
ISML-MDE
A practical experience of implementing a
model driven environment in a software

development organization
Maria Consuelo Franky and Jaime A. Pavlich-Mariscal

Dpto. de Ingeniería de Sistemas, Pontificia Universidad Javeriana,
Bogota, Colombia

Maria Catalina Acero and Angee Zambrano
Heinsohn Business Technology, Bogota, Colombia

John C. Olarte
Pontificia Universidad Javeriana, Bogota, Colombia, and

Jorge Camargo and Nicolás Pinzón
Heinsohn Business Technology, Bogota, Colombia

Abstract
Purpose – This purpose of this paper is to present ISML-MDE, a model-driven environment that
includes ISML, a platform-independent modeling language for enterprise applications; ISML-GEN,
a code generation framework to automatically generate code from models; and LionWizard, a tool
to automatically integrate different components into a unified codebase.
Design/methodology/approach – The development comprises five stages: standardizing
architecture; refactoring and adapting existing components; automating their integration;
developing a modeling language; and creating code generators. After development, model-to-code
ratios in ISML-MDE are measured for different applications.
Findings – The average model-to-code ratio is approximately 1:4.6 when using the code
generators from arbitrary models. If a model transformation is performed previously to the code
generation, this ratio raises to 1:115. The current validation efforts show that ISML properly
supports several DSL essential characteristics described by Kahraman and Bilgen (2015).
Research limitations/implications – ISML-MDE was tested on relatively small applications.
Further validation of the approach requires measurement of development times and their
comparison with previous similar projects, to determine the gains in productivity.
Originality/value – The value of ISML-MDE can be summarized as follows: ISML-MDE has the
potential to significantly reduce development times, because of an adequate use of models and
transformations. The design of ISML-MDE addresses real-world development requirements,

This article is part of the Project “Desarrollo de nuevos métodos y tecnologías para acelerar la
construcción de software: Un enfoque basado en modelos y frameworks de generación
avanzados”, executed by the SIDRe research group of the Pontificia Universidad Javeriana and
Heinsohn Business Technology, co-financed by Colciencias: 1,203-562-37822.

The current issue and full text archive of this journal is available on Emerald Insight at:
www.emeraldinsight.com/1744-0084.htm

Software
development
organization

533

Received 27 April 2016
Revised 30 June 2016
Accepted 8 July 2016

International Journal of Web
Information Systems

Vol. 12 No. 4, 2016
pp. 533-556

© Emerald Group Publishing Limited
1744-0084

DOI 10.1108/IJWIS-04-2016-0025

http://dx.doi.org/10.1108/IJWIS-04-2016-0025


obtained from a tight interaction between the researchers and the software development company.
The underlying process has been thoroughly documented and it is believed it can be used as a
reference for future developments of MDE tools under similar conditions.

Keywords Enterprise applications, Code generation, Legacy components integration,
Model-driven engineering, Xtext

Paper type Research paper

1. Introduction
Enterprise applications are systems that “are designed to integrate computer systems
that run all phases of an enterprise’s operations to facilitate cooperation and
coordination of work across the enterprise” (Gartner-Inc, 2015). Because of their size and
heterogeneity, enterprise applications are inherently complex (Fowler, 2002), which
introduces several challenges to the development of these kind of applications.

During the past years, frameworks have been developed to assist developers to create
complex systems (Oracle, 2015a; Microsoft, 2015a). These frameworks provide several
components to simplify tasks commonly performed by enterprise applications and
provide a uniform architecture to deploy and interoperate heterogeneous applications.
Even though these frameworks provide considerable power to developers, they have
important drawbacks. One of the most important ones is that they are still significantly
complex. Frameworks, such as Java EE Oracle (2015a) have thousands of classes,
several different configuration file formats and deployment platforms, which are
provided by different vendors, require learning additional application programming
interfaces (APIs) and procedures to properly run enterprise systems over them. Overall,
the learning curve for these frameworks can be very steep.

Integrated development environments (IDE) address the above problem to a certain
degree. IDEs facilitate development by organizing the code and automating some
tedious tasks (Eclipse-Foundation, 2015a; Microsoft, 2015b; Oracle, 2015d; JetBrains,
2015). However, programmers still have to learn an important portion of the APIs of the
frameworks and related information to adequately develop enterprise applications.

One of the main reasons for the above complexity is the lack of adequate abstraction
mechanisms. Developers have to address a lot of these frameworks’ details to properly
develop and deploy enterprise applications. A potential solution to this problem is
model-driven engineering (MDE) (Kent, 2002). MDE abstracts software-related
problems and solutions into models, and uses automatic code generation tools to create
part of or all of the code that implements those solutions.

This paper presents the practical experience of developing ISML-MDE, a
model-driven environment that comprises three main components: ISML, a modeling
language for enterprise applications; ISML-GEN, a code generation framework; and
LionWizard, a tool to automatically integrate different code components – including
components with crosscutting code – into a unified codebase. The name ISML is the
acronym for Information Systems Modeling Language. This name reflects the vision of
this language, which is to model most elements of an information system, both from the
problem domain and the solution domain. As of the writing of this paper, ISML supports
the specification of the solution domain. Ongoing work is to extend ISML to model the
problem domain.

Although there are modeling environments similar to ISML-MDE (Baresi et al., 2006;
Groenewegen et al., 2015; Kroiss et al., 2009; OMG, 2015; Souer et al., 2008), our approach

IJWIS
12,4

534



differs in that it is designed to facilitate adoption for enterprise software development
organizations. To achieve this goal, ISML-MDE was developed in tight collaboration
with a large-scale software development company. Design decisions, such as syntax,
semantics, design patterns and code generation strategies were driven by the specific
necessities of these kind of organizations.

Although the process of developing ISML-MDE is based on requirements elicited
from a specific software development organization, we believe that these requirements
are common to many similar organizations; thus, ISML-MDE has the potential to benefit
a wider audience. Moreover, ISML and the essential parts of ISML-GEN are open source
and available in a repository (Pavlich-Mariscal, 2015).

The remainder of this paper describes ISML-MDE and the practical issues of
developing it, particularly the strategies used to address specific modeling requirements
and achieve an adequate integration with existing assets in a software development
organization. Section 2 describes related work; Section 3 summarizes the context of the
problem, the solution (ISML-MDE) and its rationale; Section 4 details the process to
create ISML-MDE, including the design decisions behind the tool, the architecture, its
components (ISML, ISML-GEN and LionWizard) and the integration with existing
frameworks or libraries; Section 5 describes ISML, the proposed modeling language;
Section 6 describes ISML-GEN, the code generation framework; Section 7 describes
three case studies used to test ISML-MDE and the potential benefits in terms of
automation and abstraction; and Section 8 concludes and describes future work.

2. Related work
From the modeling point of view, there are several approaches to specify web and
enterprise applications. The Interaction Flow Modeling Language (IFML) is an Object
Management Group (OMG) standard based on WebML (WebRatio, 2015). IFML focuses
on the specification of “content, user interaction and control behavior of the front-end of
software applications” (OMG, 2015). As such, IFML specifies presentation concerns of
an application, relying on other languages, such as SoaML (OMG, 2012) to integrate with
services. As it is based on WebML, information is conveyed through visual means
(graph-based diagrams).

A similar language is the one provided by Obeo’s Cinematic Designer (Obeo, 2015d),
which focuses on the visual aspects of a web application. This language is
complemented by other languages developed by Obeo: the Entity Designer (Obeo,
2015c) and the SOA Designer (Obeo, 2015b), which model entities and services,
respectively.

