
International Journal of Web Information Systems
Formal analysis and verification support for reactive rule-based Web agents
Katerina Ksystra Petros Stefaneas

Article information:
To cite this document:
Katerina Ksystra Petros Stefaneas , (2016),"Formal analysis and verification support for reactive rule-
based Web agents", International Journal of Web Information Systems, Vol. 12 Iss 4 pp. 418 - 447
Permanent link to this document:
http://dx.doi.org/10.1108/IJWIS-04-2016-0024

Downloaded on: 01 November 2016, At: 21:37 (PT)
References: this document contains references to 31 other documents.
To copy this document: permissions@emeraldinsight.com
The fulltext of this document has been downloaded 18 times since 2016*

Users who downloaded this article also downloaded:
(2016),"The role of developers’ social relationships in improving service selection", International
Journal of Web Information Systems, Vol. 12 Iss 4 pp. 477-503 http://dx.doi.org/10.1108/
IJWIS-04-2016-0022
(2016),"Learning to rank with click-through features in a reinforcement learning framework",
International Journal of Web Information Systems, Vol. 12 Iss 4 pp. 448-476 http://dx.doi.org/10.1108/
IJWIS-12-2015-0046

Access to this document was granted through an Emerald subscription provided by emerald-
srm:563821 []

For Authors
If you would like to write for this, or any other Emerald publication, then please use our Emerald
for Authors service information about how to choose which publication to write for and submission
guidelines are available for all. Please visit www.emeraldinsight.com/authors for more information.

About Emerald www.emeraldinsight.com
Emerald is a global publisher linking research and practice to the benefit of society. The company
manages a portfolio of more than 290 journals and over 2,350 books and book series volumes, as
well as providing an extensive range of online products and additional customer resources and
services.

Emerald is both COUNTER 4 and TRANSFER compliant. The organization is a partner of the
Committee on Publication Ethics (COPE) and also works with Portico and the LOCKSS initiative for
digital archive preservation.

*Related content and download information correct at time of download.

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 2
1:

37
 0

1
N

ov
em

be
r

20
16

 (
PT

)

http://dx.doi.org/10.1108/IJWIS-04-2016-0024

Formal analysis and verification
support for reactive rule-based

Web agents
Katerina Ksystra and Petros Stefaneas

National Technical University of Athens, Athens, Greece

Abstract
Purpose – Reactive rules are used for programming rule-based Web agents, which have the ability to
detect events and respond to them automatically and can have complex structure and unpredictable
behavior. The aim of this paper is to provide an appropriate formal framework for analyzing such rules.
Design/methodology/approach – To achieve this goal, the authors give two alternative semantics
for the basic reactive rules’ families which allow us to specify reactive rule-based agents and verify their
intended behavior. The first approach expresses the functionality of production and event condition
action rules in terms of equations, whereas the second methodology is based in the formalism of
rewriting logic. Both semantics can be expressed within the framework of CafeOBJ algebraic
specification language, which then offers the verification support and have their advantages and
downsides.
Findings – The authors report on experiences gained by applying those methodologies in a reactive
rule-based system and compare the two methodologies.
Originality/value – Finally, the authors demonstrate a tool that translates a set of reactive rules into
CafeOBJ rewrite rules, thus making the verification of reactive rules possible for inexperienced users.

Keywords CafeOBJ, Formal analysis, Reactive rules, Verification, Web agents

Paper type Research paper

1. Introduction
Reactivity on the Web is the ability to detect events and respond to them automatically
in a timely manner through reactive programs. Reactivity plays an important role for
upcoming Web systems such as online marketplaces, adaptive Web and Semantic Web
agents and Web services (Bry et al., 2006).

Such behavior is needed for bridging the gap between the existing, passive Web,
where data sources can only be accessed to obtain information, and the dynamic Web,
where data sources are enriched with reactive behavior (Berstel et al., 2007). The need for
changing and updating data on the Web has many reasons. New information comes in,
calling for insertions of new data; information is out-of-date, calling for deletions and
replacements of data. Such changes need to be mirrored by other Web systems whose
data depend on the initial changes (Bry et al., 2006).

Reactivity can be specified and realized by means of reactive rules. This has led to an
increase in the development of the so-called reactive rule-based Web agents and their
use in programming critical software systems.

Web agents can be defined as intelligent systems that carry out some set of
operations on behalf of a user or another program, with some degree of independence or

The current issue and full text archive of this journal is available on Emerald Insight at:
www.emeraldinsight.com/1744-0084.htm

IJWIS
12,4

418

Received 25 April 2016
Accepted 27 June 2016

International Journal of Web
Information Systems
Vol. 12 No. 4, 2016
pp. 418-447
© Emerald Group Publishing Limited
1744-0084
DOI 10.1108/IJWIS-04-2016-0024

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 2
1:

37
 0

1
N

ov
em

be
r

20
16

 (
PT

)

http://dx.doi.org/10.1108/IJWIS-04-2016-0024

autonomy, and, in so doing, use some knowledge or representation of the user’s goals or
desires (Gilbert).

The use of rule-based systems as the main method of implementing such agents has
been proposed from the beginning. In this approach, each agent includes a rule engine
and is able to perform rule-based inference (Badica et al., 2011). Thus, a Web agent is
called rule-based if its behavior and knowledge are expressed by means of rules.

In more details, in the case of rule-based Web agents used in this work, we adopt the
definition of (Stavropoulos et al., 2015), where the system’s application layer hosts
agents that automatically monitor and manage the infrastructure. Each agent integrates
a knowledge base (KB) and a reasoning engine. The KB is filled with facts about the
world, i.e. measured values of the environment, and also contains policies in the form of
rules, entered by expert human users. After collecting the facts at each cycle, the agent
performs reasoning to decide on a proper set of actions, according to the policies.

Reactive rule-based systems (i.e. Web agents whose behavior is defined through
reactive rules) are an attractive approach, as they enable systems to react to events, or
combinations of events, occurring in an arbitrary order. Additional characteristics
supported by reactive rules, such as flexibility and expressivity, are highly desired
especially when modeling industrial systems.

However, because of the ability of rules to interact during execution, such systems
often present unpredictable behavior, and, thus, the task of analyzing their behavior can
become difficult. Changing, introducing or removing a single rule from a rule base, for
example, can have undesirable side effects (e.g. making the KB of the system
inconsistent). For this reason, the extensive and formal analysis of reactive rule-based
systems is required. This need becomes stronger when the system is complex or used in
critical domains. Finally, the existing tool support for reasoning about such systems is
limited. To address this shortage of reasoning and verification support for reactive
rules, in this paper, we present a framework that:

• transforms a set of production and a set of event condition action (ECA) rules (i.e.
the main reactive rules’ families) into equational rules, written in CafeOBJ;

• transforms a set of production and a set of ECA rules into rewrite rules, written in
CafeOBJ;

• provides reasoning about the specified rule-based system;
• verifies safety properties of the rules;
• detects termination and confluence errors of the rules; and
• provides a clear understanding of the specified rule-based system by simulating

the execution behavior of the rules.

