
International Journal of Web Information Systems
Formal and semi-formal verification of a web voting system
Maximiliano Cristia Claudia Frydman

Article information:
To cite this document:
Maximiliano Cristia Claudia Frydman , (2015),"Formal and semi-formal verification of a web voting
system", International Journal of Web Information Systems, Vol. 11 Iss 2 pp. 183 - 204
Permanent link to this document:
http://dx.doi.org/10.1108/IJWIS-11-2014-0042

Downloaded on: 01 November 2016, At: 23:10 (PT)
References: this document contains references to 51 other documents.
To copy this document: permissions@emeraldinsight.com
The fulltext of this document has been downloaded 97 times since 2015*

Users who downloaded this article also downloaded:
(2015),"Development of mobile applications from existing Web-based enterprise systems",
International Journal of Web Information Systems, Vol. 11 Iss 2 pp. 162-182 http://dx.doi.org/10.1108/
IJWIS-11-2014-0041
(2015),"Web spam detection using trust and distrust-based ant colony optimization learning",
International Journal of Web Information Systems, Vol. 11 Iss 2 pp. 142-161 http://dx.doi.org/10.1108/
IJWIS-12-2014-0047

Access to this document was granted through an Emerald subscription provided by emerald-
srm:563821 []

For Authors
If you would like to write for this, or any other Emerald publication, then please use our Emerald
for Authors service information about how to choose which publication to write for and submission
guidelines are available for all. Please visit www.emeraldinsight.com/authors for more information.

About Emerald www.emeraldinsight.com
Emerald is a global publisher linking research and practice to the benefit of society. The company
manages a portfolio of more than 290 journals and over 2,350 books and book series volumes, as
well as providing an extensive range of online products and additional customer resources and
services.

Emerald is both COUNTER 4 and TRANSFER compliant. The organization is a partner of the
Committee on Publication Ethics (COPE) and also works with Portico and the LOCKSS initiative for
digital archive preservation.

*Related content and download information correct at time of download.

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 2
3:

10
 0

1
N

ov
em

be
r

20
16

 (
PT

)

http://dx.doi.org/10.1108/IJWIS-11-2014-0042

Formal and semi-formal
verification of a web voting

system
Maximiliano Cristia

CIFASIS and UNR, Rosario, Argentina, and

Claudia Frydman
LSIS-CIFASIS, Marseille, France

Abstract
Purpose – This paper aims to present the verification process conducted to assess the functional
correctness of the voting system. Consejo Nacional de Investigaciones Científicas y Técnicas
(CONICET) is the most important research institution in Argentina. It depends directly from
Argentina’s President but its internal authorities are elected by around 8,000 research across the
country. During 2011, the CONICET developed a Web voting system to replace the traditional
mail-based process. In 2012 and 2014, CONICET conducted two Web election with no complaints from
candidates and voters. Before moving the system into production, CONICET asked the authors to
conduct a functional and security assessment of it.
Design/methodology/approach – This process is the result of integrating formal, semi-formal and
informal verification activities from formal proof to code inspection and model-based testing.
Findings – Given the resources and time available, a reasonable level of confidence on the correctness
of the application could be transmitted to senior management.
Research limitations/implications – A formal specification of the requirements must be developed.
Originality/value – Formal methods and semi-formal activities are seldom applied to Web
applications.

Keywords Code review, Formal methods, Model-based testing, Z specifications

Paper type Research paper

1. Introduction
The Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET[1]) is the
most important research institution in Argentina. Its president is nominated by
Argentina’s President, but some of its internal authorities, including some of the
members of its Board of Directors, are elected by some of the more than 8,000
CONICET’s researchers. Traditionally, the election process was carried out by mail (i.e.
those allowed to vote had to send their votes by mail and, thus, the recount process was
done manually). In 2011, the Board of Directors commissioned the development of an
electronic voting system. Eventually, it was decided that CONICET’s Systems
Department would develop a Web-based system[2]. According to CONICET’s
authorities, its Web-based voting system is the first to be developed and used in
Argentina.

As part of this important change, the Board of Directors issued a set of
regulations as the legal support for the new form of the election process. These
regulations set all the rules that voters and candidates have to follow to vote or be

The current issue and full text archive of this journal is available on Emerald Insight at:
www.emeraldinsight.com/1744-0084.htm

Web voting
system

183

Received 25 November 2014
Revised 9 December 2014

15 December 2014
Accepted 15 December 2014

International Journal of Web
Information Systems

Vol. 11 No. 2, 2015
pp. 183-204

© Emerald Group Publishing Limited
1744-0084

DOI 10.1108/IJWIS-11-2014-0042

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 2
3:

10
 0

1
N

ov
em

be
r

20
16

 (
PT

)

http://dx.doi.org/10.1108/IJWIS-11-2014-0042

voted. They take the form of a document written in natural language (Spanish)
organized as a list of clauses.

The Board of Directors also required the Systems Department to subject the system
to an external evaluation to determine whether it fulfilled functional, security and
availability quality attributes, before moving it into production. Although the program
is not large, it uses some complex technologies and a failure may have a high political
impact. The System Department contacted the authors to perform the evaluation. One of
the authors conducted the functional evaluation, and two security researchers
performed the security and availability evaluation. This paper is an experience report on
the verification activities conducted during the functional evaluation of the voting
system. Note that the aim of the task was to assess the quality of an existing system and
not to develop it from scratch.

Given the potential risk of a functional error, we decided to conduct an evaluation
as formal as possible within the available time frame (one month). So, the first step
was to write a formal specification of the set of regulations governing the election
process issued by the Board of Directors (Section 2). Second, we formally proved that
the specification verifies some properties as a way to have some confidence that the
model is correct (Section 3). The third step consisted in inspecting the source code to
find each pre- and post-condition of the model and annotating the source code with
links to the corresponding predicates of the formal specification (Section 4). In the
last step, we applied Fastest, a model-based testing (MBT) tool, to generate test
cases (Section 5). In this way, the formal specification written in the first step was
used in all the latter activities. As can be seen, the verification process combined
formal, semi-formal and informal techniques, making it possible to finish the task
within the schedule. In the rest of the paper, we further discuss these and other
issues (Section 6) and survey some related papers (Section 7); our conclusions are in
Section 8.

It is very important to remark that this project presents two important differences
with respect to other verification efforts. First, in most other reports on the production of
verified software, the development team can write a formal specification of the system
and then develop the implementation they like the most, using many different formal
techniques – formal refinement, program annotation combined with static analysis, etc.
In this project, however, the implementation was already developed when its
verification was requested – i.e. verification was an afterthought, as is always the case in
the vast majority of industrial projects. Therefore, we were not allowed to generate the
implementation we liked – mainly because of the available time – we had to inform
about the correctness of the available implementation. Second, the implementation was
developed by average programmers, and not, for instance, by people holding a PhD in
software engineering, formal methods or formal verification. This is the case for almost
all the software produced in the world.

On June 15, 2012, the first Web-based election of two members of the Board of
Directors was carried out without any noticeable disruption or failure of the new election
system. No voter and candidate complained about the election process or its outcome.
The same happen after the 2014 election.

This paper is a reduced version of a technical report including the full Z specification
and the Z/EVES proof scripts. It can be downloaded from www.dropbox.com/s/
c6bawikdrd608c9/votingSystem.tar.gz. This paper is also an extended version of a

IJWIS
11,2

184

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 2
3:

10
 0

1
N

ov
em

be
r

20
16

 (
PT

)

http://www.dropbox.com/s/c6bawikdrd608c9/votingSystem.tar.gz
http://www.dropbox.com/s/c6bawikdrd608c9/votingSystem.tar.gz

conference paper (Cristiá and Frydman, 2014a). It assumes that the reader has basic
knowledge of set theory and predicate logic.