The UML-Based Web Engineering Approach (UWE) (Kroiss et al., 2009) is a UML
profile to specify content, navigation, business processes and presentation of a
web-based application. Being a UML profile, it can be easily specified through case tools
that support UML. Mubin et al. (Mubin and Jantan, 2014) propose a similar approach –
a UML profile to specify a user interaction model from a requirements specification. The
user interaction model captures a conceptual model, a navigational model and a user
interface model. In their essential form, none of them provide support for services.

All of the above languages are visual, while ISML is a textual language. Although
there is no general consensus on the advantages of visual versus textual languages
(Mazanec and Macek, 2012), in our experience, the textual focus of ISML provides two
main advantages over visual languages: it facilitates the specification of more details

535

Software
development
organization



about an application model and integrates easily with version control tools. However, it
is harder to specify associations between model entities.

W2000 (Baresi et al., 2006) is a notation to specify complex web applications. It
provides facilities to specify the standard components of a Model-View-Controller
(MVC) architecture (Gamma et al., 1995): an Information Model for the Model part in
MVC, a Navigation Model for the Controller part, and a Presentation model for the View
part. W2000 also includes a model to specify services. Although W2000 is able to
represent the same elements as our approach, ISML combines all three elements of MVC,
plus services, into a single, integrated model.

The approach that is closest to ISML is WebDSL (Groenewegen et al., 2015), a textual
language to specify web applications. ISML differs in various elements. First, ISML
provides the Controller as a modular unit to group-related actions that can be performed
over the system. Second, ISML provides a simpler mechanism to specify events
triggered from the user interface called the arrow “��” operator. Third, WebDSL has
some platform-specific elements (e.g. the “ajax” keyword) that may limit the possible
target platforms. In contrast, ISML aims to be as independent as possible from the
implementation platform. Finally, concerns, such as access control, are managed at the
code generation level, so that designers can be oblivious to these concerns.

From the point of view of code generation, there are several frameworks to generate
enterprise and web applications. AndroMDA (AndroMDA, 2014) is a code generation
framework that uses the Velocity (Apache-Foundation, 2010) template engine to
transform simple stereotyped UML models into J2EE or NET implementations.
AndroMDA provides code generation components called “cartdriges” to modularize
different code generators. Similarly, Taylor (Gilbert, 2008) is a code generation
framework that takes as input a simple stereotyped UML model and generates a Java EE
application. In contrast, ISML-GEN is based on the Xtext (Eysholdt and Behrens, 2010)
code generation framework, which provides better integration with development tools,
such as Eclipse (Eclipse-Foundation, 2015a). ISML-GEN also provides a wrapper for the
Xtext code generation APIs, which makes it much simpler to develop code generators.

Zathuracode (Gomez, 2015) is another code generator for Java EE that takes as input
a database schema and generates an application with basic CRUD (Create, Retrieve,
Update, Delete) operations over that schema. A related approach is Equanda (Auwera,
2013) that takes as input an XML file containing the main application entities and
generates a Java EE code to access those entities. These tools only support a simple
model as input that only denotes application entities. In contrast, ISML and ISML-GEN
also support services, navigation and presentation concerns.

The Acceleo JavaEE Generators (Obeo, 2015e) are a set of code generators that take
as input a model specified in the three domain specific modelers specified above (Entity
Designer, SOA designer and Cinematic Designer) and use the Acceleo (Obeo, 2015a)
template engine to generate code in Java EE. While Acceleo and ISML-GEN’s
underlying Xtext framework are very similar in capabilities and ease of use, the layer
that we provide over Xtext has the potential to facilitate development and organization
of code generation templates.

Overall, the main characteristics that differentiate ISML-MDE with most related
approaches are: the focus on a textual modeling language, support for MVC constructs
and services, platform independence, simpler model querying for code generation and
facilities to integrate legacy code components in the ISML models.

IJWIS
12,4

536



3. Overview of the problem and the solution
ISML-MDE was developed as a joint project between the Pontificia Universidad
Javeriana (PUJ, 2015), a Colombian university, and Heinsohn Business Technology
(HBT) (Heinsohn, 2015), a Colombian software development organization. ISML-MDE is
the result of a process that spans more than just the design of the tool itself, as many of
the problems at HBT were not only related to abstraction and automation but also to
standardization and large-scale reuse.

This section describes the context of the problem, design decisions, rationale and the
architecture of ISML-MDE.

3.1 Context of the problem
HBT is a software development organization that focuses on large-scale enterprise
applications for governmental and commercial companies. Their main development
platform is Java EE (Oracle, 2015a).

As of the beginning of this project, there was little automation in the development
tasks. Most of the development was performed using Eclipse with Java EE plugins
(Eclipse-Foundation, 2015a). Over the years, HBT had developed several components in
that platform to address different concerns such as access control, batch processing,
persistence and presentation, among others (Franky and Pavlich-Mariscal, 2014).
Although these components were frequently required by other projects, their reuse was
difficult, because many manual tasks were required to properly integrate them into the
codebase. Moreover, each software project at HBT had a different architecture, which
made it harder to integrate the existing components. Overall, it was necessary to
accelerate the process to integrate components into the codebase of new projects. This
goal could be achieved by standardizing the architecture and automating the integration
tasks.

Another important issue at HBT was the complexity of the frameworks used in
development. For instance, the Java EE 7 (Oracle, 2015a) API has more than 2,000
classes. Several vendors provide their own APIs to complement the Java EE API. In
addition to the APIs, developers often have to learn the syntax of configuration files and
deployment procedures to test the applications. Overall, the amount of information that
a developer must learn to properly use these frameworks is very high and the learning
curve is steep. Therefore, developing enterprise applications with these frameworks is
far from trivial.

One solution to address the complexity of these frameworks is the use of tools such as
IDEs (Gartner-Inc, 2015). These tools assist programmers in creating a codebase,
cross-referencing different parts of the code, providing a degree of automatic code
generation and facilitating application deployment, among others (Eclipse-Foundation,
2015a; Microsoft, 2015b; Oracle, 2015d; JetBrains, 2015). HBT developers used Eclipse
(Eclipse-Foundation, 2015a) as the main IDE to develop enterprise applications.
Although IDEs significantly simplified the development tasks at HBT, programmers
still had to learn an important portion of the APIs of the frameworks and related
information to adequately develop enterprise applications.

One of the main causes of the above complexity is the lack of adequate abstraction
mechanisms. As a consequence, developers must learn too many details about the inner
workings of enterprise frameworks to properly use them – information that is not
directly related to the domain of the solution. Another consequence is that developers

537

Software
development
organization



need to perform many repetitive tasks to implement most of the functionality in
enterprise applications.

A proper abstraction can hide irrelevant details in the development of enterprise
applications, facilitate the automation of repetitive tasks and let developers focus on the
essential elements of the solution. In that regard, MDE (Kent, 2002) is a potential solution
to this problem. MDE uses models as the central artifact for software evolution, and code
generators are used to transform these models into the code that implements them.
Models are, by definition, an abstraction of something that exists in the real world or
something that will be created in the real world in the future such as a software solution
(Kühne, 2005). In other words, models can be used as a way to hide irrelevant details in
enterprise applications, while code generators can be used to automatically realize those
abstract models into more detailed enterprise software, reducing the need of developers
to perform repetitive tasks.