The rest of the paper is organized as follows: in Subsection 1.1, we briefly present related
work and discuss differences with our approach. Section 2 describes the theoretical
foundations of the methodologies. In Section 3, we present the proposed frameworks
which formally express reactive rules as rewrite and equational transition rules (in
CafeOBJ). In Section 4, we apply the proposed methodologies in a case study. In
Section 5, we compare the two approaches and report on some lessons learned from this
attempt to bring closer two different research areas, one of formal methods and second
of reactive rules. Finally, we demonstrate a tool that automates the transformation

419

Rule-based
Web agents

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 2
1:

37
 0

1
N

ov
em

be
r

20
16

 (
PT

)

process from reactive into rewrite rules in Section 6. The last section concludes the paper
and discusses future directions.

1.1 Related work
Recent approaches related to the application of formal methods for analyzing rule-based
systems include the following. In Berstel and Leconte (2010), the authors propose a
constraint-based approach to the verification of rule programs. They present a simple
rule language, describe how to express rule programs and verification properties into
constraint satisfiability problems and discuss some challenges of verifying rule
programs using a constraint-based programming solver that derives from the fact that
the domains of the input variables are commonly very large. Finally, they present how
to detect structure properties of a simple rule-based system. In Jin et al. (2013), the
authors analyze the behavior of ECA rules by translating them into an extended Petri
net and verify termination and confluence properties of a light control system expressed
in terms of ECA rules. Also, in Jin et al. (2014), the same authors extend their previous
work with tool support and counterexamples to help debugging. Ericsson et al. (2008)
present an approach to verify the behavior of ECA rules where a tool that transforms
such rules to timed automata is developed. Then, the Uppaal tool is used to prove desired
safety properties for an industrial rule-based application.

In Boukhebouze et al. (2011), authors present a rule-based approach which is built
upon the ECA model and supported by a rule-based business process definition
language. In this approach rules, which specify business processes, are represented
using the Event-Condition-Action-Post-Condition-Event (ECAPE) model. This allows
translating a process into a graph of rules that is used to check how flexible a business
process is and estimating this process’s cost of changes. In addition, the ECAPE model
allows the translation of a process into a colored Petri net, called ECAPE net, to verify
process functioning prior to any deployment. In Lukichev (2011), authors present a
declarative approach to rule verification. They consider several anomalies, which may
appear in rule bases with production rules and semantic constraints. The presented
approach defines verifier rules, which derive facts when anomalous business rules are
detected.

Our approach for the verification of rule programs is based on a different formalism;
in particular, it uses the CafeOBJ system (Diaconescu et al., 2003) and expresses the
functionality of reactive rules in both equational and rewriting logic. CafeOBJ has been
successfully applied for the verification of various complex systems. To the best of our
knowledge, this is the first time it is used in the area of reactive rules. One motivation for
this work was a recent advancement in the field and, in particular, the methodology to
theorem prove rewrite theories (Ogata and Futatsugi, 2014). Compared to existing
similar approaches, it has the following contributions:

• First, compared to Jin et al. (2013), where structure errors are formally analyzed,
our methodology can be used for the analysis of both structure (confluence and
termination) and safety properties for the specified rule system.

• Second, compared to (Berstel and Leconte, 2010; Lukichev, 2011), our approach
supports both production and ECA rules and also provides tool support for
transforming such rules into rewrite rule specifications in CafeOBJ.

IJWIS
12,4

420

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 2
1:

37
 0

1
N

ov
em

be
r

20
16

 (
PT

)

• Third, when proving safety properties, both model checking and theorem proving
techniques can be applied, in contrast to Berstel and Leconte (2010); Jin et al, 2013,
2014; Ericsson et al. (2008); and Boukhebouze et al. (2011), where only model
checking support is provided. The combination of these two proving methods
provides strong verification power. Model checking can be used to search the
system for a state where the desired invariant property is violated (counter
example), and, next, if no such state is discovered, theorem proving techniques
can be applied to ensure that the system preserves the property in any reachable
state. In this way, infinite state systems can be specified. Also, CafeOBJ and
Maude (Clavel et al., 1999) allow inductive data structures in state machines to be
model checked, and few model checkers exist with this feature.

• Finally, our approach can be used for the specification and verification of complex
systems due to the simplicity of the CafeOBJ language and its natural affinity for
abstraction (Diaconescu et al., 2003).

2. Preliminaries
2.1 Reactive rules
The two basic reactive rules’ families and most commonly used for developing software
systems are production rules and ECA rules.

A production rule is a statement of rule programming logic, which specifies the
execution of an action in case its conditions are satisfied, i.e. production rules react to
states changes. Their essential syntax is if Condition do Action (if Ci do Ai). Some usual
actions supported by rule markup languages are: add, retract and update knowledge or
generic actions with external effects, such as assignment of specific values in variables.

In contrast to production rules, ECA rules define an explicit event part which is
separated from the conditions and actions of the rule. Their essential syntax is on Event
if Condition do Action (On Ei if Ci do Ai). The ECA paradigm states that a rule
autonomously reacts to actively or passively detected simple or complex events by
evaluating a condition (or a set of conditions) and by executing a reaction whenever the
event happens and the condition is true (Paschke, 2005).

The events of ECA rules can be combinations of atomic events activated by
environmental or internal changes, and based on that, they are usually classified as
external and internal. These changes are captured by environmental and local variables.
More precisely, in Jin et al. (2013), external events are produced by sensors monitoring
environment variables. This means that environmental variables are used to represent
environment states that can be measured by sensors but not directly modified by the
system. In this way, environmental variables capture the non-determinism introduced
by the environment. Instead, local variables can be both read and written by the system.
An external event can be activated when the value of an environmental variable crosses
a threshold; on the other hand, internal events can only be activated by the actions of
ECA rules. Internal events are useful to express internal changes or required actions
within the system. These two types of events cannot be mixed within a single ECA rule.
Thus, rules are external or internal.

