelery by integrating the developed Java
library in the tool, to provide model registration and search functionalities. Figure 7
illustrates adding a model to the repository. In the figure, it is possible to see the

IJWIS
11,2

218

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
3:

10
 0

1 
N

ov
em

be
r 

20
16

 (
PT

)



several required field. At the top, the user should specify the Modelery username
and password. Next, the user should provide the Modelery Web service URL and the
model metadata details.

Once the models are uploaded, they can be seen and interacted through the Web
interface as any other model. It is also then possible to list and download the models
in the Modelery from inside uCat, as presented in Figure 8. This functionality takes
advantage of the Web service’s support to listing the models which match a given
tool only (uCat, in this case). In the left hand side of the figure, it is possible to see the
previously uploaded Login use-case. When a model is selected, its details are
presented (see right-hand-side window) and it is possible to select a specific version
to download. In this case, it is possible to see that we have only the base version of
the model.

Next we create another use-case scenario (for instance, a logout functionality). As the
model was downloaded from the Modelery, further uploads must be done as updates.
Again this can be done from inside uCat. Figure 9 shows the interface to upload a new
version of the model. We introduce the new version code and a short description, and
upload it.

Our model has now two versions (the base and the version with the logout
functionality). If a model has several versions, it is possible to list them and download a
specific one. In Figure 10, it is possible to see that now we have both the 0.2 and the base
versions.

Figure 7.
Uploading the login

use-case in uCat

219

The Modelery

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
3:

10
 0

1 
N

ov
em

be
r 

20
16

 (
PT

)

http://www.emeraldinsight.com/action/showImage?doi=10.1108/IJWIS-12-2014-0045&iName=master.img-006.jpg&w=299&h=264


6. Discussion
The Modelery is now a fully functional platform, which we consider implements the
more relevant functionalities identified in Section 3.

An alternative approach to achieve a similar platform would have been to conjugate
several other platforms into a single environment. For instance, a Concurrent Version
System (CVS) (such as SVN or GIT) for models’ management, along with an online

Figure 8.
Listing and
downloading a model
from the Modelery

Figure 9.
Adding a new
version to the Login
use-case

IJWIS
11,2

220

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
3:

10
 0

1 
N

ov
em

be
r 

20
16

 (
PT

)

http://www.emeraldinsight.com/action/showImage?doi=10.1108/IJWIS-12-2014-0045&iName=master.img-007.jpg&w=343&h=210
http://www.emeraldinsight.com/action/showImage?doi=10.1108/IJWIS-12-2014-0045&iName=master.img-008.jpg&w=343&h=207


forum (such as phpbb) for discussion issues. However, the approach taken presents
advantages over the integration of multiple platforms. First, CVS system are mainly
used and optimized for textual documents (such as source code). They lack model
targeted functionalities, and it is harder to add functionalities (such as an online model
editor) later on. Furthermore, CVS systems are not targeted for sharing and cataloging.
Using an online forum for our objectives suffers from similar issues as the usage of a
CVS for the models, with the inability to provide specific functionalities. Integrating
visibility levels in a CVS, or groups, managed by the users, in the forum, would have
been a very hard and time-consuming task. Combining these functionalities to
collaborate together, by providing a platform as coherent and as practical as ours, would
have been more costly than developing this one. Finally, a poor integration of these
technologies might easily lead to an unpractical platform, and result in a project failure.

Some of the repositories discussed in Section 2 offer online models’ editing. That is an
interesting functionality. However, it is not suitable for our repository at the moment. As
we allow any kind of model in our repository, supporting editing functionalities would
require either a restriction on the type of supported models (by imposing a meta-model,
for instance), or selecting a subset of models for online editing support. We have chosen
to ignore this functionality for now, as it would not lead to a solid and robust editor.

Comparing our platform against other repositories, it is possible to draw some
conclusions. There are some similarities between our tool and ReMoDD, as our objectives are
somehow similar. However, we provide some improvements with the Modelery. First, our
platform provides a larger group of functionalities without requiring registration. An
unregistered user is free to explore all the public information, from groups to models and
publications. ReMoDD is considerably more restricted in model browsing. The only way to
search content in the site (any kind of content) is by textual search. Another possibility is to
list all of the models. The platform provides also a forum, however, completely disconnected
from the models. Finally, it provides a workshop catalog system, once again, disconnected
from the models. Viewing a model’s information is very limited, as only limited information
is displayed. ReMoDD claims to be a repository for model-driven development; however, our

Figure 10.
Downloading the
version 0.2 of the
use-case from the

Modelery

221

The Modelery

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
3:

10
 0

1 
N

ov
em

be
r 

20
16

 (
PT

)

http://www.emeraldinsight.com/action/showImage?doi=10.1108/IJWIS-12-2014-0045&iName=master.img-009.jpg&w=263&h=178


Table II.
Comparison of the
analyzed repositories

T
oo

l
Fu

lly
W

eb
Li

st
V

ie
w

Co
m

m
en

ts
D

ow
nl

oa
d

Pu
bl

ic
ac

ce
ss

G
ro

up
s

A
dv

an
ce

d
Se

ar
ch

O
pe

n
pl

at
fo

rm
So

ft
w

ar
e

or
ie

nt
ed

R
eM

oD
D

✔
✔

✔
✔

e
e

✔
E

CO
B

A
S

✔
e

e
✔

✔
✔

A
pr

om
or

e
(p

re
v.

)
✔

✔
✔

✔
✔

✔
Sh

el
fa

ri
✔

✔
✔

✔
✔

✔
✔

SR
I

✔
✔

✔
✔

e
✔

G
en

M
yM

od
el

✔
✔

e
e

e
e

M
od

el
er

y
✔

✔
✔

✔
✔

✔
✔

✔
e

✔

IJWIS
11,2

222

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
3:

10
 0

1 
N

ov
em

be
r 

20
16

 (
PT

)



platform might provide a better support for model-driven methodologies by overcoming
some of ReMoDD shortcomings.

ECOBAS has different purposes, being aimed at a specific area and focusing on
modeling and simulation. In what concerns management of models, ECOBAS is
somewhat limited in terms of the search functionality, as it only supports the listing of
models by name, or performing a textual search. Opening a model’s entry provides a
large amount of information, but lacks some of the details we consider relevant, such as
a visual representation of the model or the author. ECOBAS lacks also other
functionalities such as publications management and discussion groups. From this
point of view, the Modelery provides a more complete environment as a model
repository.

The Apromore platform shares some of our objectives, but it is currently in a
preliminary phase of development. The platform allows public models’ submission
only, limiting the models’ scope. The model entries do not provide very complete
information, as apart from its name, it is only possible to view their language, domain,
ranking, version and author. The platform offers an interesting online model editor.
However, that editor is language-specific, allowing only to edit one kind of model. Also,
Apromore provides no other functionalities than a model repository. At the moment,
this platform has limited browser support. Modelery provides a more usable option, as
it is ready for use. Users are free to register (contrary to Apromore) and submit any
model, as well as their relevant information.

Table II summarizes the comparison of the platforms.

7. Conclusions
In this paper, we have described a collaborative repository for software artifacts, with a
special focus on models, patterns and catalogs. We presented the Modelery, a platform
which combines an online artifact repository, publication management and collaboration
functionalities. The presented functionalities came mainly from our needs to store, manage,
catalog and make the artifacts we produce during our research projects, available online.
Also, with this platform we have created a new means to discuss the artifacts within
discussion groups. After experimenting with a first version of the platform (Couto et al.,
2014a), we have introduced major improvements. First, we have used Java Server Faces (JSF)
to improve the interaction with the user. Second, we have provided a set of Web services to
support connectivity of the platform with other tools.

We are now using the repository for our own needs. In the longer run, we consider the
possibility to include other functionalities in the platform, namely, the possibility of
integrating editors or the generation of graphical representations for particular
modeling languages, and also integration with verification and validation tools (e.g. for
certification purposes). The addition of Web services to the platform allows to open new
horizons. We are considering the possibility to develop standalone applications for
certain functionalities, such as a desktop application for keeping some models locally. In
the same line, we are also considering further improving the Web services with more
functionalities.

Notes
1. This paper is an extension of the conference paper published by Couto et al. (2014a).

2. http://modelery.di.uminho.pt

223

The Modelery

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
3:

10
 0

1 
N

ov
em

be
r 

20
16

 (
PT

)

http://modelery.di.uminho.pt


3. http://primefaces.org/ (accessed 7 November 2014).

4. www.phpwcms.de (accessed 12 May 2014)

References
Bernstein, P.A. and Dayal, U. (1994), “An overview of repository technology”, Proceedings of the

20th International Conference on Very Large Data Bases, San Francisco, CA, pp. 705-713.
Bolton, M.L., Bass, E. and Siminiceanu, R. (2013), “Using formal verification to valuate

human-automation interaction, a review”, IEEE Transactions on Systems, Man, and
Cybernetics, Part A: Systems and Humans, No. 99, pp. 1-16.