3.2 Requirements
The main purpose for our project is to create an MDE-based tool to address the above
problems. Overall, the main requirements underlying ISML-MDE are the following:

• Abstraction: ISML-MDE must abstract a significant amount of details from
enterprise applications. Engineers must be oblivious to platform-specific details
and focus only on a high-level description of the solution;

• Flexibility: The degree of abstraction provided by ISML-MDE must not hinder
flexibility; in other words, it should be able to specify most of the application’s
functionality;

• Automation: ISML-MDE must provide a mechanism to automatically translate
models into working implementations. These mechanisms should be modular and
configurable;

• Simple version control: ISML-MDE must seamlessly integrate with existing
version control tools to facilitate teamwork at the modeling level;

• Facilitate learning: ISML-MDE must provide mechanisms to use only parts of its
functionality and facilitate learning by gradually enabling more advanced
features; and

• Simple integration: ISML-MDE must provide mechanisms to seamlessly integrate
with existing assets at a software development organization.

3.3 The architecture and design decisions of ISML-MDE
Figure 1 depicts the architecture of ISML-MDE. There are three main components:
ISML, the language to specify enterprise applications; ISML-GEN, the code generation
framework; and LionWizard, the tool that automatically integrates project archetypes
and software components to create the codebase of new projects.

The components interact in the following way: designers use ISML to model the
enterprise application. In parallel, programmers may use LionWizard to choose the
archetypes and components that will be part of the new application and to automatically
integrate them into the new codebase. This codebase has the basic infrastructure of the
application. Designers then use ISML-GEN to automatically generate the code of the
application over this infrastructure. They can select different generators according to

IJWIS
12,4

538



their needs, for instance, to create either Java EE with Java Server Faces (JSF) user
interfaces (Oracle, 2015c) or Java EE with JavaFX user interfaces (Oracle, 2015b).

In addition, ISML-MDE is based on the following design decisions:
• Textual language: ISML is a textual language. The reason for this decision is threefold.

First, it facilitates the integration with existing version control tools, which work with
text files (Git-Project, 2015; Apache-Foundation, 2015a). Second, in our experience, it
provides a degree of flexibility to specify details that are not easily achieved in
graph-based diagrams. Third, its textual syntax is similar to common programming
languages, such as Java or C# (but much simpler than those languages), which
facilitates the adoption in organizations that use those languages;

• Model-View-Controller specification: ISML provides constructs to specify the three
main elements of a MVC architecture. In addition, ISML can also specify services used
by an application. There are two reasons to adopt MVC. First, it is the architectural
pattern used by the most widespread enterprise application frameworks (Microsoft,
2015a; Oracle, 2015a); thus, it makes it easier to transition from models to code. Second,
since MVC is a commonly known pattern across enterprise application developers,
learning ISML becomes easier for them;

• Partial modeling: ISML can specify most of a system functionality. To facilitate
learning, ISML is designed in such a way that designers can start using a small subset
of the language and gradually introduce new features as they learn the basic elements.
In other words, designers do not need to learn the entire language to start creating
applications. This should facilitate the adoption of the language;

• Modular code generation: ISML-GEN includes several code generation modules that
automate the implementation of specific parts of the application. Each of them can be
enabled/disabled to transition models into different parts of the implementation and
can have multiple configuration options; and

• Automatic integration with existing components: LionWizard provides an automatic
way to compose existing components into the codebase of the application. In addition,
ISML provides a series of model libraries whose interfaces match the components that
are integrated at the code level. When ISML-GEN generates the implementation of a
model, the generated code gets automatically integrated with the implementation of
the existing components at the model level.

ISML 

ISML-GEN

LionWizard
Metamodel

Grammar Type  
Checker

Scope
Manager

Archetypes

Code
Transformer

Entity Generator

JEE + JSF Generator

JEE + JavaFX + REST Gen.

CRUD Transformer

Generator Suites

Generators

Templates

Lion
Framework

Components

Transformation 
Language

Figure 1.
ISML-MDE
architecture

539

Software
development
organization



4. ISML-MDE development process
Based on the information described in Section 3, this section details each phase of the
development of ISML-MDE and describes their results with respect to the architecture of
Figure 1.

Figure 2 is an overview of the process to create ISML-MDE. Although some phases
are not tightly related to MDE, we believe that they are important because they explain
the context in which ISML-MDE was created and make it easier to understand the
design decisions behind this tool.

The first phase is to standardize the architecture of software projects, to establish a
common way to design enterprise applications in the organization. The second phase is
to refactor and adapt the existing components to the standard architecture, to effectively
realize the architecture in the development process of the organization.

The third, fourth and fifth phases develop the core components of ISML-MDE. The
third phase is the development of a tool called LionWizard (Franky and
Pavlich-Mariscal, 2014), to automate the integration of existing components and
accelerate the creation the codebase in new software projects.

The fourth phase is the creation of ISML as the modeling language to specify
enterprise applications. ISML is intended to provide the required abstraction
mechanism to address the complexity of enterprise application frameworks. The fifth
phase is the creation of code generators to translate an ISML model into different Java
EE implementations. These code generators support the abstraction provided by ISML,
making developers oblivious to most implementation details.

The following sections explain each phase and their results with respect to the
architecture of Figure 1.

4.1 Standardize architecture
As of the start of this process, HBT had no standard architecture for its projects. As a
consequence, software components were difficult to reuse and the architectural
know-how was not easily transferred from old projects to new projects.

The first phase of the process of Figure 2 addresses this problem by choosing and
establishing a standard architecture for new projects, as shown in Figure 3. The design
is based on a common multi-tier architecture (Schuldt, 2009) with several layers that
modularize different concerns of an enterprise application: presentation, page flow
(application layer), services, domain entities and data. Since the HBT uses Java EE

1
Standardize
Architecture

2
Refactor and 
adapt existing 
components

3
Automate
integration

4
Develop a 
modeling
language

5
Create code 
generators

Figure 2.
The process to create
ISML-MDE

IJWIS
12,4

540



(Oracle, 2015a) as the main development framework, the figure indicates the elements of
that framework associated to each layer. However, the overall architecture is sufficiently
generic to be used with different frameworks such as. NET (Microsoft, 2015a).

4.2 Refactor and adapt existing components
Based on the above architecture, developers refactored the existing components at HBT to
facilitate their integration in future projects that use this architecture (second phase of
Figure 2). These components, code-named “Lion Framework” (Figure 1), have been
developed by HBT during the last years to address different concerns of enterprise
applications: file processing, auditing, access control, transparent persistence, etc. To
improve their evolution and facilitate reuse for future projects, designers aligned each
component to the architecture (each component addresses different architectural layers) and
organized them into a Maven (Apache-Foundation, 2015b) repository. In addition, the work
in this phase yielded some software archetypes (Apache-Foundation, 2015c), based on the
standard architecture, which could be used to create the skeletons of new projects.

4.3 Automating integration
The third phase in the process of Figure 2 is to automate the integration of the refactored
components to accelerate the creation of the codebase of new projects.

The use of Maven archetypes and repositories facilitates the creation of the codebase
of new projects. However, these technologies are insufficient to ensure a seamless
integration of all the components. The way Lion components are designed required
some manual tasks to properly integrate them: modify parts of the code, specify
configuration files, etc. These tasks often differ depending on the elements of the target
application platform such as applications servers, databases, etc. As a consequence, the

Figure 3.
Standardized

architecture at HBT

541

Software
development
organization

http://www.emeraldinsight.com/action/showImage?doi=10.1108/IJWIS-04-2016-0025&iName=master.img-000.jpg&w=191&h=220


integration of components used to be a tedious and cumbersome task that often took
weeks to complete (Franky and Pavlich-Mariscal, 2014).