2. From requirements to formal specification
In this project, the functional requirements are the regulations set by CONICET
for the election process. This document is essentially a legal document written in
Spanish stipulating all the conditions for an election. It is divided in sections (for
example, “On the Voters”, “On the Candidates to Be Elected”, etc.), and each section
is organized as a list of articles or clauses. We derived a formal specification for the
system from this document plus just a few questions to administrative personnel
of CONICET (i.e. no intermediate representation of the requirements was
developed).

We wrote a formal specification as the fundamental cornerstone of the
verification process. We knew in advance that we could use it for many different
verification activities. The Z notation (ISO, 2002; Spivey, 1992) was the chosen
language because:

• we are fluent in it and some of its tools;
• Z is very good for this kind of requirements; and
• our research and tools on MBT (Cristiá et al., 2010; Cristiá et al., 2014; Cristiá et al.,

2011b) would be of great help (and, conversely, this would become a case study for
our investigations).

Although the election process of CONICET shares many rules with that of any
democratic nation, it has some peculiarities that distinguish it from other election
systems. Just to mention some of the differences, consider the following:

• CONICET divides the country in geographical regions (GR).
• CONICET divides its researchers in so-called knowledge areas (KAs) (for

instance, exact and natural sciences, social sciences and humanities, etc.).
• Each voter belongs to one and only one GR and KA.
• Each candidate nominates herself or himself for one and only one GR and KA.
• Each voter can vote up to three candidates of his KA but of different GR.
• Retired researchers may be allowed to vote.
• Not all active or retired researchers can vote or be candidates, there are many

conditions they must verify for either one.
• Before a voter can be designated as a firm candidate, he or she has to be endorsed

by at least 20 researchers allowed to vote.

The Z specification resulting from the requirements document is a rather standard Z
model[3]. We added to the Z model a form of Jackson’s (1995) designations as a means of
linking the formal model with the requirements. For instance, before introducing the set
representing CONICET’s researchers, we provide the following semi-formal description
(designation):

185

Web voting
system

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 2
3:

10
 0

1
N

ov
em

be
r

20
16

 (
PT

)

x is an active or retired researcher of CONICET � x � RSCH
so, then, we introduce the following Z paragraph:

[RSCH]
As can be seen, the left hand side of a designation is a natural language sentence over the
vocabulary of the requirements, while the right hand side is a formal term of the model.
Because this is not a technical document, we will not give all the designations
corresponding to the portions of the specification included here; we prefer to be more
informal in this regard.

2.1 A brief introduction to Z
Z specifications take the form of state machines. That is, there is a state space and a set
of state transitions defined over the state space. The state space is given by declaring a
set of state variables, each ranging over a particular set of values. Then, the first step in
a Z specification is to declare the sets or types of values for the state variables. These
sets, as the rest of the elements of the specification, are taken from the requirements.
Hence, we have defined the following basic sets:

• the set of knowledge areas, named KA;
• the set of CONICET’s researchers, named RSCH; and
• the set of geographical regions in which the country is divided to organize the

election, named GR.

Now, we can give the main components of the state of the system. We factored out the
state of the system into two schemata. Endorsements record preliminary candidates and
their endorsements, while Votes record firm candidates and voting data.

Think of these boxes, called schemas, as sets of elements. In Z: RSCH¡ KA denotes the
set of all partial functions from RSCH to KA; �RSCH is the set of all the finite sets whose
elements belong to RSCH; �RSCH is the set of all the sets (finite or not) whose elements
belong to RSCH; and seq (� RSCH) is the set of finite sequences (lists) whose elements
belong to �RSCH. In Z, partial functions are sets of ordered pairs. So, for instance, a
partial function can be expressed as follows: �a � 1, b � 2� , where a � 1 is a synonym
for the more standard notation (a, 1).

The meaning of state variables is as follows:
• if x � a � cand , then x is a candidate willing to be endorsed for KA a;
• if x � endors(c) , then voter x endorsed candidate c;

IJWIS
11,2

186

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 2
3:

10
 0

1
N

ov
em

be
r

20
16

 (
PT

)

http://www.emeraldinsight.com/action/showImage?doi=10.1108/IJWIS-11-2014-0042&iName=master.img-000.jpg&w=299&h=104

• if x � firmCand , then x is a firm candidate (i.e. he or she has been endorsed
according to CONICET rules);

• if x � voted , then x has already issued his or her vote; and
• votes is the list of votes issued so far.

We used � instead of � for a variable whenever it was not necessary, a cardinality
condition (for example, there is no cardinality condition over firmCand). Note the
particular type for votes: is not just a list of researchers but a list of finite sets of
researchers, as voters can vote for up to three candidates. It would have been better to
declare votes as bag (�RSCH) but Fastest (the MBT tool used for testing) does not
currently supports bags.

The full state space of the election system is defined by schema ES (for election
system) as follows:

ES �� Endorsements � Votes � Today

where schema Today declares a single variable representing the current date.
Once we have the state space of the system, i.e. schema ES, we can specify the state

transitions. Due to space restrictions, we will show only one of them – the rest is
available in the technical report. State transitions are called operations, in Z. Each
operation is given by a schema – as can be seen, in Z schemas are used for many
purposes. Below we give the schema for the operation describing the conditions for a
voter to issue his or her vote. The schema is called Vote and is given as the disjunction
of eight schemas:
Vote ��

(1) VoteOk

(2) � VoteWrongDate

(3) � ResearcherCannotVote

(4) � AlreadyVoted

(5) � VoteMoreThanThree

(6) � VoteNonCandidates

(7) � KACandidatesIsWrong

(8) � GRCandidatesIsWrong

Think of such an expression as a nested conditional sentence of a programming
language: if… then… else if …. VoteOk formalizes the situation when a voter
successfully issues his or her vote; all the other schemas describe possible errors, and so
the vote is not recorded.

In VoteOk, shown below, e? is the researcher issuing the vote and C? is his or her vote.

187

Web voting
system

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 2
3:

10
 0

1
N

ov
em

be
r

20
16

 (
PT

)

For now, do not pay too much attention to the expressions �Votes and �
Endorsements; � Today, we will explain them later. As we have said, Z operations
are state transitions. Then, they link two states of the state space: the start or before
state and the after state. Think of states as the initial and final contents of a table in
a database. For example, if a method adds a record to a table it has changed the state
of the table because the initial table is different from the final one. Z operations can
also depend on input and output variables. Input variables are decorated with a
question mark. So, for instance? and C? are input variables. Think of input variables
as the parameters waited by a method. Output variables are decorated with a bang
symbol. So, rsp! is an output variable. Think of output variables as the values
returned by a method.

Any Z operation is described by giving its pre- and post-conditions. Per-conditions
are predicates depending only on before-state and input variables. Before-state
variables are the variables declared in schemas Votes and Endorsements.
Post-conditions are predicates that can depend on any kind of variable. Usually,
post-conditions depend on before-state and after-state variables. After-state variables
are the before-state variables but decorated with a prime symbol. So, for example, voted=
is an after-state variable. Before-state and after-state variables are made accessible to
Vote by the expressions �Votes and � Endorsements. Indeed, �Votes means “Vote may
change the value of some of the state variables declared in Votes”, while �
Endorsements means “Vote cannot change the value of the state variables declared in
Endorsements”.

Now, let us take a closer look to Vote. Recall that the vote, C?, may contain up to three
candidates, so it is defined as a finite set of researchers. Then, we include the
pre-condition # C? � 3 to enforce that at most three candidates can be voted. bVote and
f Vote are two “dates”, representing the initial and final date of the voting period. today
is a state variable declared in schema Today, which represents the current date. So the
precondition bVote � today � f Vote says that a vote can be issued only of the current

IJWIS
11,2

188

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 2
3:

10
 0

1
N

ov
em

be
r

20
16

 (
PT

)

http://www.emeraldinsight.com/action/showImage?doi=10.1108/IJWIS-11-2014-0042&iName=master.img-001.jpg&w=299&h=194

date is between the initial and final dates of the voting period. CanVote is the set of
CONICET’s researchers that are allowed to vote. It is defined as follows:

Can Vote ��

�i: RSCH|

myKA i � eKA � (i � ret ⇒ i � hiredRet) � i � inIntranet�
where myKA is a function that yields the KA of each researcher; eKA is the set of KA’s
for which the current election is open; ret is the set of retired researchers; hiredRet is the
set of retired researchers that has been hired by CONICET’s to continue with their
duties; and inIntranet is the set of researchers that have an user account in CONICET’s
Intranet.