The condition part of an ECA rule is a Boolean expression on the value of
environmental and local variables. The last part of a rule specifies which actions must be
performed. Most actions are operations on local variables which do not directly affect
environmental variables. Thus, environmental variables are read-only from the

421

Rule-based
Web agents

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 2
1:

37
 0

1
N

ov
em

be
r

20
16

 (
PT

)

perspective of an action. Also, actions can activate internal events. Finally, to handle
complex action operations, the execution semantics can be sequential or parallel.

An example of an ECA rule, expressed in natural language, can be seen here: “if the
external light intensity of a house drops below 5, and the person inside the house is not
asleep set the internal light intensity to 6”. This rule is written according to the syntax of
ECA rules as follows: On ExtLgtLow if (Slp � false) do set (intLgts, 6). This is an
external rule, as the event of the rule is activated when the environmental variable that
captures the changes of the external light intensity crosses a threshold.

We should mention at this point that we have chosen to give formal semantics to
reactive rules expressed in a generic style (such as the example above) and not written in
a specific rule markup language (e.g. Reaction RuleML Paschke et al., 2012), because, in
this way, more languages can be covered. Besides, in most cases, the semantics of the
rules are independent of the syntax of the specific language. Also, many case studies and
related work in the literature express the rules in this way, so it is easier to test the
proposed methodologies.

2.2 CafeOBJ: basic syntax and notation
CafeOBJ is an algebraic specification language and can be used for the specification and
verification of complex software systems.

The basic units of CafeOBJ are its modules. In CafeOBJ modules, we can declare
module imports, sorts, operators, variables and equations. Sorts denote the data type of
each module, and they are declared inside brackets (Ksystra et al., 2014). Operators are
declared with the keyword op (or ops if there are many). Operators without arguments
are called constants. Operators can have attributes, such as comm, that specify that the
binary operator is commutative. The constructor operators of the sorts are declared with
the attribute constr. The non-constructor operators, or some properties of the operators,
are defined in equations (which are declared using the keyword eq). Conditional
equations can also be declared inside a module (using the keyword ceq). Finally, the
CafeOBJ processor uses equations as left-to-right rewrite rules to compute (or reduce) a
given term. For more details about CafeOBJ system, we refer the reader to Futatsugi et
al. (2012).

CafeOBJ is an expressive language and contains built-in operators for denoting
logical connectives such as negation, conjunction, disjunction, implication and exclusive
disjunction. Logical quantifiers are also supported by the system. In CafeOBJ, the
universal quantifier is handled by free variables, i.e. each equation E(x) containing an
unbound variable x is semantically equivalent to @ xE(x). The existential quantifier is
not straightforwardly supported. However, each equation containing an existential
quantifier can be transformed into its equivalent Skolem normal form without such
quantifiers.

2.3 CafeOBJ, equational and rewriting logic
CafeOBJ supports both equational theory and rewrite theory specifications. State
transitions are described in equations in the former and in rewriting rules in the latter.
Equational theory specification is used for interactive theorem proving, whereas for
rewrite theory specification, CafeOBJ can conduct exhaustive searches. In Ogata and
Futatsugi (2014), an attempt to combine the above is presented. They describe a way to

IJWIS
12,4

422

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 2
1:

37
 0

1
N

ov
em

be
r

20
16

 (
PT

)

theorem prove that rewrite theory specifications have invariant properties by proof
score writing.

In equational logic, the transitions between the states of the system are modeled with
constructor operators. Assuming that there exists a universal state space Y, each
transition is a function t : Y Dt 1 … Dt n ¡ Y that changes the state of the system (where
Dt 1 … Dt n are other data types that may be needed for the definition of the transition).
Transitions may have an effective condition, which is declared as c-t : Y Dt 1 … Dt n ¡
Bool. The meaning of this condition is that the transition can be effectively applied if its
corresponding effective condition holds.

The structure of a state is abstracted by the observation operators (or observers), each
one returning an observable information about the state. More precisely, each observer
is a function, o : Y Do1 … Dom ¡Do, that takes as input a state of the system (and maybe
other datatypes) and returns a data type value that characterizes the state.

The meaning of an observer is formally described by means of (conditional)
equations, depending on whether the transition has an effective condition. These
equations define how the value of each observer changes after the application of a
transition rule.

Rewriting logic in CafeOBJ is based on a simplified version of Meseguer’s (1992)
rewriting logic for concurrent systems, which gives an extension of traditional algebraic
specification toward concurrency. Rewriting logic (RWL) incorporates many different
models of concurrency in a natural, simple and elegant way, thus giving CafeOBJ a wide
range of applications. Unlike Maude (Clavel et al., 1999), CafeOBJ design does not fully
support labeled RWL, which permits full reasoning about multiple transitions between
states, but supports reasoning about the existence of transitions between states (or
configurations) of concurrent systems via a built-in predicate (denoted ���) with
dynamic definition encoding both the proof theory of rewriting logic and the
user-defined transitions. This predicate evaluates true whenever there exists a
transition from the left-hand-side argument to the right-hand-side argument. More
precisely, for a ground term t, a pattern p and an optional condition c, CafeOBJ can
traverse all the terms reachable from t with respect to transitions in a breadth-first
manner and find terms (called solutions) such that they are matched with p and c holds
for them. This can be done using the command: red t = (k,d) =>* p [suchThat
c], where k is the maximum number of solutions and d is the maximum depth of search.
Also, a natural number (id) is assigned to each term visited by a search, and, then by
using the command show path id, a transition path to the term identified by id is
displayed. Typically, the command is used to display a transition path to a solution
found by a search from t (Ogata and Futatsugi, 2014).

In rewriting logic, states can be expressed as tuples of values <a1, a2, b1, b2>
or as collections of observable values (o1[p1]: a1) (o1[p2]: a2) (o2[p1]: b1)
(o2[p2]: b2) (soups), where observable values are pairs of (parameterized) names
and values. The main difference between the two expressions is the following: when the
states are expressed as tuples, the state expressions must be explicitly described on both
sides of each transition. But, when expressing states as soups, only the observable
values that are involved in the transitions need to be described on both sides of each
transition. Of course, when specifying a dynamic system, special care has to be taken to
adequately define the axioms that describe its domain, also known as the frame problem

423

Rule-based
Web agents

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 2
1:

37
 0

1
N

ov
em

be
r

20
16

 (
PT

)

(Hayes, 1971), so that effective reasoning can be conducted about its behavior. For more
details about rewriting logic in CafeOBJ, we refer readers to (Ogata and Futatsugi, 2014).

3. Proposed frameworks
In this section, we describe our methodologies that formally specify reactive rules using
two different logical formalisms: equational and rewriting logic.