Brosch, P., Langer, P., Seidl, M., Wieland, K. and Wimmer, M. (2010), “Colex: a Web-based
collaborative conflict lexicon”, Proceedings of the 1st International Workshop on Model
Comparison in Practice, New York, NY, pp. 42-49.

Campos, J.C. and Harrison, M.D. (2009), “Interaction engineering using the IVY tool”, ACM Symposium on
Engineering Interactive Computing Systems (EICS 2009), New York, NY, pp. 35-44.

Campos, J.C., Saraiva, J., Silva, C. and Silva, J.C. (2012), “GUIsurfer: a reverse engineering
framework for user interface software”, in Telea, A.C. (Ed.), Reverse Engineering -Recent
Advances and Applications, pp. 31-54.

Cavalcanti, M.C., Mattoso, M., Campos, M.L., Llirbat, F. and Simon, E. (2002), “Sharing scientific
models in environmental applications”, Proceedings of the 2002 ACM symposium on
Applied Computing, New York, NY, pp. 453-457.

Couto, R., Ribeiro, A.N. and Campos, J.C. (2012), “A patterns-based reverse engineering approach for java
source code”, Software Engineering Workshop (SEW), 2012 35th Annual IEEE, pp. 140-147.

Couto, R., Ribeiro, A. and Campos, J. (2014a), “The modelery: a collaborative web-based repository”, in
Murgante, B., Misra, S., Rocha, A.C., Torre, C., Rocha, J., Falcão, M., Taniar, D., Apduhan, B. and
Gervasi, O. (Eds), Computational Science and Its Applications – ICCSA 2014, Vol. 8584,
Springer International Publishing, pp. 1-16.

Couto, R., Ribeiro, A.N. and Campos, J.C. (2014b), “Application of ontologies in identifying
requirements patterns in use cases”, Proceedings 11th International Workshop on Formal
Engineering Approaches to Software Components and Architectures, FESCA 2014,
Grenoble, pp. 62-76.

Crowther, R., Lennon, J., Blue, A. and Wanish, G. (2014), HTML5 in Action, Manning.
Dirix, M., Muller, A. and Aranega, V. (2013), “GenMyModel: an online UML case tool”, Joint

Proceedings of Tools, Demos & Posters, p. 14.
Do, H., Elbaum, S. and Rothermel, G. (2005), “Supporting controlled experimentation with testing

techniques: an infrastructure and its potential impact”, Empirical Software Engineering,
Vol. 10 No. 4, pp. 405-435.

Dolk, D.R. and Konsynski, B.R. (1984), “Knowledge representation for model management
systems”, IEEE Transaction on Software Engineering, Vol. 10 No. 6, pp. 619-628.

Ethan, M. (2011), Responsive Web Design, A Book Apart.
France, R. and Rumpe, B. (2007), “Model-driven development of complex software: a research

roadmap”, Future of Software Engineering, Washington, DC, pp. 37-54.
France, R., Bieman, J. and Cheng, B. (2006a), CRI: Collaborative Project: Repository for Model

Driven Development (ReMoDD), CO State University.
France, R., Bieman, J. and Cheng, B. (2006b), “Repository for model driven development

(ReMoDD)”, Proceedings of the 2006 International Conference on Models in Software
Engineering, Heidelberg, Berlin, pp. 311-317.

IJWIS
11,2

224

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
3:

10
 0

1 
N

ov
em

be
r 

20
16

 (
PT

)

http://primefaces.org/
http://www.phpwcms.de
http://www.emeraldinsight.com/action/showLinks?crossref=10.1109%2FSEW.2012.21
http://www.emeraldinsight.com/action/showLinks?crossref=10.1109%2FTSE.1984.5010291&isi=A1984TV46900002
http://www.emeraldinsight.com/action/showLinks?crossref=10.1145%2F1570433.1570442
http://www.emeraldinsight.com/action/showLinks?crossref=10.1145%2F1570433.1570442
http://www.emeraldinsight.com/action/showLinks?crossref=10.1109%2FFOSE.2007.14
http://www.emeraldinsight.com/action/showLinks?crossref=10.1145%2F508791.508876
http://www.emeraldinsight.com/action/showLinks?crossref=10.1145%2F508791.508876
http://www.emeraldinsight.com/action/showLinks?crossref=10.1007%2F978-3-319-09153-2_1
http://www.emeraldinsight.com/action/showLinks?crossref=10.1007%2F978-3-319-09153-2_1
http://www.emeraldinsight.com/action/showLinks?crossref=10.1007%2Fs10664-005-3861-2&isi=000232247100001
http://www.emeraldinsight.com/action/showLinks?crossref=10.1145%2F1826147.1826156
http://www.emeraldinsight.com/action/showLinks?crossref=10.1145%2F1826147.1826156


Jouaulta, F., Allilairea, F., Bézivina, J. and Kurtevb, I. (2006), “ATL: a model transformation tool”,
Science of Computer Programming, Vol. 72 No 1/2, pp. 31-39.