To address the above issues, this phase created LionWizard (Franky and
Pavlich-Mariscal, 2014), a code transformation tool that automatically creates the
skeleton of a new project as a Maven archetype and seamlessly integrates it with the
chosen Lion components. LionWizard has two main functionalities: a code transformer
that automatically manipulates component files with the specific data to integrate them
with other components and an XML-based language to specify the transformation
processes for new components. This language ensures the adaptability of LionWizard to
facilitate the integration of future components.

4.4 Develop a modeling language
LionWizard is a code transformation tool that significantly improves the creation of the
initial codebase of an enterprise application project. However, as its focus is only on the
initial stages of development, LionWizard is insufficient to address the complexity of
enterprise application development.

As explained in Section 3.1, it is necessary to provide software engineers with
abstractions to hide the complexity of enterprise applications and automation
mechanisms to translate those abstractions into working software implementations. To
address the former, this phase focused on developing the ISML, a language to specify
enterprise applications. The name of this language reflects a long-term vision that is
currently in progress. Nevertheless, in its current version, ISML focuses on the solution
domain (software design). Future work is to expand the language to address the problem
domain (requirements specification). Section 5 describes ISML in more detail.

4.5 Create code generators
The last step in the process is the creation of ISML-GEN, a suite of code generators that
includes the Entity generator, to create persistent entity code; the JEE�JSF generator, to
create a Java EE application with user interfaces and business logic using the JSF
framework (Oracle, 2015c); and the JEE�JavaFX�representational state transfer
(REST) generator, which creates Java EE applications with JavaFX (Oracle, 2015b) user
interfaces and REST services to realize the business logic. Section 6 describes
ISML-GEN in detail.

5. Information systems modeling language (ISML)
Phase 4 of the process described in Section 4 is the creation of ISML. This section
describes ISML in detail.

From the point of view of the Model Driven Architecture (MDA) (OMG, 2009)
standard, ISML is a language to create Platform Independent Models (PIM). In other
words, ISML provides constructs to specify the essential elements of a software solution
without detailing the target platform. ISML is sufficiently general to model enterprise
applications in various domains, while being sufficiently specific to easily translate the
models into working implementations. As ISML is semantically close to an enterprise
application, it is simpler to directly generate code from ISML models rather than
performing an intermediate transformation from PIM to PSM.

ISML-MDE, the whole environment, is a software tool based on the Eclipse Modeling
Framework (Foundation, 2013), a set of Eclipse (Eclipse-Foundation, 2015a) plugins and
libraries to develop model-driven tools based on the MDA standard. ISML-MDE

IJWIS
12,4

542



facilitates to create ISML models, modify them in syntax-aware editors and perform
automatic scope management and type checking. The following sections describe the
main components of ISML and the environment to create these models.

5.1 ISML syntax
In its current version, ISML is strongly related to the MVC pattern (Gamma et al., 1995).
The MVC decomposes an application design into three categories: Model, which
manages the information of the problem domain; View, which is in charge of visualizing
the Model information; and Controller, which manages the user interaction and overall
control flow of the system.

Figure 4 shows the main elements of ISML. The language is able to specify all of the
elements in an MVC-based system: entities that represent the domain information of the
application; pages that display the information of entities; and controllers that perform
activities requested from the pages and define the page flow. In addition, ISML supports
the specification of services, which are interfaces to objects that perform specific
business processes and can either be fully specified in an ISML model or be reused from
predefined services that already exist in the target platform.

To better illustrate these concepts, the remainder of this section presents a simplified
example of a company management application. In particular, the example focuses on
the information about a company and its employees.

Algorithm 1 is an example of an ISML entity that represents a company. An entity
can only contain attributes. Some of them may be part of an association, such as the
employees attribute, which is one end of an association whose opposite is the attribute
employer of the Person entity. Constraints over attributes are specified with the
keyword “must be”. In this example, the company’s tax ID must have a size between 1
and 20:

Algorithm 1: Entity Example in ISML
entity Company {

String name
String taxID must be Size(1,20)
Date creationDate
Array�Person� employees opposite employer

}

Algorithm 2 is an example of a page to edit companies. A page can receive many
parameters. In this case, the parameter is an instance of the Company entity. A page
can have several widgets or visual components, for example, forms, text boxes,
calendars (date pickers), buttons, etc.

Figure 4.
Main elements in

ISML

543

Software
development
organization

http://www.emeraldinsight.com/action/showImage?doi=10.1108/IJWIS-04-2016-0025&iName=master.img-001.jpg&w=143&h=81


Algorithm 2: Page Example in ISML
page EditCompany(Company company) controlledBy CompanyManager {

Form {
Text(“Name”, company.name, 25, 1)
Text(“Tax ID”, company.taxID, 25, 1)
Calendar(“Creation Date”, company.creationDate, null, “dd/MM/yyyy”, true,

“inline”)
Button(“Save”, true) -� saveCompany(company)
Button(“Cancel”, false) -� listAll()

}
}

Pages are managed by controllers. In this example, the controller CompanyManager,
shown in Algorithm 3, is the one that processes all of the events coming from the
EditCompany page. CompanyManager provides two actions: listAll that retrieves
all instances of the company from a database and saveCompany that stores a
company in a database:

Algorithm 3: Controller Example in ISML
controller CompanyManager {

has Persistence�Company� persistence
default listAll() {

show CompanyList(persistence.findAll())
}
saveCompany(Company company) {

persistence.save(company)
-� listAll()

}
}

Another important element in ISML is the arrow operator “��”, which denotes that the
execution of a program continues through the action pointed by an arrow. When the user
clicks the Save button of the EditCompany page (see Algorithm 2), the execution
continues through the saveCompany action (see Algorithm 3). Similarly, at the end of
the saveCompany action of CompanyManager, the arrow operator indicates that
the execution continues through the listAll action.

To specify the page flow, the keyword show denotes the page that should be
displayed after an action is finished. In this example, the listAll action shows the
CompanyList page (the latter is not explained in this paper for space reasons).

Controllers are meant to specify the page flow of an application. To execute
business-specific processes, controllers delegate to services, which encapsulate
processes that do not have a direct relation with page flow and user interaction. The
controller of Algorithm 3 uses the keyword has to indicate that it will delegate some
functionality into the Persistence service. Algorithm 4 details this service, which
manages entity storage in databases:

Algorithm 4: Service Example in ISML
service Persistence �T� {

native Void save(T obj)
native T load(T obj)

IJWIS
12,4

544



native Void delete(T obj)
native Array�T� findAll()

}

One important feature in ISML is the partial modeling facilities, i.e. to give designers the
ability to decide which parts of the application will be specified at the model level or at
the code level. In ISML, this is realized through the keyword native. This keyword is
analogous to the native keyword in Java (Oracle, 2014). In ISML, a native method
means that the body of that method must not be specified at the model level but at the
code level. This keyword can also be used to denote actions in controllers whose body
will be specified at the code level.

One of the advantages of native is that it facilitates learning of ISML. At early
adoption stages, engineers do not know all of the language features, so they can declare
most actions and methods as native and implement them at the code level, in a
programming language that they might know better. As engineers learn more features
of ISML, they can start modeling more actions and methods with this language and
relying progressively less on the target programming language.