Older versions of the above methodologies and definitions have been separately
presented in Ksystra et al. (2014, 2012) and explained via illustrating examples. In a
nutshell, in this paper, the following contributions have been made:

• We apply both the proposed methodologies in the same ECA rule-based
intelligent system (commonly used in the related literature for verifying reactive
rule agents), demonstrate their effectiveness and compare them in terms of their
easiness in adoption from non-experts in the area of formal methods users.

• We make necessary additions in the definitions to cover cases discovered by the
case study (e.g. event-memory and ECA rules definition or operator for detecting
loops and simulating rules’ execution).

• We discuss about the semantic relationship of the two formalizations.
• We define how complex actions can be expressed in our framework (in previous

work, we presented how complex events can be detected).
• We develop a tool that translates reactive into CafeOBJ rewrite rules (after

concluding that, in most cases, the rewriting approach is preferred).

3.1 Reactive rules and equational logic
Reactive rules can be expressed as state transition rules in equational logic, using the
definitions below.

3.1.1 Production rules. A production rule can be naturally expressed in terms of
equational logic if we map the action of the rule to a transition which has as effective
condition the condition of the rule. The effects of the action are described through
appropriate observers. As some actions correspond to changes of the KB, to describe
them, we need an observer that will observe the KB at any given time. Thus, the
observer knowledge : Y ¡ Set of Facts which takes as input a state of the system and
returns the set of facts that belong to the KB in that state is needed. For expressing the
functionalities of the KB, the following operators are required; /in : Fact Set of Facts ¡
Bool, which returns true if an element belongs to the KB, |: Fact Set of Facts ¡ Set of
Facts, which denotes that an element is added to the KB, and / : Set of Facts Fact ¡ Set
of Facts, which denotes that an element is removed from the KB.

3.1.1.1 Definition 1. Assume the state space Y and the following set of production
rules: {if Ci do Ai, i � 1, … , n � �}, where without harm of generality we also assume
that the conditions of the rules are disjoint. We define the following observers (O) and
transitions (T) from this set of rules:

O � �O= � knowledge�,

T � �Ai�.

In the above definition, O= denotes additional observers that may be used for the
definition of generic actions and their side effects. Transitions are the actions of the

IJWIS
12,4

424

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 2
1:

37
 0

1
N

ov
em

be
r

20
16

 (
PT

)

rules. As we mentioned before, they can be generic actions with external changes,
Ai : YD ¡ Y (where D � D1, …, Dn are data types that may be needed for the definition
of the actions of a specific rule based system) or some of the predefined actions assert :
Y Fact ¡ Y (add a fact to KB), retract : Y Fact ¡ Y (remove a fact from KB), update : Y
Fact Fact ¡ Y (remove/add a fact), with the semantics those given by rule markup
languages (Delzanno et al., 2010). The production rules are defined as transitions
through the following steps:

• Step 1: If Ai is an assert action, its effect on the knowledge observer is defined
as knowledge(assert(u,ki,d1, . . .,dn)) = ki|knowledge(u) if
Ci(u,d1, . . .,dn) = true,
where ki denotes the fact that is being asserted in the KB, Ci(u,d1, . . .,dn)
is the condition of the production rule, u denotes a state of the system and
d1 . . . and dn are variables of other datatypes that may be needed for the
definition of the rule:

• Step 2: If Ai is a retract action, its effect on the knowledge observer is defined
as knowledge(retract(u,ki,d1, . . .,dn)) = knowledge(u)/ki if
Ci(u,d1, . . .,dn) = true.

• Step 3: If Ai is an update action, its effect on the knowledge observer is defined as
knowledge(update(ki,kj,d1, . . .,dn)) = kj|(knowledge(u)/ki)
if Ci(u,d1, . . .,dn) = true.

• Step 4: If Ai is a generic action, we define; oi(Ai(u,d1, . . .,dn)) = vi if
Ci (u,d1, . . .,dn) = true, oi � O.

In more details; Step 1 states that the transition assert(u, ki, d1, …,dn) is applied
successfully in an arbitrary state u, and the fact ki is added to the KB if the condition of
the rule holds. In Step 2, it is stated that when the transition retract(u, ki, d1, …, dn) is
applied successfully in an arbitrary state u, the fact ki is removed from the KB. When the
transition update(u, ki, kj, d1, …, dn) is applied successfully in an arbitrary state u, ki is
removed and kj is added, as Step 3 defines. Finally, Step 4 states that when we have the
application of a generic action, we describe its effects using additional observers oi that
define how their values change when the action is applied successfully. If, for example,
action Ai sets a specific value, say vi to a variable, we state that the observer that
corresponds to the variable will take the value vi, when the action will be successfully
applied.

We should mention here that in cases where the condition of the production rule does
not hold (i.e. if not Ci(u, d1, . . . , dn) = true), the action of the rule will not
be applied.

3.1.2 Event condition action rules. To express ECA rules as an equational logic theory,
we need an observer that will remember the occurred events. For this reason, when an
event is detected, its name is stored in the observer event-memory: Y ¡ Name, where
Name is a sort denoting the names of the events. In this way, we can map events to
transitions. The actions of ECA rules are assert, retract, update or generic actions and
are mapped to transitions, as before. One key difference is that now the actions of the
rules can be applied only if their triggering event has been detected first. Another
difference is that we can have actions that activate internal events. The definition of a set
of ECA rules as equational transition rules is presented below.

425

Rule-based
Web agents

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 2
1:

37
 0

1
N

ov
em

be
r

20
16

 (
PT

)

3.1.2.1 Definition 2. Assume the state space Y and a finite set of ECA rules {on Ei if Ci
do Ai, i � 1, . . . , n � �}, where without harm of generality, we also assume that for
i � j; Ei, Ai, Ci � Ej, Aj, Cj, respectively. We define the following observers (O) and
transitions (T) from this set of rules:

O � �O= � knowledge, event-memory�,

T � �Ei, Ai�,

Where O= is the same as in Definition 1. Transitions are the external events, Ei : Y D¡Y,
and the actions, Ai : Y D ¡ Y, of the rules (D � D1, …, Dn are data types that may be
needed for the definition of the specific rule based system). Formally, the rule on Ei if Ci
do Ai is defined in CafeOBJ terms through the following steps:

• Step 1: The application of the external event Ei in an arbitrary system state u and
its effects on the observer event-memory are defined as:
event-memory(Ei(u,d1, . . .,dn)) = Ei if c-ei(u,d1, . . .,dn) =
true and event-memory(u) = null.
where c-ei(u, d1, …, dn) is the effective condition of the external event Ei and
states the conditions under which the system is able to detect the event. Also,
null is a Name-sorted constant and denotes the empty event memory.