Two interesting conditions of this election system are that voters can vote only
candidates of their same KA ({myKA e?} � myKA (|C?|)), but voters must vote
candidates all from different GR (#C? � #(myGR (|C?|))). In Z, (|_|) is the relational
image of a set under a function; and # is the cardinality operator.

Under all these conditions, the system shall add the voter to the set of people who has
already voted and the vote to the logical ballot box. This is expressed by the
post-conditions:

voted= � voted � �e?�

votes= � votes � �C?�

where � is the classical union set operator and � concatenates two sequences.
Recall that Vote is defined as the disjunction of eight schemas where VoteOk

describes the conditions when a vote is successfully issued and all the others represent
error conditions. Below, we include one of these “error” schemas:

AlreadyVoted�� [�ES; e?: RSCH�e? � voted Pos –3]

Note that this schema includes the expression �ES meaning that it will not change the
value of any of the variables declared in ES. So AlreadyVoted is saying that if the person
willing to issue a vote, (e?) has already voted (e? � voted) then nothing will change.

All the operations defined in the model share the same structure (i.e. a schema defined
as the disjunction of some schemas one of which represents the successful case and the
rest represent erroneous situations).

2.2 State invariants
A state invariant is a predicate, depending on state variables, that is true of every state
of the state space. As can be seen, we have not included state invariants in the state
schemas as is customary in Z. Rather, we write them in a separate schema as follows[4]:

189

Web voting
system

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 2
3:

10
 0

1
N

ov
em

be
r

20
16

 (
PT

)

and then we include a proof obligation such as the following for each operation in the
model:

theorem VotePreservesInvariants

Invariants � Vote ⇒ Invariants=

where Vote is the schema defined in the previous section and Invariants= is the same
than Invariants but where all the state variables are decorated with a prime. Then if
theorem VotePreservesInvariants is proved, it means that if the state invariants hold
before executing Vote, then they will hold right after its execution. In other words, vote
preserves the invariants.

If invariants are codified in this way then all preconditions must be explicit (Jacky,
1996; Saaltink, 1999; Spivey, 1992) and Fastest becomes more efficient. In a sense, this
way of writing invariants changes “calculate the full precondition of an operation” by
“discharge a proof obligation” (Cristiá et al., 2014; Section 2.7 for a few more details).

Some of the predicates in Invariants are the formalization of CONICET rules. For
example, see the seventh predicate in Invariants. CONICET established that after the
end of the period reserved for endorsements, only candidates who have got at least 20
endorsements become firm candidates. In the model, fEndors represents the final date of
the endorsements period. In Z, dom is the domain of a function; ran is the range of a
function; and if f is a function and A is a set, then f �A (called range restriction) is the
function obtained from f by removing all the ordered pair whose second component
belongs to A. Therefore:

f Endors � today ⇒ firmCand � dom (endors � �A: ran endors �20 � #A�)

That is, if the current date (today) is after the end of the endorsement period (f Endors),
then the set of firm candidates (firmCand) must be the domain of endors restricted to
those who got at least 20 endorsements. Recall that endors is a state variable declared in
schema Endorsements as RSCH ¡ �RSCH, and whose meaning is that endors(e) is the
set of researchers who endorsed e for the current election.

IJWIS
11,2

190

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 2
3:

10
 0

1
N

ov
em

be
r

20
16

 (
PT

)

http://www.emeraldinsight.com/action/showImage?doi=10.1108/IJWIS-11-2014-0042&iName=master.img-002.jpg&w=335&h=166

Other invariants arise from the model itself. For instance, the domains of cand and
endors must always be the same because even a candidate who got no endorsements is
represented as having an empty set of endorsements.

3. Proving properties of the specification
The Z specification was verified under the Z/EVES system (Saaltink, 1997b). Therefore,
we divided the task in two steps:

(1) discharging all the proof obligations automatically generated by Z/EVES; and
(2) proving that all the operations preserve all the invariants.

Z/EVES generates a proof obligation, called domain check, every time a partial function
is applied to an argument[5]. The proof obligation asks to prove that the argument
belongs to the domain of the function. For example, the following is part of the proof
obligation generated by Z/EVES for the Vote operation:

theorem axiom Vote$domainCheck
�Votes � �Endorsements � �Time
� e? � RSCH � C? � �RSCH
⇒ (iVote � today � · · · � �myKA e?� � myKA(�C?�)

⇒ C? � dom # � myGR(�C? �) � dom #)
………

where C? � dom # is trivial to prove, as the domain of # is �X for any type X; but miRE
(|C?|) � dom # is more difficult because it requires to prove that the relational image
of a finite set through a function is a finite set. We proved this and other theorems
involving the cardinality operator with the help of the extension to the Z mathematical
toolkit (ZMT) (Saaltink, 1997a) proposed by Freitas (2004).

The second step in verifying the specification consisted in proving that all operations
preserve the state invariants described in schema Invariants shown in page 8. We did
this by proving a theorem like VotePreservesInvariants shown at page 8. However,
proving such a theorem can be cumbersome because some parts of the proof can be quite
difficult, and there are many cases to consider, as each operation includes many
schemata and there are many invariants. But, on the other hand, many of these cases are
trivial to prove. Hence, we analyzed which invariants would be, in principle, non-trivial
to prove for a given operation, and thus, we defined a theorem for each of these cases. For
example we have:

theorem EndorseOkPI5
dom cand � dom endors
� (∀i, j: dom endors�i � j • endors i � endors j � A)
� Endorse Ok

⇒ (∀i, j: dom endors=�i � j • endors=i � endors=j � A)

This theorem is an intermediate theorem for the operation, representing a voter
endorsing a preliminar candidate. Note that in this case, we prove that only the schema
corresponding to the successful case (EndorseOk) preserves only the fifth invariant (see

191

Web voting
system

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 2
3:

10
 0

1
N

ov
em

be
r

20
16

 (
PT

)

the fifth predicate in schema Invariants at page 8). There are three more theorems like
this one for the Endorse operation. Once all these theorems are proved, the main theorem
(i.e. that establishing that Endorse preserves all the invariants) can be proved easily by
iterating over all the schemata that define the operation and all the invariants. A similar
approach was applied for all the operations.

Although the ZMT includes a number of theorems about all the mathematical
theories supported by the Z notation and the Z/EVES system uses them for proofs, from
time to time, it is necessary to prove some new result about mathematics. In this project,
we needed to prove five of these theorems. For example, we proved that the relational
image of a finite set through a partial function is a finite set:

theorem grule finiteRelimgIsFinite 	X, Y

∀f: X � Y; A: �X • f (�A�) � �Y

This theorem was necessary to prove two domain checks. As an another example, we
can mention the following theorem which is a particular form of the applyInRanPfun
theorem of the ZMT and was used in the proofs, confirming that operation
PublishCandidates preserves the fourth and fifth invariants[6]:

theorem applyInRanSinglePfun 	X, Y

∀A: �X; B: �Y • ∀f: A � B • ∀x: dom f; y: Y • ran f � �y� ⇒ fx � y

All the proofs performed during this step gave us a reasonable confidence that the
specification is a faithful formalization of the requirements document; hence, the
specification can be used as the guide for verification.

4. Specification-guided code inspection
Having confidence on the correctness of the specification is of no help to users if it is not
used as a means to gain confidence on the correctness of the implementation. Our
approach to gain confidence on the correctness of the implementation was based on two
verifications activities:

(1) inspecting the code to see if it refines the specification; and
(2) run some test cases derived from the specification.