Karagiannis, D. and Kühn, H. (2002), “Meta-modeling platforms”, Proceedings of the Third
International Conference on E-Commerce and Web Technologies, London, p. 182.

OMG (2014), “XML metadata interchange (XMI) specification”.
Pérez, R., Benito, B.M. and Bonet, F.J. (2012), “ModeleR: an environmental model repository as

knowledge base for experts”, Expert System Application, Vol. 39 No. 9, pp. 8396-8411.
Rosa, M., Reijers, H.A., van der Aalst, W.M.P., Dijkman, R.M., Mendling, J., Dumas, M. and

García-Bañuelos, L. (2011), “APROMORE: an advanced process model repository”, Expert
System Application, Vol. 38 No. 6, pp. 7029-7040.

Wang, H., Johnson, A., Zhang, H. and Liang, S. (2010), “Toward a collaborative modeling and
simulation platform on the internet”, Advanced Engineering Information, Vol. 24 No. 2,
pp. 208-218.

Zakas, N., McPeak, J. and Fawcett, J. (2006), “Professional Ajax”, Wrox.

About the authors
Rui Couto is a PhD student at the Department of Informatics of the University of Minho and a
Researcher at HASLab/INESC TEC. His research interests lie in the intersection of model-driven
development, software engineering and requirements engineering. He holds an MSc in
informatics engineering from the University of Minho, and has been working on the application of
model-driven techniques and tools to the software development process since then. Current
interests include bringing closer the software engineering (SE) and requirements engineering
(HCI) fields, with a focus on automated reasoning techniques and tools. Rui Couto is the
corresponding author and can be contacted at: rui.couto@di.uminho.pt

António Manuel Nestor Ribeiro is an Assistant Professor in the Department of Informatics at
Minho University, Portugal. He is also a member of the High Assurance Software Laboratory
Research Group, where he belongs to the Large-Scale Distributed Systems Group.

His research interests are focused on object-oriented modeling and analysis techniques and on
the aspects related to program analysis and understanding. Actual research topics are related to
the quality of requirements gathering models and on the prototyping of requirements on
large-scale systems. He teaches courses on model-driven engineering and has supervised several
works about middleware and object-relational mapping techniques for large-scale and highly
distributed systems. During the past few years, he was involved with several projects around
software architectures reengineering and on developing computational platforms for specific
applications like test data generators and plugin-oriented business applications.

José Francisco Creissac Freitas de Campos is an Assistant Professor at the Department of
Informatics of the University of Minho and a Senior Researcher at HASLab/INESC TEC. His
research interests lie in the intersection of formal methods, software engineering and human–
computer interaction. He holds a PhD degree in computer science from the University of York, and
has been working on the application of formal software engineering techniques and tools to the
modeling and analysis of interactive systems for over 15 years. He is particularly interested in
bringing closer the software engineering and human– computer interaction fields, with a focus on
automated reasoning techniques and tools.

For instructions on how to order reprints of this article, please visit our website:
www.emeraldgrouppublishing.com/licensing/reprints.htm
Or contact us for further details: permissions@emeraldinsight.com

225

The Modelery

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
3:

10
 0

1 
N

ov
em

be
r 

20
16

 (
PT

)

mailto:rui.couto@di.uminho.pt
mailto:permissions@emeraldinsight.com
http://www.emeraldinsight.com/action/showLinks?crossref=10.1016%2Fj.eswa.2012.01.180&isi=000303281600080
http://www.emeraldinsight.com/action/showLinks?isi=000257912800004
http://www.emeraldinsight.com/action/showLinks?crossref=10.1016%2Fj.aei.2009.11.003&isi=000276925900010
http://www.emeraldinsight.com/action/showLinks?crossref=10.1016%2Fj.eswa.2010.12.012&isi=000288343900071
http://www.emeraldinsight.com/action/showLinks?crossref=10.1016%2Fj.eswa.2010.12.012&isi=000288343900071
http://www.emeraldinsight.com/action/showLinks?crossref=10.1007%2F3-540-45705-4_19
http://www.emeraldinsight.com/action/showLinks?crossref=10.1007%2F3-540-45705-4_19