Another advantage of native is that it can be used to provide model libraries that
abstract existing components at the code level. In this example, the Persistence
service has all of its methods declared as native. In addition, there is a component with
the same name at the code level that implements those same methods. Using a specific
configuration in the code generators, the generation of the Persistence code can be
disabled and the final implementation can use the Persistence component that already
exists at the code level.

5.2 ISML metamodel
The metamodel of ISML contains 71 classes. For space reasons, this paper only focuses
on some specific parts to illustrate the main language features. Figure 5 shows the
classes in the ISML metamodel that represent the main language components.
TypeSpecification is the superclass of every element in ISML associated to a type,
such as entities, views, controllers, services, etc.

One important consequence of this design decision is that primitive data types (e.g.
Integer, Float, String, etc.) and primitive widgets (e.g. text boxes, buttons, etc.) are
instances of primitive and widget, respectively. This means that the users of
ISML-MDE do not need to modify the metamodel to add new primitives to the language
and only need to know the essentials of ISML to perform these changes. For instance
Algorithm 5 and 6 show some primitives specified by ISML itself:

Algorithm 5: ISML Primitives Specified Using ISML
primitive Any
primitive Null
primitive Void
primitive String
primitive Integer
primitive Float
primitive Boolean

545

Software
development
organization



Algorithm 6: ISML Widget Primitives Specified Using ISML
widget Label(Any text)
widget Image(String imageURL)
widget Link(String label, String url)
widget Form(Block body)
widget Text(String label, Any value, Integer columns, Integer rows)
widget OutputText(String label, Any value)
widget Password(String label, Any value, Integer length)

This feature is particularly useful in software development organizations, as they can
customize ISML to their specific needs without knowing how to modify the metamodel.

In addition, the ISML metamodel denotes some more specific types such as
constraints that apply to entity attributes, enumerations and data transfer objects.
Overall, most of the remaining classes in the ISML metamodel focus on specifying
instances of any TypeSpecification and their contents.

5.3 Scope manager and type checker
The ISML-MDE environment also provides a scope manager and type checker for ISML.
The scope manager finds and verifies the correctness of all the cross references between
elements in the model and provides content assistance when writing the model. For
instance, Figure 6 shows the content assist that suggests possible controller actions that
could be executed when a “Cancel” button is pressed.

The type checker verifies that the typed elements in the language (e.g. entities,
widgets, primitives, etc.) are correctly used in the model and ensures that the code
generation that follows will yield code without type errors. Some important features of
the type system in ISML are action and method overloading, generic types and
inheritance.

Figure 5.
SML main elements
metamodel

IJWIS
12,4

546

http://www.emeraldinsight.com/action/showImage?doi=10.1108/IJWIS-04-2016-0025&iName=master.img-002.jpg&w=287&h=221


5.4 Model transformation facilities
ISML-GEN also includes CRUD-Transformer, a module to transform ISML models to
add CRUD functionality. CRUD-Transformer takes as input an entity in ISML and
creates all of the controllers and pages required to perform basic CRUD operations.

For instance, Figure 7 shows three entities:
(1) Address;
(2) Company; and
(3) Person.

CRUD-Transformer generates all of the views and controllers. The figure highlights the
Company entity and all of the elements generated to provide CRUD functionality for
Company entities.

Figure 6.
Scope-based content

assist

Figure 7.
CRUD-Transformer

example

547

Software
development
organization

http://www.emeraldinsight.com/action/showImage?doi=10.1108/IJWIS-04-2016-0025&iName=master.img-003.jpg&w=215&h=99
http://www.emeraldinsight.com/action/showImage?doi=10.1108/IJWIS-04-2016-0025&iName=master.img-004.jpg&w=263&h=219


6. Code generation with ISML-GEN
ISML-GEN is a suite of code generators that creates the implementation for ISML
models. Currently, there are three code generator modules that map an ISML model into
different Java EE implementations, described as follows.

6.1 Entity generator
The Entity Generator processes all of the entities in an ISML model. For each entity, it
outputs a java class with the corresponding attributes, getters, setters, comparison
methods, unique identifiers and persistence annotations. The generated application
uses the Java Persistence Framework (JPA) to persist these classes in a database. In
addition, the Entity Generator creates a configuration file (persistence.xml) that is
required by JPA.

6.2 JEE � JSF generator
One of the functionalities of the JEE�JSF Generator is to process all the pages and
controllers and generate the corresponding user interface and page flow code. For each
page in ISML, it generates a web page specification using JSF (Oracle, 2015c). For each
controller, it generates a Java class called Backing Bean, which manages user events and
page flow. In addition, the JSF Generator creates a configuration file (faces-config.xml) to
facilitate the page flow specification. This generator also creates the business logic of the
application through the use of services and integrates them with the entities created by
the Entity Generator.

6.3 JEE � JavaFX � REST generator
Similar to the previous Generator, one of the functionalities of the JEE � JavaFX �
REST Generator is to generate the user interface and page flow code. For each page in
ISML, it generates a web page specification using JavaFX (Oracle, 2015b). For each
controller, it generates a JavaFX service that manages user events and page flow. In
addition, this generator also creates the business logic of the application, mapping each
service in the model to a REST service in the code, and integrating the application with
the entities created by the Entity Generator.

6.4 Code generation facilities
ISML-GEN is based on Xtext Eysholdt and Behrens (2010) and is written in the Xtend
language (Eclipse-Foundation, 2015b). Although Xtext provides several facilities for
model-to-text transformations, it does not have a simple way to query models. To
address this issue, ISML-GEN includes a simple set of classes to retrieve elements from
an ISML model. These classes combine generic types and reflection to declaratively
specify which elements to retrieve from a model.

Figure 8 describes the main code generation classes. Subclasses of
SimpleGenerator specify the location where files will be generated for a specific
model element and the template that will be used. The class GeneratorSuite groups all
the code generators.

The most important class is SimpleTemplate. Code generation templates are
defined as subclasses of SimpleTemplate. The type parameter T passed to
SimpleTemplate determines the elements to retrieve from the model when generating
code with a template. Subclasses of SimpleTemplate must implement the template
method that performs the model-to-text transformation.

IJWIS
12,4

548



For instance, Algorithm 7 is a portion of the class EntityTemplate that is used to
generate one Java class per entity in an ISML model. EntityTemplate inherits from
SimpleTemplate<Entity>. ISML-GEN reads this Entity parameter through
reflection and acts accordingly. In particular, ISML-GEN executes the template
method of EntityTemplate once per each Entity in the ISML model:

Algorithm 7: Entity Template
class EntityTemplate extends SimpleTemplate�Entity� {

def template(Entity e) = = =
public class ��e.name �� {

…
}

= = =
}

Similarly, Algorithm 8 is a portion of another class called PersistenceXMLTemplate.
This class generates a configuration file that requires information from every Entity in an
ISML model. In this case, PersistenceXMLTemplate inherits from
SimpleTemplate<List<Entity>>. ISML-GEN uses reflection to read the
List<Entity> parameter and executes the template method of
PersistenceXMLTemplate only once for the entire model, and uses all the entities of the
model as input:

Algorithm 8: PersistenceXML Template
class PersistenceXMLTemplate extends SimpleTemplate�List�Entity�� {

def template(List�Entity� e) = = =
�persistence�

…
�/persistence�

= = =
}

Even though the ISML-GEN API does not provide more elaborate ways to retrieve
elements from a model. In our experience, these two retrieval alternatives were sufficient
for all the model-to-text transformations in ISML-GEN.