Clearly, the first activity is static, while the second is dynamic; thus, we made use of two
fundamental verification strategies. In this section, we explain how we used the
specification to inspect the source code of the application.

Before showing how we inspected the code, we will give some insight on the
implementation of the voting system. As we have said in the introduction, the
application was developed by CONICET’s System Department. They decided to
program it as a Grails application. Grails (SpringSource, 2013a) is a Web application
framework for the Java Virtual Machine which, in turn, takes advantage of the
Groovy programming language (SpringSource, 2013b). That is, the application is an
object-oriented program written in a combination of high-level programming
languages (Java and Groovy) and complex frameworks (Grails). We can neither
show nor make public the full application for confidentiality issues, but we will
show excerpts of it.

IJWIS
11,2

192

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 2
3:

10
 0

1
N

ov
em

be
r

20
16

 (
PT

)

We used the specification as the guide to conduct the inspection of the source code.
Therefore, the first step was to identify the data structures and variables that refine the
state variables declared in schemata Endorsements and Votes (see page 4) and the input
variables declared in the operation schemata like Vote. This is documented in a table
similar to Table I. Note that building such a table might not be trivial because the
specification was written from the requirements document and not from the code. For
example, as is said in the requirements document, the system stores the name of each
candidate plus his or her CV and photo, but we decided to abstract away these details in
the specification. As another example, the requirements document, and thus the
specification, does not mention data encryption at all, but it is used in the
implementation.

We will comment on the first three rows of Table I. The implementation of
variable firmCand is a table in a database called BallotPaper which holds data about
the candidates that voters may vote and a variable in memory, papers, which, at
some point, is assigned with the contents of that table through a Grails’ mechanism.
In turn, variable voted is implemented by saving the system date when the voter
votes in his or her database record. Voters are held in a table named Elector, one of
whose fields is the identification of the voter in the system, and the other is the date
when the voter has voted; this table acts as the electoral roll. votes is refined by a
table in the same database named EncryptedVote. The table’s name reflects the fact
that, due to security considerations, developers decided to encrypt each vote and
then present it in the table. Each of the elements stored in EncryptedVote is the
result of encrypting an instance of class Vote. In turn, Vote stores not only the name
of candidates but also their GR, although that could be traced through the data
model.

Once we had clear how state variables were implemented, we identified all the
major operations of the specification. This involves finding the relation between
the signature of operations at the specification level and subroutines in the
implementation, and checking whether they match. We will analyze the case of a
person issuing his or her vote – i.e. Vote. The code dealing with voting is divided in
several files two of which, VoteController.groovy and VoteService.groovy are the
main ones. Control flow starts in VoteController.groovy. There the system presents
to the user all the candidates, he/she can select some of them and press a button.
Then, a method, called issue(), in VoteService.groovy is called, and if everything is

Table I.
Implementation

variables refining
specification

variables

Specification Implementation Comments

firmCand BallotPaper, papers BallotPaper is a table in the database; papers is
a variable in memory.

voted Elector Is a table in the database. If date is non-empty,
elector has voted.

votes EncryptedVote Is a table in the database. Each record is an
encrypted instance of vote.

C? Vote Includes also the election and GR of
candidates.

193

Web voting
system

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 2
3:

10
 0

1
N

ov
em

be
r

20
16

 (
PT

)

right, the vote is saved in the database. If one looks at the first method executed in
VoteController.groovy, then its interface mismatches that of Vote in the
specification because it does not wait any input parameters. The refinement of the
interface of Vote is found in the signature of issue() which is called from
VoteController.groovy.

The last step during the code inspection was to check whether all the pre- and
post-conditions are correctly implemented. Due to the differences in the structure of
the implementation and the specification and those introduced by the (implicit or de
facto) refinement made by programmers, this step is perhaps the most difficult to do,
although the more likely to uncover errors. We will continue with the analysis of the
operation Vote. First, we labeled each pre- and post-condition in the specification as
can be seen in schema VoteOk on page 2.1. These identifiers can latter be used to
annotate the implementation as a means to link both representations. Second, we
used the information gathered in the two previous steps to focus the inspection on
specific implementations units. For example, to inspect the implementation of Vote,
we read code in VoteController.groovy and VoteService.groovy, and we looked for
the refinement of variables voted, firmCand, votes, etc. Every time we found the
implementation of a pre- or post-condition, we annotated the program as follows:

class VoteController{
VoteService voteService

def beforeInterceptor � {

def userPrincipal � (AttributePrincipal)
RCH.currentRequestAttributes().request.userPrincipal

def elector �
Elector.findByUserId(userPrincipal.attributes.usrnum)

//Begin Vote::Pre-3, Vote::Pos-3

if (elector.voteDate) {
render ’You already voted.’
return false

}
//End Vote::Pre-3, Vote::Pos-3
..

Note the comments before and after the conditional structure. Pre 	 3 is one of the
preconditions of schema VoteOk (e? � voted); Pos 	 3 is a post-condition present in
schema AlreadyVoted. Observe how the precondition was implemented: instead of
having a table or file storing all the persons who have issued their votes so far,
programmers decided to augment the electoral roll with an extra column that if empty
means that the corresponding person has not voted and, otherwise, it stores the date
when the person issued his or her vote. As can be seen, pre- and post-conditions may be
annotated together because the “else” branch of conditional sentences is not always
present.

In VoteService.groovy, the method record() receives the ID of the voter and the
encrypted vote and, among other things, checks again if the user can vote and, if not, it
writes the system date in the record of the electoral roll corresponding to the user:

IJWIS
11,2

194

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 2
3:

10
 0

1
N

ov
em

be
r

20
16

 (
PT

)

private record(String userId, byte[] encryptedVote) {
.....................
//Begin Vote::Pre-3, Vote::Pos-3
Elector elector � Elector.findByUserId(userId)
if (elector.voteDate)

throw new RuntimeException("User already voted.")
//End Vote::Pre-3, Vote::Pos-3
.......................
//Begin Vote::Pos-1
elector.voteDate � new Date()
//End Vote::Pos-1
}

The reader can see that we repeated the annotation in this piece of code, and we added an
annotation regarding the first post-condition of schema VoteOk.

Clearly, the mere presence of a sentence implementing a given condition in the
specification does not guarantee the correctness of the implementation. Correctness
depends also on the sentences before and after the one that has been annotated.
However, once the implementation has been inspected, evaluated as correct and
annotated in this way, a convenient IDE can assist the development team during
maintenance because the tool can bring specifics predicates of the specification into
attention, can show all the pieces of code implementing a given condition, etc. For
example, note that we annotated the beginning of Pre 	 3 in VoteController after the
value of elector is set (see the def instruction right above the annotation). Clearly, if this
variable is incorrectly assigned, the precondition will be incorrectly implemented.
Therefore, if during maintenance, the assignment sentence is changed or a new
assignment to elector is added, a convenient IDE can detect that this variable is used in
a critical precondition and warn the programmer.

5. Generating test cases from the specification
The Z specification was also used to generate test cases to exercise the implementation.
Testing the implementation is important even after code inspection because many
third-party components with which the application interacts may fail. This is true in
general but particularly important for the application being considered because it is
implemented over and interacts with very complex components like the JVM, Groovy,
Grails, MySQL, etc.

Test cases were generated by following a model-based testing method known as Test
Template Framework (TTF) and by using Fastest, a tool that semi-automates the TTF.
Given that the TTF and Fastest have been extensively described (Cristiá and Plüss,
2010; Cristiá et al., 2011a; Cristiá et al., 2014; Cristiá et al., 2011b; Cristiá and Frydman,
2012; Stocks and Carrington, 1996), here we will show, by means of a running example,
how we applied them to generate test cases. The TTF and Fastest are used for unit and
functional testing.