• Step 2: The effects of the action Ai, if it is an assert action, for example, are
described through the following equations;
knowledge(assert(u,ki,d1, . . .,dn)) = ki|knowledge(u) if
Ci(u,
d1, . . .,dn) = true and event-memory(u) = Ei.
event-memory(assert(u,ki,d1, . . .,dn)) = null if Ci(u,d1, . . .,
dn) = true and event-memory (u) = Ei.

• Step 3: The effects of the action Ai if it is a generic action that sets the value vi to the
variable oi, on the observer oi are described as follows:
oi(Ai(u,d1, . . .,dn)) = vi if Ci(u,d1, . . .,dn) = true and event-
memory(u) = Ei.
event-memory(Ai(u,d1, . . .,dn)) = null if Ci(u,d1, . . .,dn) =
true and event-memory (u) = Ei.

• Step 4: The effects of the action Ai on the observer event memory, if it activates an
internal event, say Ej, are described through the following equations:
event-memory(Ai(u,d1, . . .,dn)) = Ej if Ci(u,d1, . . .,dn) = true
and event-memory(u) = Ei.

The effects of the rest of the actions are defined in a similar way. Step 1 states that
when event Ei is applied, the name of the occurred event (Ei) is stored in the observer
event-memory if in the previous state, the detection conditions of the event were true
and event-memory was null (denoting that no other external event had been
detected). Step 2 declares that the action assert(u, ki(d1, …, dn)) will be applied
successfully, if the condition of the rule holds and the triggering event of the action
has been successfully detected in the previous state. As a result, the fact ki is added

IJWIS
12,4

426

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 2
1:

37
 0

1
N

ov
em

be
r

20
16

 (
PT

)

to the KB and its triggering event is consumed, i.e. event-memory becomes null. In
Step 3, it is stated that when the action Ai(u, d1, …, dn) is applied, the value of the
observer oi becomes vi and event-memory becomes empty. Finally, Step 4 declares
that in cases where the action of the rule activates an internal event (say Ej), the
observer event-memory stores the name of the activated event Ej and becomes null
again when the corresponding to the internal event action is applied (if it does not
activate another internal event).

Let us also note that when the condition of the action does not hold, the action is not
applied and the name of the detected event is removed from the observer event-memory.
Also, if we want the external events to be detected in a specific order, we use extra
observers that constrain their detection conditions.

Finally, as we mentioned in Step 2, once the rule to be triggered has been determined
(according to the detected event and the evaluation of the condition) and its corresponding
action is executed, the name of the event is consumed to prevent multiple and erroneous
triggering of rules. In cases where many rules (either production or ECA) can be executed at
the same time, usually a selection function is used from the inference engine of the system
such as those presented in Paschke and Boley (2009) and Paschke (2006). This characteristic
can be easily included in our framework by defining a selection order (and using appropriate
observers) for the triggered rules, but it is out of scope of this paper.

3.1.3 Complex actions. We present how complex actions can be expressed in our
framework. When we have parallel semantics, i.e. two (or more) parallel actions that are
being executed at the same time, we declare the effects of the parallel transitions in one
step (with one transition), as if these transitions were simultaneously applied[1].
Assume that the first action sets the value va= to the observer oa and the second sets the
value vb= to the observer ob. The parallel actions are described through the transition
actiona|b as follows:

o_a(action_a|b(u,d1,..,dn)) = v_a’ if c-a|b(u,d1,..,dn) = true.

o_b(action_a|b(u,d1,..,dn)) = v_b’ if c-a|b(u,d1,..,dn) = true.

The transition actiona|b is effectively applied and changes the value of the observer oa to
va= while, at the same time, sets the value of the observer ob to vb

=, if the condition of the
complex action holds.

When we have sequential semantics, meaning that the action of the rule consists of
two (or more) parts that are being applied one after the other, we basically divide the
complex action into two (or more) transitions, and we force the second transition to be
applied only if the first transition has been applied first. This is expressed in our
framework as follows:

o_a(action_a(u,d1,..,dn)) = v_a’ if c-a-b(u,d1, . . .,dn) = true.

o_b(action_b(u,d1,..,dn)) = v_b’ if c-a-b(u,d1, . . .,dn) = true
and o_a(u) = v_a’.

Transition actiona will be effectively applied if the condition of the complex action holds,
and it will set the value va= to the observer oa. Transition actionb will be effectively applied
right after the application of transition actiona, as its effective condition contains also the
constraint value of observer oa to be va= (i.e. actiona has been applied before).

427

Rule-based
Web agents

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 2
1:

37
 0

1
N

ov
em

be
r

20
16

 (
PT

)

Also, according to the definition, no other transition can be applied after that, except
from actionb.

Expressing reactive rules as equational transition rules allows us to verify their
behavior by (theorem) proving desired safety properties about the specified rule-based
system, as we will see in details in Section 4.

3.2 Reactive rules and rewriting logic
We now present an alternative specification framework and define a set of production
rules and a set of ECA rules as a set of rewrite transition rules.

In a nutshell, in our framework, rewriting logic specifications are created using:
• observable values which are pairs of (parameterized) names and values [Obs];
• states which are expressed as collections (soups) of observable values [Obs �

State]; and
• state transitions which are described in transition rules (rewriting rules).

3.2.1 Production rules. A production rule can be expressed in terms of rewriting logic, by
mapping the actions of the rule into conditional rewrite transition rules, with the condition of
the rule. To describe the effects of the actions, we use observable values. The basic
observable value is called knowledge, which again observes the KB of the system:

knowledge:_ : SetofFacts -> Obs
3.2.1.1 Definition 3. Assume the following set of production rules: {if Ci do Ai, i � 1, …,
n � �}, where Ai can be either a generic action with side effects, such as variables’
assignment or an assertion, retraction or update of the KB.

The actions of production rules are defined as rewrite transitions, expressed in
CafeOBJ, through the following steps:

• Step 1: If Ai is an assert action, its effect on the observable value knowledge is
defined as: ctrans [assert ki] (knowledge: K) D => (knowledge:
(ki|K) D if Ci(d1, . . .,dn) = true.

• Step 2: If Ai is a retract action, its effect on the observable value knowledge is
defined as: ctrans [retract ki] (knowledge: K) D => (knowledge:
K/ki) D if Ci(d1, . . .,dn) = true.

• Step 3: If Ai is an update action, its definition is the following: ctrans [update
ki kj] (knowledge: K) => (knowledge: kj|(K/ki)) D if
Ci(d1,…,dn) = true.

• Step 4: Finally, if Ai is a generic action, we define ctrans [Ai] (oi: vi) D =>
(oi: vj) D if Ci(d1,…,dn) = true.