Figure 8.
Code generation

classes

549

Software
development
organization

http://www.emeraldinsight.com/action/showImage?doi=10.1108/IJWIS-04-2016-0025&iName=master.img-005.jpg&w=308&h=147


7. Validation
A full validation of ISML-MDE is expected to take years, as the company (HBT) fully
adopts the approach and uses it in several projects that could yield the quantitative and
qualitative data required to measure the effectiveness of the environment. As of the
writing of this paper, ISML-GEN validation has advanced in two aspects: a comparison
between the model size and the generated code, and an analysis of the DSL
characteristics, according to Kahraman and Bilgen (2015).

According to Wu et al. (2010), model complexity can be used to understand the
amount of effort required to use a modeling language. Also, they point out the
importance of comparing models and code (in some cases, using lines of code) to
determine the advantages of using the modeling language over implementing the
solution in the target language.

To compare models and code size, ISML-GEN was used in three case studies: a Sports
Team Application (STA), a Company Application (CA) and a University Application
(UA). The STA is a very simple application that manages basic information about sports
teams. The CA is a more complex application that manages information about companies
and their employees. The UA is the largest and comprises information about teachers,
assistants, students, courses, documents published in courses and forums.

All the applications were developed from scratch. Entity and JEE�JSF Generators
were used to create the implementation code. To measure the impact of ISML-GEN in the
development of these applications, models and code were compared in terms of size. As
models in ISML are textual and their syntax is similar to the target implementation
language (Java), lines of code were used to perform the comparison. Because of that
reason and the use of LOC in DSL measurement frameworks (Wu et al., 2010), we believe
that the use of LOC is adequate to perform this comparison. Models were measured at
two milestones in the design process. The first one is right after the entities were
specified. The second one is right after CRUD-Transformer (see Section 5.4) was used to
generate CRUD pages and controllers. None of the projects required modifying the
generated code, so the code size was measured right after the code generation. Even
though these models contain an important amount of CRUD operations, they provide an
adequate insight about the abstraction and automation facilities of ISML, given that
CRUD operations are very common in enterprise applications.

Table I summarizes the results. In all three cases, the generated code is more than
four times the size of the model after using the CRUD-Transformer. The code size in both
the STA and the CA is over 130 times larger than the model before executing the
CRUD-Transformer. This ratio is smaller in the UA, because the model for this
application before running the CRUD-Transformer includes several elements that are
not entities; thus, the model does not grow from those elements after executing the
CRUD-Transformer. To be more specific, these elements are the localization data, i.e.
the specification of the strings that are shown in different parts of the application, based
on its language settings, which are not present in the other two applications.

The above information suggests that ISML-GEN and CRUD-Transformer provide a
significant degree of automation in the development of enterprise applications.
Moreover, ISML provides a degree of abstraction to make engineers oblivious about
most implementation details, but the abstraction is not excessive, as most of the
implementation code can be directly derived from ISML models.

IJWIS
12,4

550



Table I.
Size comparison

between models and
code

Pr
oj

ec
t

M
od

el
si

ze
(L

O
C)

be
fo

re
us

in
g

CR
U

D
-T

ra
ns

fo
rm

er

M
od

el
si

ze
(L

O
C)

af
te

r
us

in
g

CR
U

D
-T

ra
ns

fo
rm

er
Co

de
si

ze
(L

O
C)

Co
de

-to
-m

od
el

ra
tio

(%
)

be
fo

re
us

in
g

CR
U

D
-T

ra
ns

fo
rm

er

Co
de

-to
-m

od
el

ra
tio

(%
)

af
te

r
us

in
g

CR
U

D
-T

ra
ns

fo
rm

er

Sp
or

ts
T

ea
m

ap
pl

ic
at

io
n

6
18

2
90

8
15

,1
33

49
9

Co
m

pa
ny

ap
pl

ic
at

io
n

24
69

6
31

87
13

,2
79

45
8

U
ni

ve
rs

ity
ap

pl
ic

at
io

n
14

4
20

78
87

94
6,

10
7

42
3

551

Software
development
organization



In addition to the above measurements, the current validation efforts include an
analysis of the main DSL characteristics, according to Kahraman and Bilgen (2015):

• Functional suitability: ISML includes the essential concepts of an enterprise
application based on the MVC architecture. All of the elements of the language
were validated by the architects and developers at HBT and should provide a
degree of assurance that they properly represent elements of the problem
domain;

• Usability: A full-fledged usability validation is underway. However, as the
design of ISML hides unnecessary details from the implementation and has a
syntax and tooling very similar to what developers are accustomed to use, we
believe that ISML should provide a reasonable degree of usability;

• Reliability: ISML is a fully typed language, where each expression is checked
for correctness against the typing system. Before performing the type
checking, ISML automatically links elements in different text files, according
to the scoping rules, to ensure that all of them are properly connected;

• Maintainability: Primitives in ISML are ISML models themselves. In other
words, to evolve the language, one only has to modify an ISML file, without
having to recompile the environment. The ISML language is also modular, as
it provides packages to organize information and the main modular units
associated with the MVC architecture;

• Productivity: Although a full-scale validation for productivity is underway,
the comparison between model and code size above suggests that productivity
should increase by using ISML;

• Extensibility: The same arguments used for maintainability apply for
extensibility. Modules and primitives can be directly added to extend the
functionality of ISML;

• Compatibility: Section 3.3 details the rationale behind the design of ISML-MDE
and shows that it is directly aimed at making ISML-MDE compatible with a
software development workflow;

• Expressiveness: Compared to a general purpose language, ISML is less
expressive, as it imposes a specific architecture (MVC) to model an enterprise
application. However, as ISML is semantically close to the target languages
and frameworks, we believe it has a degree of expressiveness superior to more
abstract DSLs;

• Reusability: The same arguments used for maintainability apply for
reusability. Modular units in ISML facilitate its reuse in other models written
in the same language. Regarding reuse from other languages and tools, as
ISML-MDE is based on the Eclipse Modeling Framework (EMF), it is fully
compatible with any other EMF tools. For instance, engineers could use other
code generation libraries – e.g. Acceleo (Obeo, 2015a) – to generate code
instead of our framework. ISML models can also be processed by code
transformation tools – e.g. ATL (Jouault et al., 2008) – or any other supported
by EMF; and

IJWIS
12,4

552



• Integrability: Currently, ISML does not support syntactic integration with
other languages. However, as it is based on EMF, it should be relatively
straightforward to integrate with other EMF-based languages.

Overall, even though the validation of the language could take years, the current
validation efforts suggest that ISML could be a useful tool to facilitate the development
of enterprise applications.

8. Conclusions and future work
This paper presented the practical experience of the creation of ISML-MDE, a
model-driven environment to abstract and automate the development of enterprise
applications. ISML-MDE is driven by specific design principles that may assist the
transition from traditional software programming to MDE in organizations that develop
enterprise applications. In particular, the level of abstraction in ISML is sufficiently high
to hide implementation details, but sufficiently low to specify the majority of an
enterprise application. The partial modeling facilities provided by the native keyword in
ISML assists engineers to gradually learn the language and facilitate its adoption. The
modular code generation and transformation automates most of the application
implementation and also contributes to the obliviousness of the target platform details.