Assume the specification has been loaded in Fastest. Consider schema Vote (shown
at page 5) and its input space. The input space of an operation is a Z schema declaring all
the input and state variables of the operation and not restricted by a predicate. First, we
partition the input space of Vote by applying the so-called testing tactics. For example,
we can apply Disjunctive Normal Form (DNF) in which case Fastest generates nine test

195

Web voting
system

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 2
3:

10
 0

1
N

ov
em

be
r

20
16

 (
PT

)

conditions, including the following three (where VoteIS is the schema representing the
input space of Vote):

Note that these schemata include only input and (unprimed) state variables. DNF
guarantees that the main situations described in Vote are going to be tested. For
instance, a user successfully issuing the vote (Vote1

DNF); a user trying to vote after the
election (Vote3

DNF); and a user trying to vote more than once (Vote5
DNF). Any of these test

conditions can be further partitioned by applying other testing tactics. For example, we
can partition Vote1

DNF by applying a standard partition to the operator � in voted= �
voted � �e?� , thus yielding the following test conditions among others:

As can be seen, some of the conditions are unsatisfiable (Vote1
SP , for instance), but

Fastest implements an algorithm that can eliminate many of them (Cristiá et al., 2010).
Note that these test conditions include the conditions of Vote1

DNF because this schema is
included in the others. Therefore, for example, a test case derived from Vote2

SP will
exercise the system when a user is allowed to vote, issues a valid vote and is the first
person to vote; while Vote4

SP will do the same but there should be another user who has
already voted.

More testing tactics can be applied to further partition the input space of the
operation. For instance, another standard partition can be applied to � , in votes= �
votes� �C?� , to partition all the satisfiable children of Vote1

DNF . Test conditions can be
arranged in a so-called testing tree by following the schema inclusions. Partitioning is

IJWIS
11,2

196

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 2
3:

10
 0

1
N

ov
em

be
r

20
16

 (
PT

)

http://www.emeraldinsight.com/action/showImage?doi=10.1108/IJWIS-11-2014-0042&iName=master.img-003.jpg&w=288&h=120
http://www.emeraldinsight.com/action/showImage?doi=10.1108/IJWIS-11-2014-0042&iName=master.img-004.jpg&w=288&h=150

automatically done by Fastest while the elimination of unsatisfiable test conditions is
semi-automatic.

Once the engineer is done with partitioning, he or she can generate test cases from the
leaves of the testing tree. In the TTF, generating a test case means finding constants that
satisfy the predicate of the test condition. In Fastest, this is done by calling a
satisfiability algorithm[7]. As with the elimination of unsatisfiable test conditions, this
algorithm is necessarily incomplete and thus semi-automatic. However, according to our
experiments, in average, the tool automatically finds test cases for at least 80 per cent of
the satisfiable test conditions; the rest must be calculated by the user. Below we show
two typical test cases generated by Fastest (rsch0 is a constant of type RSCH identifying
a particular researcher):

These test cases, however, are Z terms that cannot be executed by the application.
Usually, these test cases are called abstract test cases given that they are at the same
level of abstraction of the specification. Hence, we gave developers precise instructions
on how to write JUnit (Saff, 2014) test cases from the Z test cases, and we translated some
of them as examples. For the translation, we used some of the information gathered
during the code inspection activity. For example, we used the data structures we
identified as the refinement of the state and input variables. That is, each activity
provides useful data for the other activities.

It is important to remark that, although we had to write the JUnit test cases by hand,
Fastest and the TTF were very helpful because without them, we also would have to
design the test cases. Test case design is the most time-consuming and error-prone
activity of testing (Jones and Bonsignour, 2011). JUnit users need to design the test cases
by hand and then write them in JUnit. Furthermore, according to (Cristiá et al., 2011b),
we proposed FTCRL, a method to refine abstract test cases generated by Fastest. In
other words, FTCRL would semi-automate the translation from Fastest test cases into

197

Web voting
system

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 2
3:

10
 0

1
N

ov
em

be
r

20
16

 (
PT

)

http://www.emeraldinsight.com/action/showImage?doi=10.1108/IJWIS-11-2014-0042&iName=master.img-005.jpg&w=288&h=214

test cases similar to JUnit test cases. However, the implementation of the method is not
ready yet.

6. Discussion
The Z specification presented here is about 450 lines of Z code (LATEX mark-up) in a
20-page document. The implementation has approximately 2,575 lines of Grails and
Java code. We proved 31 theorems, 7 of which were discharged automatically. Nine of
the theorems are domain checks automatically generated by Z/EVES; 5 are theorems
about mathematical properties; 6 are the main theorems (i.e. those proving that each
operation preserves all the invariants); and 11 are auxiliary theorems about the
specification – i.e. each of them proves that the main schema of each operation preserves
one invariant. The proof scripts total 2,045 lines of commands. We generated only 68 test
cases, mainly because we were running out of time and because we knew developers will
not have time to run more. However, we estimate that Fastest could generate around 200
test cases. The test cases that were generated cover the main functional alternatives of
all the operations.

The specification was written in 20 man-hours and its verification took around 80
man-hours. Code inspection was performed in 32 man-hours, although it could have
been less provided we have had a deeper knowledge of the implementation technologies.
Test case generation required to translate the specification from Spivey’s de facto
standard into the ISO standard, although, in this case, it was very simple. Generating the
test cases took less than 8 man-hours, mainly because the specification contains many
axiomatic descriptions whose values are underspecified and must be fully specified
before test case generation. Then, our work totaled around 140 man-hours. We do not
have figures about the time consumed during test case refinement and execution
because it was performed by developers.

During the verification of the specification, four minor errors were found. Three of
them concerned with declaring some variables as � instead of � . The remaining one was
a missing precondition in one operation. The code inspection revealed that only two
operations of the model were implemented (Vote and Recount). That is, all the
information regarding preliminary and firm candidates (i.e. their endorsements, KA and
GR) and the electoral roll is loaded manually from different sources. We are not sure
whether top management was aware of this fact. In the implemented operations, code
inspection revealed no errors. Performing a code inspection before engaging in testing
can make testing very cost-effective, as many errors are discovered during the
inspection. Furthermore, the code inspection yields a documented project (specification
and implementation), making it easier to introduce changes and bug-fixes. As far as we
have been told, test cases were run and all the errors found where corrected.

We know that there have been verification efforts producing verified software that
involve larger specifications and implementations than the one presented here (see
Section 7). However, our project presents crucial differences with many, if not all, of
them. These other projects are performed entirely, including the programming stage, by
experts on formal verification – many of them are either PhD students within first-class
research groups or people already holding a PhD. Furthermore, in all these projects, the
implementation is developed once the specification has been written and proved correct.
Indeed, many formal techniques have been thought to be applied under the assumption
of a correct specification. In many of these projects, the creators of the techniques being

IJWIS
11,2

198

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 2
3:

10
 0

1
N

ov
em

be
r

20
16

 (
PT

)

applied are those who run them. In contrast, the project presented here involves the
verification of a program that was developed by average programmers before the
verification activities were even thought. This means, for example, that we were not
allowed to choose the programming language. In other words, verification was an
afterthought and the implementation was not done by researchers, as it is in almost all
the software produced nowadays. It is true, however, that the verification was
performed by researchers. In summary, we think that the project presented here is closer
to the way the software industry works, making it appealing to evaluate the
applicability of formal methods. It remains as a challenge to run a lager project but in a
similar context.

7. Related work
The Z notation, and its extensions, is being used for formal specification since the early
eighties. It has been used to specify a wide range of systems; we will mention just a few
of the latest specifications to give an idea of the kind of requirements formalized with Z.
Perhaps one of the most praised Z specifications in recent years is the Tokeneer abstract
specification (Barnes et al., 2006). This project was an experiment performed by the NSA
to prove that formal methods are cost-effective in real-world software. Altran Praxis
from UK was finally hired for the job. They wrote a Z specification that was latter
verified to be correct by proving some security properties. Also a low-level design was
written in Z and the SPARK code was formally verified and reviewed. The net result was
that only two errors were discovered after delivery although more recent studies show
that more errors exist (Moy and Wallenburg, 2010). Altran Praxis has used these
technologies in many projects of different application domains.