In the above definitions, inside the brackets (Ksystra et al., 2014), we declare the label of the
transition rule. The keyword ctrans is used, because the rule is conditional. K denotes an
arbitrary value of the observable value knowledge in the previous state, and ki, kj are the
facts being added/removed from the KB. Also, D = D1, . . .Dn denotes arbitrary data
types that may needed for the definition of the transition (that depends on the specified
system). Finally, oi are extra observable values that may needed for the definition of the
rules and vi, vj are variables of appropriate sorts. In Step 4, for example, we state that the
observable value will become vj if the condition of the rule is true, as this is the effect of the
generic action Ai.

IJWIS
12,4

428

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 2
1:

37
 0

1
N

ov
em

be
r

20
16

 (
PT

)

3.2.2 Event condition action rules. To express ECA rules in terms of rewriting logic,
we map the actions and the events of the rules into rewrite transitions, and the basic
observable values that we use are knowledge and event memory, with the same
functionality as before:

event-memory:_ : Name -> Obs

3.2.2.1 Definition 4. Assume a finite set of ECA rules {on Ei if Ci do Ai, i � 1, …, n � �
where Ai denotes either a generic action or a predefined action of the rule language.

The rule on Ei if Ci do Ai is defined in CafeOBJ terms as a rewrite theory through the
following steps:

• Step 1: The rewrite transition rule that specifies the event Ei is defined as follows:

ctrans [Ei] (event-memory: null) => (event-memory: Ei) if
c-ei (d1, . . ., dn) = true.
The detection condition of the event is denoted as c-ei(d1, …, dn), and its definition
depends on the specific event.

• Step 2: If the action Ai is an assert/update/retract action, its effects are denoted as
follows:
ctrans [assert ki] (event-memory: Ei) (knowledge: K) D =>
(event-memory: null) (knowledge: ki|K) D if Ci(d1, . . .,dn) =
true.

ctrans [retract ki] (event-memory: Ei) (knowledge: K) D =>
(event-memory: null) (knowledge: K/ki) D if Ci(d1, . . .,dn) =
true.

ctrans [update ki kj] (event-memory: Ei) (knowledge: K) D =>
(event-memory: null) (knowledge: kj|(K/ki)) D if
Ci(d1, . . .,dn) = true.

In the definition of the actions above, the term (event-memory: Ei) ensures that only the
guard of the action will hold at the pre state, and, thus, it will be the only applicable
transition for that state of the system. After the occurrence of the action, event-memory
will become null again (except from the cases where internal events are activated),
denoting that the system is ready to detect another event. In a similar way, the rest of the
actions are defined.

3.2.3 Complex actions. Parallel semantics, i.e. two (or more) actions that are being
executed concurrently, are expressed as a rewrite transition rule as follows: assume that
the first action sets the value va= to the variable oa and the second sets the value vb= to the
variable ob. The effects of these actions are then defined simultaneously, and the effect of
the one step transition a|b, as shown below:

ctrans [a|b]: (o_a: v_a) (o_b: v_b) => (o_a: v_a’) (o_b: v_b’)
if c-a|b(d1, . . .,dn) = true.

The values of the two variables are successfully changed if the condition of the complex
action holds. Complex actions with sequential semantics, i.e. two (or more) successive
actions, are defined as follows:

429

Rule-based
Web agents

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 2
1:

37
 0

1
N

ov
em

be
r

20
16

 (
PT

)

ctrans [a]: (o_a: v_a) => (o_a: v_a’) if c-a-b(d1, . . ., dn) =
true.

ctrans [b] : (o_a: v_a) (o_b: v_b) => (o_a: v_a) (o_b: v_b’) D
if c-a-b(d1, . . .,dn) = true and v_a = v_a’.

The first transition changes the value of the variable oa to va= if the condition of the
complex action holds. The second transition changes the value of the variable ob to vb= if
the condition holds and actiona has been successfully applied before.

Expressing reactive rules as a rewrite theory specification allows us to verify them with
regard to both their structure and their behavior, as we will discuss in details in Section 4.

In the definitions presented, we described how the system deals with the
detection of atomic events. In cases where the system detects complex events (i.e.
combinations of atomic events, e.g. eventa and eventb), roughly speaking, the
observer knowledge is used to keep track of the detection order of the atomic events,
whereas event-memory stores an identification number of the complex event. For
more details, we refer the interested reader to (Ksystra et al., 2014) (Section 3.3 –
Complex events definition).

Concerning the semantic relationship of the two formalizations, we would like to refer
the readers to Zhang and Ogata (2009, 2012), where the authors present translations
between rewriting logic specifications and equational specifications in ways that
preserve semantically the properties of the specifications. Our methodologies meet the
requirements of Zhang and Ogata (2009, 2012), and, thus, both approaches can be used
to show the semantic equivalence between the two formalisms presented in this paper.
However, as we do not propose a translation scheme between the two methodologies,
such an analysis is outside the scope of this paper.

To demonstrate the effectiveness of the proposed methodologies, in the following section,
we apply them in a case study and present the verification of a light-control system.

4. Case study: a light-control intelligent system
4.1 Informal description
In the following Table I, we can see the set of ECA rules that specify a light-control
intelligent system which attempts to reduce energy consumption by turning off the
lights in unoccupied rooms or in rooms where the occupant is asleep using sensors.
The system also provides automatic adjustment for indoor light intensity based on the
outdoor light intensity.

The values measured by the sensors are stored in environmental variables. The
measure of a motion sensor that detects whether the room is occupied is expressed by
the Boolean variable Mtn. A pressure sensor detects whether the person is asleep, and
this information is stored in the Boolean environmental variable Slp. A light sensor,
whose measure is expressed by the variable ExtLgt (�1, …, 10), is used for monitoring
the outdoor lighting.

MtnOn, MtnOff and ExtLgtLow are external events activated by the
environmental variables discussed above. MtnOn and MtnOff occur when Mtn
changes from false to true or from true to false, respectively. ExtLgtLow occurs
when ExtLgt drops below 6.