The high code-to-model ratio suggests that ISML-MDE can effectively reduce
development times of enterprise applications. Our previous work with LionWizard
(Franky and Pavlich-Mariscal, 2014) also provided important insights about reduced
development times. In addition, the analysis of DSL characteristics suggests that ISML
has the potential to simplify the development of enterprise applications.

ISML currently focuses on the design of enterprise applications. However, the vision
of ISML is much broader. Future work comprises four lines of work: the first line of work
is to expand the language to address requirement specifications and provide model
transformers to convert those specifications into a design model. The second line of
work is to create new code generators to address different platforms such as ASP with
C#, PHP, etc. The third line is to use ISML to create platform-independent models for
adaptive systems (Bocanegra et al., 2015). This work may require creating two
additional languages: one for specifying adaptive requirements and another for
specifying adaptive design, which can then be translated into a regular design model,
such as the one specified by ISML.

The fourth line of work is to fully deploy ISML-MDE to use it as the main tool in
future projects in the organization. To further validate ISML-MDE, we plan to precisely
measure development times and compare them with previous similar projects to
determine the precise gains in modeling productivity. In addition, we plan to do a
qualitative assessment based on existing frameworks (Kahraman and Bilgen, 2015).
The effective deployment of ISML-MDE requires a cultural change in the organization.
The main expected change is that the designers-to-programmers ratio will change. To
create enterprise applications with ISML-MDE, more designers will be required and less
programmers. To maintain and develop ISML-MDE, the organization will require a few
specialized programmers and designers, both to evolve the language and the code
generators.

553

Software
development
organization



References
AndroMDA (2014), “AndroMDA model driven architecture framework - AndroMDA –

homepage”, available at: www.andromda.org/ (accessed 27 March 2015).
Apache-Foundation (2010), “Apache velocity site - the apache velocity project”, available at: http://

velocity.apache.org/ (accessed 27 March 2015).
Apache-Foundation (2015a), “Apache subversion”, available at: https://subversion.apache.org/

(accessed 12 May 2015).
Apache-Foundation (2015b), “Maven”, available at: http://maven.apache.org/ (accessed 24 April

2013).
Apache-Foundation (2015c), “Maven - introduction to archetypes”, available at: http://maven.

apache.org/guides/introduction/introduction-to-archetypes.html (accessed 24 April 2013).
Auwera, J. (2013), “Equanda”, available at: www.equanda.org/ (accessed 27 April 2015).
Baresi, L., Colazzo, S., Mainetti, L. and Morasca, S. (2006), “W2000: a modelling notation for

complex web applications”, in Mendes, E. and Mosley, N. (Eds), Web Engineering, Springer
Berlin Heidelberg, pp. 335-364 (accessed 27 April 2015).

Bocanegra, J., Pavlich-Mariscal, J. and Carrillo-Ramos, A. (2015), “MiDAS: a model-driven
approach for adaptive software”, Proceedings of the 11th International Conference on Web
Information Systems and Technologies, Lisbon, pp. 281-286.

Eclipse-Foundation (2015a), “Eclipse - the Eclipse foundation open source community website”,
available at: https://eclipse.org/ (accessed 20 April 2015).

Eclipse-Foundation (2015b), “Xtend - modernized java”, available at: https://eclipse.org/xtend/
(accessed 27 April 2015).

Eysholdt, M. and Behrens, H. (2010), “Xtext: implement your language faster than the quick and
dirty way”, Proceedings of the ACM International Conference Companion on Object
Oriented Programming Systems Languages and Applications Companion, ACM,
pp. 307-309 (accessed 13 March 2014).

Foundation, E. (2013), “Eclipse modeling framework (EMF)”, available at: www.eclipse.org/
modeling/emf/ (accessed 11 August 2010).

Fowler, M. (2002), Patterns of Enterprise Application Architecture, Addison-Wesley Longman
Publishing, Boston, MA.

Franky, M.C. and Pavlich-Mariscal, J.A. (2014), A Method to Achieve Automation in the
Development of Web-Based Software Projects, Lisbon, pp. 83-88, (accessed 29 July 2014).

Gamma, E., Helm, R., Johnson, R. and Vlissides, J. (1995), Design Patterns: Elements of Reusable
Object-Oriented Software, Addison-Wesley, Reading, MA.

Gartner-Inc (2015), “Gartner IT glossary”, available at: www.gartner.com/it-glossary/ (accessed
20 April 2015).

Gilbert, J. (2008), “Taylor model driven architecture on rails”, available at: http://taylor.
sourceforge.net/index.php/Overview (accessed 4 May 2012).

Git-Project (2015), “Git”, available at: http://git-scm.com/ (accessed 12 May 2015).
Gomez, D. (2015), “Zathuracode �� Generador de código para JavaEE”, available at: http://

zathuracode.org/ (accessed 27 April 2015).
Groenewegen, D., Visser, E. and Van Chastelet, E. (2015), “WebDSL”, available at: http://webdsl.

org/home (accessed 27 April 2015).
Heinsohn (2015), “Heinsohn business technology”, available at: www.heinsohn.com.co/ingles/

(accessed 28 April 2015).

IJWIS
12,4

554

http://www.andromda.org/
http://velocity.apache.org/
http://velocity.apache.org/
https://subversion.apache.org/
http://maven.apache.org/
http://maven.apache.org/guides/introduction/introduction-to-archetypes.html
http://maven.apache.org/guides/introduction/introduction-to-archetypes.html
http://www.equanda.org/
https://eclipse.org/
https://eclipse.org/xtend/
http://www.eclipse.org/modeling/emf/
http://www.eclipse.org/modeling/emf/
http://www.gartner.com/it-glossary/
http://taylor.sourceforge.net/index.php/Overview
http://taylor.sourceforge.net/index.php/Overview
http://git-scm.com/
http://zathuracode.org/
http://zathuracode.org/
http://webdsl.org/home
http://webdsl.org/home
http://www.heinsohn.com.co/ingles/
http://www.emeraldinsight.com/action/showLinks?crossref=10.1007%2F3-540-28218-1_11
http://www.emeraldinsight.com/action/showLinks?crossref=10.1145%2F1869542.1869625
http://www.emeraldinsight.com/action/showLinks?crossref=10.1145%2F1869542.1869625
http://www.emeraldinsight.com/action/showLinks?crossref=10.5220%2F0005486202810286
http://www.emeraldinsight.com/action/showLinks?crossref=10.5220%2F0005486202810286


JetBrains (2015), “IntelliJ IDEA”, available at: www.jetbrains.com/idea/
Jouault, F., Allilaire, F., Bézivin, J. and Kurtev, I. (2008), “ATL: a model transformation tool”,

Science of Computer Programming, Vol. 72 Nos 1/2, pp. 31-39.
Kahraman, G. and Bilgen, S. (2015), “A framework for qualitative assessment of domain-specific

languages”, Software & Systems Modeling, Vol. 14 No. 4, pp. 1505-1526.
Kent, S. (2002), “Model driven engineering”, Lecture Notes in Computer Science, Springer Berlin/

Heidelberg, Vol. 2335, pp. 286-298, (accessed 27 March 2012).
Kroiss, C., Koch, N. and Knapp, A. (2009), “UWE4jsf: a model-driven generation approach for web

applications”, in Gaedke, M., Grossniklaus, M. and Díaz, O. (Eds), Web Engineering, Lecture
Notes in Computer Science, Springer Berlin Heidelberg, No. 5648, pp. 493-496 (accessed 27
April 2015).