Cristiá et al. (2011a) have used Z for modeling aerospace software such as satellite
communication protocols, part of a launching vehicle control software and the
ECSS-E-70-41A aerospace standard. In all these projects, the TTF and Fastest were
applied to generate test cases.

Frydman and her colleagues have combined Z with DEVS (Zeigler et al., 2001) for the
validation of discrete event systems via simulation and formal methods (Sqali et al.,
2009; Trojet et al., 2009). Object-Z has been used in the formalization of the Web Service
Modeling Ontology for the Semantic Web (Wang et al., 2012) and also Z and Z/EVES
were applied in the same domain (Khan et al., 2012). The main purpose of these works
was to provide a precise and unambiguous specification for concepts that have
traditionally been informal.

Security systems have also been the focus of Z specifications. For example, Haidar
et al. (2009) combined Z and CSP (Roscoe, 1997) to provide a formal specification for the
Audited Credential Delegation architecture which would help virtual organization in
managing the identities of their users. Security is often a critical aspect of some systems,
but there are systems that are critical in their own. Gomes and Oliveira (2009) have
written a Z specification for a cardiac pacing system which is one of the challenges
proposed as part of the Verification Grand Challenge. This specification comprises 4,000
lines of Z. As a last example, we can mention the specification of the safety properties of
a railway interlocking system (Zafar et al., 2012), which is one of the traditional targets
of formal specification due to the potential damages a failure may cause.

Z/EVES has been the proof assistant used in many projects where Z was the
specification language. Khan et al. (2012) and 32 use Z/EVES to discharge the proof

199

Web voting
system

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 2
3:

10
 0

1
N

ov
em

be
r

20
16

 (
PT

)

obligations automatically generated by the tool itself. However, some have used Z/
EVES to prove properties of the specification as a mean to gain confidence on its
correctness. For example, Sun et al. (2005) used this tool to prove 40 theorems about
feature modeling. Amálio et al. (2006) used Z/EVES to prove properties of FTL, a formal
language that allows the description of formal templates written in any formal
language, in particular templates for the Z notation) and for the UML modeling notation
(Amálio et al., 2004). Dong et al. (2002) explore the benefits of using Z/EVES to detect
inconsistencies in semantic Web services, although it seems that they did not prove a
reasonable amount of properties. Yuan et al. (2006) used Z/EVES to prove some security
properties (separation of duty, in this case) of a state-based, role-based access control
(RBAC) model. Freitas and Woodcock (2008) have extensively used Z/EVES for proving
properties of complex systems such as the Mondex Electronic Purse (Woodcock and
Freitas, 2006) and a POSIX file store (Freitas et al., 2007), contributing to the verified
software repository. Cristiá et al. (2010) have used Z/EVES to prove that the so-called
pruning rules are sound and so they can be used to eliminate inconsistent test conditions
from testing trees.

Program annotation has a long tradition in the formal methods community and in
other fields of programming; we will review some representative works. Cataño and
Huisman (2002) annotate an application with ESC/Java (Flanagan et al., 2013) in such a
way that a formal functional specification is provided. The authors say that application
developers might be more inclined to write formal specifications if specifications are
written in a language closer to the programming language being used. While this might
indeed be true, a disadvantage of this approach is that the specification becomes less
abstract. This work reports a serious impact on the quality and documentation of the
project. Developers at Altran Praxis annotate their SPARK programs with data and
information flow clauses that are latter analyzed by the SPARK Examiner (King et al.,
2000). They also annotate programs with pre- and post-conditions to perform a
functional verification. In this case, the SPARK Examiner generates proof obligations
that, in general, cannot be discharged automatically. This work is also interesting
because some of the SPARK annotations are derived from the Z specification by
following some naming conventions and by running simple type translations. Note,
however, that the broader context of the project is quite different: in the Altran Praxis
case, they developed the specification and the implementation allowing them to select
the latter; in our case, we could not select the implementation because it was already
given – for instance, we could not decide to implement the voting system in SPARK.
There are many other works investigating different aspects of program annotation but
they are not closely related with the ideas presented here (Bartetzko et al., 2001; Frade
and Pinto, 2011; Jacobs, 2004; Marché et al., 2004).

Some properties of larger programs than the one presented here were automatically
proved correct by means of many static analysis techniques. For example, Berdine et al.
(2011) describe a tool (Slayer) that can automatically prove memory safety of industrial
systems such as Windows device drivers. Another advanced tool that was applied to
large, safety-critical, embedded, real-time software is presented by Blanchet et al. (2002).
They acknowledge that their tool works for a restricted class of programs and
properties. VeriFast and Frama-C are another two static analysis tools that have been
applied to large programs (Hartig et al., 2010; Philippaerts et al., 2014). Although all

IJWIS
11,2

200

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 2
3:

10
 0

1
N

ov
em

be
r

20
16

 (
PT

)

these tools represent remarkable achievements in their field, the proven properties are
not functional or do not fully cover a functional verification of the implementation.

We could not find works presenting the combined application of all the techniques
shown in this paper in the same project, that is: formal specification, formal verification
of the specification, program annotation with respect to the specification as the basis for
code inspection, and model-based testing as a complementary verification activity.

8. Conclusions
During the verification of the voting system reported in this paper, we applied four
techniques ranging from formal to informal ones. Given the resources and time
available, we were able to transmit to senior management a reasonable level of
confidence on the correctness of the application. The first election was carried out
without any noticeable failure.

In our opinion, the most valuable contribution of this report is that these techniques
were applied to an industrial project under very realistic conditions. That is, a project
where average developers implemented a program whose verification was scheduled
once it was finished. When this is the case, verification has a very low budget and tight
schedule. In this context, these techniques proved to be effective and efficient. Moreover,
the separation between a standard team of developers and a group of researchers in
charge of the verification may be a good strategy in many projects. However, this setting
posses some challenges to formal methods. The main reason is that the verification team
has practically no influence on the implementation technologies. In turn, this implies
that many formal techniques must be adapted or lightened.

We believe that the combination between a formal specification, a code inspection
guided by the specification and model-based testing (as was done in this project) can be
the basis of a verification methodology for mission critical applications whose
verification is requested once the implementation is finished.

Notes
1. In English: National Scientific and Technical Research Council.

2. CONICET’s Systems Department is not a research unit.

3. In the project, we used both Spivey’s Z for Z/EVES and standard Z (ISO, 2002) for Fastest; in
the paper we use only the latter.

4. Just take a look at it for now; later we give some details about it.

5. Actually, Z/EVES also generates proof obligations for definite descriptions (
-terms), but we
did not use them.

6. PublishCandidates is the first step during the election process in which CONICET publish the
list of candidates looking for endorsements.

7. The algorithm currently implemented by Fastest has been described by Cristiá et al. (2014)
but is being replaced by one based on the {log} (setlog) tool (see Cristiá et al., 2012, for details).

References
Amálio, N., Stepney, S. and Polack, F. (2004), “Formal proof from UML models”, in Davies, J.,

Schulte, W. and Barnett, M. (Eds), 6th International Conference on Formal Engineering
Methods, Seattle, WA, 8-12 November, pp. 418-433.

201

Web voting
system

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 2
3:

10
 0

1
N

ov
em

be
r

20
16

 (
PT

)

http://www.emeraldinsight.com/action/showLinks?crossref=10.1007%2F978-3-540-30482-1_35
http://www.emeraldinsight.com/action/showLinks?crossref=10.1007%2F978-3-540-30482-1_35

Amálio, N., Stepney, S. and Polack, F. (2006), “A formal template language enabling metaproof”,
in Misra, J., Nipkow, T. and Sekerinski, E. (Eds), 14th International Symposium on Formal
Methods, Hamilton, 21-27 August, pp. 252-267.