Internal events model internal system actions. For example, internal event
SecElp models the system clock, occurs every minute and changes the value of

IJWIS
12,4

430

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 2
1:

37
 0

1
N

ov
em

be
r

20
16

 (
PT

)

lgtsTmr. Variable lgtsTmr is a timer for R1, to convert the continuous condition,
“the room is unoccupied for 6 minutes” into 6 discretized SecElps events. Rule r1
initializes lgtsTmr to 1 whenever the motion sensor detects no motion and the lights
are on, and activates SecELp. The timer then increases as minute elapses, provided
that no motion is detected (Rule r2) until it reaches 6. Then, LgtsOff activated by
Rule r3, turns the lights off and activates a check on outdoor light intensity through
the internal event ChkExtLgt (Rule r4). ChkExtLgt activates LgtsOn if the external
light intensity drops below 6 (Rule r5). Internal event ChkMtn, activated by Rule r6,
activates LgtsOff if the room is unoccupied and all lights are on or if the room is
occupied but the occupant is asleep (Rule r7). ExtLgtLow sets lights’ intensity to 6
and activates internal event ChkSlp (Rule 8), which turns off the lights if the
occupant is asleep (Rule 9) (Jin et al., 2013).

4.2 Formal analysis using equational logic
4.2.1 Specification. First, to specify this system as an equational transition system using
Definition 2, we will need the following observers. The five first observers are used to

Table I.
ECA rules

controlling the lights
intensity of a house

Type of ECA
rule part Name of ECA rule part and details

Environmental
variables

Mtn, ExtLgt, Slp

Local variables lgtsTmr, intLgts
External events MtnOn activated when Mtn � true

MtnOff activated when Mtn � false
ExtLgtLow activated when ExtLgt � 5

Internal events SecElp, LgtsOff, LgtsOn, ChkExtLgt, ChkMtn, ChkSlp
(R1) When the room is unoccupied for 6 min, turn off the lights if they are on

ECA rule no. ECA rule in natural language and in rule syntax
r1 on MtnOff if (intLgts � 0 and lgtsTmr � 0) do set (lgtsTmr, 1) par activate

(SecElp)
r2 on SecElp if (lgtsTmr � 1 and lgtsTmr � 6 and Mtn � false) do increase

(lgtsTmr, 1)
r3 on SecElp if (lgtsTmr � 6 and Mtn � false) do set (lgtsTmr, 0) par activate

(LgtsOff)
r4 on LgtsOff do (set (intLgts, 0) par activate (ChkExtLgt))
(R2) When lights are off, if external light intensity is below 6, turn on the lights
r5 on ChkExtLgt if (intLgts � 0 and ExtLgt � 5) do activate (LgtsOn)
(R3) When lights are on, if the room is empty or a person is asleep, turn off the lights
r6 on LgtsOn do (set (intLgts, 6) seq activate (ChkMtn))
r7 on ChkMtn if (Slp � true or (Mtn � false and intLgts �� 1)) do activate

(LgtsOff)
(R4) If the external light intensity drops below 5, set the lights intensity to 6 and

check if the person is asleep. If the person is asleep, turn off the lights
r8 on ExtLgtLow do set (intLgts, 6) par activate (ChkSlp)
r9 on (ChkSlp if (Slp � true) do set (intLgts, 0)
(R5) If the room is occupied, set the lights intensity to 4
r10 on MtnOn do set (intLgts, 4) par set (lgtsTmr, 0)

431

Rule-based
Web agents

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 2
1:

37
 0

1
N

ov
em

be
r

20
16

 (
PT

)

observe the variables’ (local and environmental) changes. The last two are used for the
detection of the events (Box 1):

State is the sort denoting the state of the system, and S is a variable of the same sort. The
names of the (internal and external) events are declared as constants of the sort Name.
The transitions of the system (and also constructors of State) are the actions and the
external events.

Rule 8, for example, can be described by the following conditional equations
(Box 2):

The event ExtLgtLow is detected and stored in the observer event-memory
whenever the external lights’ intensity drops below 6 and if no other event has been
detected in the previous state. The rest of the observers stay the same during the
detection of the event E8.

The effects of the action of Rule 8 are defined as (Box 3):

Internal lights intensity will be set to 6 if the occupant of the room is not asleep and the
event ExtLgtLow has been detected in the previous state. The rest of the observers stay
the same.

Rule 3 is triggered by the action of the previous Rule (r2), and, thus, we do not have to
specify its event. The equational transition Rule A3 describes the effects of the action of
the rule, as follows (Box 4):

IJWIS
12,4

432

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 2
1:

37
 0

1
N

ov
em

be
r

20
16

 (
PT

)

http://www.emeraldinsight.com/action/showImage?doi=10.1108/IJWIS-04-2016-0024&iName=master.img-000.jpg&w=343&h=137
http://www.emeraldinsight.com/action/showImage?doi=10.1108/IJWIS-04-2016-0024&iName=master.img-002.jpg&w=343&h=63

The timer (observer lgtsTmr) will be set to 0 if the effective condition of the rule holds. This
means that in the previous state, the sensors had not detected any motion in the room, the
timer had the value 6 and the event SecElp had been successfully detected. At the same time,
the internal event LgtsOff will be activated and stored in the observer event-memory.

Transition Rule A4 describes the effects of the action of Rule r4 as follows: (Box 5):

Internal lights intensity will be set to 0 as a reaction of detecting event LgtsOff in the
previous state. At the same time, the internal event ChkExtLgt will be activated and
stored in the observer event-memory.

In an analogous way, we define the rest rules of the system. The full specification of
the light-control system as an equational transition system can be found at cafeobj@
ntua.blogspot.com.

4.2.2 Verification support. For the verification of the system, when it is expressed in
equational logic, we use Cafe OBJ’s theorem proving technique (Ogata and Futatsugi,
2013) to verify desired safety properties of the rules. We will explain the methodology
through the running case study.

For our rule-based system, an invariant safety property could be the following: the
lights cannot be turned off if someone is in the room and he/she does not sleep. To prove
such properties, four steps need to be taken:

(1) The first step is to express the property as a predicate in CafeOBJ terms in a
module, usually called INV:
inv1(S) = not((intLgts(S) = 0) and (Mtn(S) = true) and
(Slp(S) = false)).

(2) The next is to define the inductive step in a module (usually called ISTEP), i.e. a
predicate which states that if the property holds in an arbitrary state, say s, then
that implies that it holds in any successor state, say s’:
istep1 = inv1(s) implies inv1(s’).

(3) The third step is to ask CafeOBJ to prove (using the reduce command) if the
property holds for an arbitrary initial state, using the following reduction:
red inv1(init).

(4) Finally, s’ must be instantiated and then ask Cafe OBJ to prove the inductive step
for each transition rule. For example, for the transition E8, the inductive step is
declared as follows:
s’ = E8(s).
red istep1.

433

Rule-based
Web agents

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 2
1:

37
 0

1
N

ov
em

be
r

20
16

 (
PT

)

http://cafeobj@ntua.blogspot.com
http://cafeobj@ntua.blogspot.com
http://www.emeraldinsight.com/action/showImage?doi=10.1108/IJWIS-04-2016-0024&iName=master.img-003.jpg&w=343&h=63

This step has to be repeated for all the transitions in turn, i.e. for s’ = E1, A1, . . .,
E10, A10.