Kühne, T. (2005), “What is a model”, Dagstuhl Seminar Proceedings: Internationales Begegnungs-
und Forschungszentrum fuer Informatik (IBFI), Language Engineering for Model-Driven
Software Development, Vol. 04101, pp. 200-210.

Mazanec, M. and Macek, O. (2012), “On general-purpose textual modeling languages” (accessed 27
April 2015).

Microsoft (2015a), “NET downloads, developer resources & case studies | microsoft.NET
framework”, available at: www.microsoft.com/net (accessed 20 April 2015).

Microsoft (2015b), “Visual studio - Microsoft developer tools”, available at: www.visualstudio.
com/ (accessed 20 April 2015).

Mubin, S. and Jantan, A. (2014), “A UML 2.0 profile web design framework for modeling complex
web application”, 2014 International Conference on Information Technology and
Multimedia (ICIMU), pp. 324-329.

Obeo (2015a), “Acceleo”, available at: www.eclipse.org/acceleo/, (accessed 25 November 2011).
Obeo (2015b), “Module: Acceleo JavaEE generators”, available at: http://marketplace.

obeonetwork.com/module/javaee-generators (accessed 27 April 2015).
Obeo (2015c), “Module: cinematic designer”, available at: http://marketplace.obeonetwork.com/

module/cinematic (accessed 27 April 2015).
Obeo (2015d), “Module: entity designer”, available at: http://marketplace.obeonetwork.com/

module/entity (accessed 27 April 2015).
Obeo (2015e), “Module: SOA designer”, available at: http://marketplace.obeonetwork.com/

module/soa (accessed 27 April 2015).
OMG (2009), “Model driven architecture (MDA)”, available at: www.omg.org/mda/ (accessed

1 March 2010).
OMG (2012), “SoaML”, available at: www.omg.org/spec/SoaML/ (accessed 27 April 2015).
OMG (2015), “IFML: the interaction flow modeling language | the OMG standard for front-end

design”, available at: www.ifml.org/ (accessed 27 April 2015).
Oracle (2014), “Java SE 7 java native interface-related APIs and developer guides”, available at:

http://docs.oracle.com/javase/7/docs/technotes/guides/jni/ (accessed 13 May 2015).
Oracle (2015a), “Java platform, enterprise edition (Java EE)”, available at: www.oracle.com/

technetwork/java/javaee/overview/index.html (accessed 20 April 2015).
Oracle (2015b), “JavaFX developer home”, available at: www.oracle.com/technetwork/java/

javase/overview/javafx-overview-2158620.html (accessed 6 May 2015).
Oracle (2015c), “JavaServer faces technology”, available at: www.oracle.com/technetwork/java/

javaee/javaserverfaces-139869.html (accessed 6 May 2015).

555

Software
development
organization

http://www.jetbrains.com/idea/
http://www.microsoft.com/net
http://www.visualstudio.com/
http://www.visualstudio.com/
http://www.eclipse.org/acceleo/,
http://marketplace.obeonetwork.com/module/javaee-generators
http://marketplace.obeonetwork.com/module/javaee-generators
http://marketplace.obeonetwork.com/module/cinematic
http://marketplace.obeonetwork.com/module/cinematic
http://marketplace.obeonetwork.com/module/entity
http://marketplace.obeonetwork.com/module/entity
http://marketplace.obeonetwork.com/module/soa
http://marketplace.obeonetwork.com/module/soa
http://www.omg.org/mda/
http://www.omg.org/spec/SoaML/
http://www.ifml.org/
http://docs.oracle.com/javase/7/docs/technotes/guides/jni/
http://www.oracle.com/technetwork/java/javaee/overview/index.html
http://www.oracle.com/technetwork/java/javaee/overview/index.html
http://www.oracle.com/technetwork/java/javase/overview/javafx-overview-2158620.html
http://www.oracle.com/technetwork/java/javase/overview/javafx-overview-2158620.html
http://www.oracle.com/technetwork/java/javaee/javaserverfaces-139869.html
http://www.oracle.com/technetwork/java/javaee/javaserverfaces-139869.html
http://www.emeraldinsight.com/action/showLinks?crossref=10.1109%2FICIMU.2014.7066653
http://www.emeraldinsight.com/action/showLinks?crossref=10.1016%2Fj.scico.2007.08.002&isi=000257912800004
http://www.emeraldinsight.com/action/showLinks?crossref=10.1007%2F3-540-47884-1_16
http://www.emeraldinsight.com/action/showLinks?crossref=10.1007%2Fs10270-013-0387-8&isi=000365427900010
http://www.emeraldinsight.com/action/showLinks?crossref=10.1007%2F978-3-642-02818-2_46
http://www.emeraldinsight.com/action/showLinks?crossref=10.1109%2FICIMU.2014.7066653


Oracle (2015d), “NetBeans IDE”, available at: https://netbeans.org/ (accessed 20 April 2015).
Pavlich-Mariscal, J.A. (2015), “ISML-MDE repository”, available at: https://github.com/jpavlich/I

SML-MDE (accessed 27 April 2015).
PUJ (2015), “Pontificia universidad javeriana”, available at: www.javeriana.edu.co/ (accessed 28

April 2015).
Schuldt, H. (2009), “Multi-tier architecture”, in LIU, L. and ÖZSU, M.T. (Eds), Encyclopedia of

Database Systems, Springer, pp. 1862-1865 (accessed 6 May 2015).
Souer, J., Luinenburg, L., Versendaal, J., van de Weerd, I. and Brinkkemper, S. (2008), “Engineering

a design method for web content management implementations”, Proceedings of the 10th
International Conference on Information Integration and Web-based Applications &
Services, iiWAS ’08, ACM, New York, NY, pp. 351-358, (accessed 27 May 2015).

WebRatio (2015), “WebML”, available at: www.webml.org/webml/page1.do (accessed 27 April
2015).

Wu, Y., Hernandez, F., Ortega, F., Clarke, P.J. and France, R. (2010), “Measuring the effort for
creating and using domain-specific models”, Proceedings of the 10th Workshop on
Domain-Specific Modeling, ACM, New York, NY, p. 14.

Corresponding author
Maria Consuelo Franky is the corresponding author and can be contacted at: lfranky@
javeriana.edu.co

For instructions on how to order reprints of this article, please visit our website:
www.emeraldgrouppublishing.com/licensing/reprints.htm
Or contact us for further details: permissions@emeraldinsight.com

IJWIS
12,4

556

https://netbeans.org/
https://github.com/jpavlich/ISML-MDE
https://github.com/jpavlich/ISML-MDE
http://www.javeriana.edu.co/
http://www.webml.org/webml/page1.do
mailto:lfranky@javeriana.edu.co
mailto:lfranky@javeriana.edu.co
mailto:permissions@emeraldinsight.com
http://www.emeraldinsight.com/action/showLinks?crossref=10.1145%2F1497308.1497372
http://www.emeraldinsight.com/action/showLinks?crossref=10.1145%2F1497308.1497372
http://www.emeraldinsight.com/action/showLinks?crossref=10.1145%2F1497308.1497372
http://www.emeraldinsight.com/action/showLinks?crossref=10.1145%2F2060329.2060360
http://www.emeraldinsight.com/action/showLinks?crossref=10.1145%2F2060329.2060360

	ISML-MDE
	1. Introduction
	2. Related work
	3. Overview of the problem and the solution
	4. ISML-MDE development process
	5. Information systems modeling language (ISML)
	6. Code generation with ISML-GEN
	7. Validation
	8. Conclusions and future work
	References