Barnes, J., Chapman, R., Johnson, R., Widmaier, J., Cooper, D. and Everett, B. (2006), “Engineering
the Tokeneer enclave protection software”, Proceedings of the IEEE International
Symposium on Secure Software Engineering, Washington, DC.

Bartetzko, D., Fischer, C., Möller, M. and Wehrheim, H. (2001), “Jass – java with assertions”,
Electronic Notes in Theoretical Computer Science, Vol. 55 No. 2, pp. 103-117.

Berdine, J., Cook, B. and Ishtiaq, S. (2011), “Slayer: memory safety for systems-level code”, in
Gopalakrishnan, G. and Qadeer, S. (Eds), 23rd International Conference, Snowbird, UT,
14-20 July, pp. 178-183.

Blanchet, B., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux, D. and Rival, X.
(2002), The Essence of Computation, Springer-Verlag, New York, NY, pp. 85-108.

Cataño, N. and Huisman, M. (2002), “Formal specification and static checking of gemplus’
electronic purse using ESC/Java”, Proceedings of the International Symposium of Formal
Methods Europe on Formal Methods - Getting IT Right, London, pp. 272-289.

Flanagan, C., Leino, K.R.M., Lillibridge, M., Nelson, G., Saxe, J.B. and Stata, R. (2013), Extended
Static Checking for Java, Compaq Systems Research Center, Palo Alto, CA.

Cristiá, M., Albertengo, P., Frydman, C.S., Plüss, B. and Monetti, P.R. (2011a), “Applying the test
template framework to aerospace software”, in Rash, J.L. and Rouff, C. (Eds), 34th IEEE
Software Engineering Workshop (SEW), Limerick, pp. 128-137.

Cristiá, M., Albertengo, P. and Rodríguez Monetti, P. (2010), “Pruning testing trees in the test
template framework by detecting mathematical contradictions”, in Fiadeiro, J.L. and Gnesi,
S. (Eds), 8th IEEE International Conference on Software Engineering and Formal Methods
(SEFM), Pisa, pp. 268-277.

Cristiá, M. and Frydman, C.S. (2014), “A functional verification of a web voting system”, in
Murgante, B., Misra, S., Rocha, A.M.A.C., Torre, C.M., Rocha, J.G., Falcão, M.I., Taniar, D.,
Apduhan, B.O. and Gervasi, O. (Eds), 14th International Conference, Guimarães, 30 June-3
July, pp. 640-655.

Cristiá, M. and Plüss, B. (2010), “Generating natural language descriptions of Z test cases”, in
Kelleher, J.D., Namee, B.M., van der Sluis, I., Belz, A., Gatt, A. and Koller, A. (Eds), The
International Natural Language Generation Conference, Dublin, pp. 173-177.

Cristiá, M., Albertengo, P., Frydman, C.S., Plüss, B. and Rodríguez Monetti, P. (2014), “Tool
support for the test template framework”, Software Testing, Verification and Reliability,
Vol. 24 No. 1, pp. 3-37.

Cristiá, M., Rossi, G. and Frydman, C. (2012), “{log} as a test case generator for the test
template framework”, Technical report, Dipartimento di Matematica, Università di
Parma, Parma.

Cristiá, M., Hollmann, D., Albertengo, P., Frydman, C.S. and Monetti, P.R. (2011b), “A language for
test case refinement in the Test Template Framework”, in Qin, S. and Qiu, Z. (Eds), 13th
International Conference on Formal Engineering Methods, Durham, 26-28 October,
pp. 601-616.

Cristiá, M. and Frydman, C.S. (2012), “Extending the Test Template Framework to deal with
axiomatic descriptions, quantifiers and set comprehensions”, in Derrick, J., Fitzgerald, J.A.,
Gnesi, S., Khurshid, S., Leuschel, M., Reeves, S. and Riccobene, E. (Eds), Third International
Conference, ABZ 2012, Pisa, 18-21 June, pp. 280-293.

IJWIS
11,2

202

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 2
3:

10
 0

1
N

ov
em

be
r

20
16

 (
PT

)

http://www.emeraldinsight.com/action/showLinks?crossref=10.1007%2F978-3-642-22110-1_15
http://www.emeraldinsight.com/action/showLinks?crossref=10.1007%2F978-3-642-30885-7_20
http://www.emeraldinsight.com/action/showLinks?crossref=10.1007%2F978-3-642-30885-7_20
http://www.emeraldinsight.com/action/showLinks?crossref=10.1007%2F11813040_18
http://www.emeraldinsight.com/action/showLinks?crossref=10.1007%2F11813040_18
http://www.emeraldinsight.com/action/showLinks?crossref=10.1007%2F3-540-36377-7_5
http://www.emeraldinsight.com/action/showLinks?crossref=10.1002%2Fstvr.1477&isi=000328732800002
http://www.emeraldinsight.com/action/showLinks?crossref=10.1007%2F3-540-45614-7_16
http://www.emeraldinsight.com/action/showLinks?crossref=10.1007%2F3-540-45614-7_16
http://www.emeraldinsight.com/action/showLinks?crossref=10.1016%2FS1571-0661%2804%2900247-6
http://www.emeraldinsight.com/action/showLinks?crossref=10.1007%2F978-3-319-09144-0_44
http://www.emeraldinsight.com/action/showLinks?crossref=10.1007%2F978-3-319-09144-0_44

Dong, J.S., Sun, J. and Wang, H.H. (2002), “Z approach to semantic web”, in George, C. and Miao, H.
(Eds), 4th International Conference on Formal Engineering Methods, Shanghai, 21-25
October, pp. 156-167.

Frade, M.J. and Pinto, J.S. (2011), “Verification conditions for source-level imperative programs”,
Computer Science Review, Vol. 5 No. 3, pp. 252-277.

Freitas, L. (2004), “Z/Eves extended Z toolkit”, Technical Report, University of York, Heslington.

Freitas, L., Fu, Z. and Woodcock, J. (2007), “Posix file store in z/eves: an experiment in the verified
software repository”, 12th IEEE International Conference on Engineering Complex
Computer Systems, Auckland, pp. 3-14.

Freitas, L. and Woodcock, J. (2008), “Mechanising mondex with z/eves”, Formal Aspects of
Computing, Vol. 20, pp. 117-139.

Gomes, A.O. and Oliveira, M.V. (2009), “Formal specification of a cardiac pacing system”,
Proceedings of the 2nd World Congress on Formal Methods, Berlin, pp. 692-707.

Haidar, A.N., Coveney, P.V., Abdallah, A.E., Ryan, P.Y.A., Beckles, B., Brooke, J.M. and
Jones, M.A.S. (2009), “Formal modelling of a usable identity management solution for
virtual organizations”, in Bryans, J. and Fitzgerald, J.S. (Eds), Formal Aspects of Virtual
Organisations 2009 (FAVO2009), Electronic Proceedings in Theoretical Computer Science
(EPTCS), Eindhoven, pp. 41-50.

Hartig, K., Gerlach, J., Soto, J. and Busse, J. (2010), “Formal specification and automated
verification of safety-critical requirements of a railway vehicle with frama-c/Jessie”, in
Schnieder, E. and Tarnai, G. (Eds), Formal Methods for Automation and Safety in Railway
and Automotive Systems, Springer, pp. 145-153.

ISO (2002), “Information technology – Z formal specification notation – syntax, type system and
semantics”, Technical Report ISO/IEC 13568, International Organization for
Standardization.

Jackson, M. (1995), Software Requirements & Specifications: A Lexicon of Practice, Principles and
Prejudices, ACM Press/Addison-Wesley Publishing, New York, NY.

Jacky, J. (1996), The Way of Z: Practical Programming with Formal Methods, Cambridge
University Press, New York, NY.

Jacobs, B. (2004), “Weakest pre-condition reasoning for java programs with jml annotations”, The
Journal of Logic and Algebraic Programming, Vol. 58 Nos 1/2, pp. 61-88.

Jones, C. and Bonsignour, O. (2011), The Economics of Software Quality, Addison-Wesley.

Khan, S.A., Hashmi, A.A., Alhumaidan, F. and Zafar, N.A. (2012), “Semantic web specification
using Z-notation”, Life Science Journal, Vol. 9 No. 4.

King, S., Hammond, J., Chapman, R. and Pryor, A. (2000), “Is proof more cost-effective than
testing?”, IEEE Transactions on Software Engineering, Vol. 26 No. 8, pp. 675-686.

Marché, C., Paulin-Mohring, C. and Urbain, X. (2004), “The krakatoa tool for certificationof java/
javacard programs annotated in jml”, Journal of Logic and Algebraic Programming, Vol. 58
Nos 1/2, pp. 89-106.

Moy, Y. and Wallenburg, A. (2010), “Tokeneer: beyond formal program verification”, Proceeding
5th International Congress on Embedded Real Time Software and Systems (ERTS’10),
Toulouse.

Philippaerts, P., Mühlberg, J.T., Penninckx, W., Smans, J., Jacobs, B. and Piessens, F. (2014),
“Software verification with VeriFast: industrial case studies”, Science of Computer
Programming, Vol. 82 No. 1, pp. 77-97.

203

Web voting
system

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 2
3:

10
 0

1
N

ov
em

be
r

20
16

 (
PT

)

http://www.emeraldinsight.com/action/showLinks?crossref=10.1016%2Fj.scico.2013.01.006&isi=000331857300006
http://www.emeraldinsight.com/action/showLinks?crossref=10.1016%2Fj.scico.2013.01.006&isi=000331857300006
http://www.emeraldinsight.com/action/showLinks?crossref=10.1017%2FCBO9780511574924
http://www.emeraldinsight.com/action/showLinks?crossref=10.1109%2F32.879807&isi=000089282300002
http://www.emeraldinsight.com/action/showLinks?crossref=10.1109%2FICECCS.2007.36
http://www.emeraldinsight.com/action/showLinks?crossref=10.1109%2FICECCS.2007.36
http://www.emeraldinsight.com/action/showLinks?crossref=10.1016%2Fj.jlap.2003.07.005&isi=000189036400004
http://www.emeraldinsight.com/action/showLinks?crossref=10.1016%2Fj.jlap.2003.07.005&isi=000189036400004
http://www.emeraldinsight.com/action/showLinks?crossref=10.1016%2Fj.jlap.2003.07.006&isi=000189036400005
http://www.emeraldinsight.com/action/showLinks?crossref=10.1007%2F3-540-36103-0_18
http://www.emeraldinsight.com/action/showLinks?crossref=10.1007%2F3-540-36103-0_18
http://www.emeraldinsight.com/action/showLinks?crossref=10.1007%2Fs00165-007-0059-y&isi=000251871500008
http://www.emeraldinsight.com/action/showLinks?crossref=10.1007%2Fs00165-007-0059-y&isi=000251871500008
http://www.emeraldinsight.com/action/showLinks?crossref=10.1016%2Fj.cosrev.2011.02.002
http://www.emeraldinsight.com/action/showLinks?crossref=10.1007%2F978-3-642-05089-3_44

Roscoe, A.W. (1997), The Theory and Practice of Concurrency, Prentice Hall PTR, Upper Saddle
River, NJ.

Saaltink, M. (1999), The Z/EVES 2.0 User’s Guide, Ora Canada.
Saaltink, M. (1997a), “The Z/EVES mathematical toolkit version 2.2 for Z/EVES version 1.5”,

Technical Report, ORA Canada.
Saaltink, M. (1997b), “The Z/EVES system”, in Bowen, J.P., Hinchey, M.G. and Till, D. (Eds), 10th

International Conference of Z Users, Reading, 3-4 April, pp. 72-85.
Saff, D. (2014), “JUnit.org – resources for test driven development”, available at: http://

junit.org/
Spivey, J.M. (1992), The Z Notation: A Reference Manual, Prentice Hall International,

Hertfordshire.
SpringSource (2013a), Grails – The Search is Over, SpringSource.
SpringSource (2013b), Groovy – A Dynamic Language for the Java Platform, SpringSource.
Sqali, M., Trojet, W., Torres, L. and Frydman, C. (2009), “Combining interaction and state based

modelling to validate system specification via simulation and formal methods”, Winter
Simulation Conference (WSC 2009), Poster Session, Austin, TX.

Stocks, P. and Carrington, D. (1996), “A framework for specification-based testing”, IEEE
Transactions on Software Engineering, Vol. 22 No. 11, pp. 777-793.

Sun, J., Zhang, H. and Wang, H. (2005), “Formal semantics and verification for feature modeling”,
ICECCS ’05: Proceedings of the 10th IEEE International Conference on Engineering of
Complex Computer Systems, Washington, DC, pp. 303-312.

Trojet, W., Sqali, M., Frydman, C., Torres, L. and el-amine Hamri, M. (2009), “Validating the global
behaviour of a system described with scenarios using GDEVS and Z”, 21th European
Modeling and Simulation Symposium (EMSS0=9), Tenerife - Canary Islands.

Wang, H.H., Gibbins, N., Payne, T.R. and Redavid, D. (2012), “A formal model of the semantic web
service ontology (WSMO)”, Information Systems, Vol. 37 No. 1, pp. 33-60.

Woodcock, J. and Freitas, L. (2006), “Z/eves and the mondex electronic purse”, in Barkaoui, K.,
Cavalcanti, A. and Cerone, A. (Eds), Theoretical Aspects of Computing - ICTAC (2006),
Springer Berlin Heidelberg, pp. 15-34.

Yuan, C., He, Y., He, J. and Zhou, Z. (2006), “A verifiable formal specification for rbac model with
constraints of separation of duty”, in Lipmaa, H., Yung, M. and Lin, D. (Eds), Information
Security and Cryptology, Springer Berlin Heidelberg, pp. 196-210.

Zafar, N.A., Khan, S.A. and Araki, K. (2012), “Towards the safety properties of moving block
railway interlocking system”, International Journal of Innovative Computing, Information
and Control, Vol. 8 No. 8.

Zeigler, B.P., Kim, T.G. and Praehofer, H. (2000), Theory of Modeling and Simulation, Academic
Press, Orlando, FL.

Corresponding author
Maximiliano Cristia can be contacted at: cristia@cifasis-conicet.gov.ar

For instructions on how to order reprints of this article, please visit our website:
www.emeraldgrouppublishing.com/licensing/reprints.htm
Or contact us for further details: permissions@emeraldinsight.com

IJWIS
11,2

204

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 2
3:

10
 0

1
N

ov
em

be
r

20
16

 (
PT

)

http://junit.org/
http://junit.org/
mailto:cristia@cifasis-conicet.gov.ar
mailto:permissions@emeraldinsight.com
http://www.emeraldinsight.com/action/showLinks?crossref=10.1007%2F11937807_16
http://www.emeraldinsight.com/action/showLinks?crossref=10.1007%2F11937807_16
http://www.emeraldinsight.com/action/showLinks?isi=000307628800017
http://www.emeraldinsight.com/action/showLinks?isi=000307628800017
http://www.emeraldinsight.com/action/showLinks?crossref=10.1016%2Fj.is.2011.07.003&isi=000296991000003
http://www.emeraldinsight.com/action/showLinks?crossref=10.1109%2F32.553698&isi=A1996WA61100001
http://www.emeraldinsight.com/action/showLinks?crossref=10.1109%2F32.553698&isi=A1996WA61100001
http://www.emeraldinsight.com/action/showLinks?crossref=10.1007%2F11921240_2