When we ask CafeOBJ’s reduction algorithm to prove a property, through the reduce
command, three results might be returned; true, false and a CafeOBJ term. If true is
returned, the proof is successful. If a CafeOBJ term is returned, the user must intervene
and split the case by stating that the returned term equals to true and false in turn to help
CafeOBJ to reduce the term. Finally, in the case where CafeOBJ returns false, either the
property does not hold for our system or the case that returned false is unreachable.

In our case, CafeOBJ returned true for the following initial state:

event-memory(init) = null.
Slp(init) = true.
Mtn(init) = true.
Mtn-memory(init) = null.
intLgts(init) = 1.
lgtsTmr(init) = 0.
ExtLgt(init) = 4.

red inv1(init).

In the inductive step of invariant 1 for the transition A4, for example, CafeOBJ could not
reduce the effective condition to either true or false, and we had to split it in the following
cases:

open ISTEP
-- effective condition false
eq (event-memory(s) = LgtsOff) = false.
s’ = A4(s).
red istep1.
close

open ISTEP
-- effective condition true
eq event-memory(s) = LgtsOff.
s’ = A4(s).
red istep1.
close

Although the case where the effective condition does not hold returned true, its
symmetrical case required further case splitting. Continuing with the case splitting, we
reached the case denoted by the following equations, where CafeOBJ returned false:

open ISTEP
eq event-memory(s) = LgtsOff.
eq intLgts(s) = 1.
eq Mtn(s) = true.
eq Slp(s) = false.
s’ = A4(s).
red istep1.
close

IJWIS
12,4

434

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 2
1:

37
 0

1
N

ov
em

be
r

20
16

 (
PT

)

In such a case, either we have discovered a counterexample for the property we are
proving or we must formulate a lemma that discards the case that returned false, i.e.
prove that this case is unreachable with respect to our specification. In our case, it
was easy to understand that not all of the above equations can hold simultaneously
(event LgtsOff cannot be detected if there is motion in the room), and, thus, we used
the lemma inv2(S) � not(event-memory(s) � LgtsOff and Mtn(s) � true) to discard
it. Of course, in such cases, the lemma used has to be proven as well. The proofs can
be found at Ksystra et al. (2014).

4.3 Formal analysis using rewriting logic
4.3.1 Specification. A state in rewriting logic is described as a collection (soups) of
observable values, as we have already mentioned. To specify the light-control system
using Definition 4, we use the following observable values (Box 6):

Thus, an arbitrary state of the system is defined as: (event-memory: e) (Slp: s)(Mtn:
l)(Mtn-memory: m)(intLgts: i)(lgtsTmr: t)(ExtLgt: x), where e, s, l, m, i, t and x are predefined
variables which denote arbitrary values for the corresponding sorts.

Rule r8 is defined in rewriting logic as follows (Box 7):

Event ExtLgtLow is successfully detected and stored in the observable value
event-memory when the sensor detects that external light density drops below 5 and if
no other event has been detected in the previous state. The definition of the action of the
rule can be seen below (Box 8):

The action of the rule sets the internal lights intensity to 6 as a reaction to the detected
event, if the person is not asleep. Also, event-memory becomes null.

Rule r3 can be defined as a rewrite transition rule in CafeOBJ terms, as follows (Box 9):

435

Rule-based
Web agents

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 2
1:

37
 0

1
N

ov
em

be
r

20
16

 (
PT

)

http://www.emeraldinsight.com/action/showImage?doi=10.1108/IJWIS-04-2016-0024&iName=master.img-005.jpg&w=343&h=83

The timer is set to 0 and the internal event LgtsOff is activated if the condition of the rule
holds.

Rule r4 can be defined as a rewrite transition rule in CafeOBJ terms, as (Box 10):

Internal lights intensity is set to 0 and the internal event ChkExtLgt is activated if in the
previous state event LgtsOff has been detected.

In an analogous way, we define the rest rules of the system. The full specification of the
light-control system as a rewrite transition system can be found at cafeobj@ntua.blogspot.com.

4.3.2 Verification support. This methodology allows us to verify both the structure
and the behavior of the specified rule-based system. In respect to the structural
properties, with the help of CafeOBJ’s search engine and two operators we have defined,
we can: detect termination, confluence errors for the system and simulate the execution
behavior of the rules more precisely.

4.3.3 Termination. A rule program’s state s is terminating if and only if there is no
infinite sequence s ¡ s1 ¡ s2 ¡ … of states. In other words, a state s is terminating if
there exist two states such that s ¡ s= and ¬(s � s=), where s= is a final state, and there
are no cyclic paths (Baba-hamed and Belbachir, 2007). Based on this, we can check if a
state terminates using the following predicate we have defined in Ksystra et al. (2012);
eq terminates?(s) = s =(1,*)=>! s’.

The expression s=(1,*) =>! s’ defines that s’ should be a different term from s,
and that no transition rules are applicable to s’. Thus, by reducing the above predicate,
we basically ask CafeOBJ to find a final state reachable from the state s of the system. To
check a rule-based system for termination, we must perform the search for all initial
states of the system using the command red terminates?(init).

If true is returned and a final state, it means that this state of the system may terminate.
If false is returned, it means that in this initial state, no transition can be applied or that the
reachable state(s) from this state is(are) not final. Finally, the rewriting may not terminate,
because CafeOBJ’s rewriting system applies a transition rule on and on.

In the last case, there is no reason to check the system for confluence, because if a state is
not terminating, it is not confluent either. In the first two cases, to get a clear picture about the
behavior of the state, we proceed with checking it for confluence errors and possible loops.

Let us apply our methodology to the running case study. Suppose that the initial state[2]
of the system is the following. The lights are on, the room is occupied, but no one is sleeping
and the intensity of the external lights is low (below 5), and we wish to see if this system will
terminate or not. We first define the required variables, constants and state (Box 11):

IJWIS
12,4

436

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 2
1:

37
 0

1
N

ov
em

be
r

20
16

 (
PT

)

http://cafeobj@ntua.blogspot.com
http://www.emeraldinsight.com/action/showImage?doi=10.1108/IJWIS-04-2016-0024&iName=master.img-010.jpg&w=343&h=74

The command set trace on instructs CafeOBJ to show in details the performed rewrites.
CafeOBJ for the above reduction returns the result: true and found state 3. This
means that, state 3 is a final state reachable from the initial state of the system.

With the command show path id, we can see the applied transitions that lead to
this state and their order. In our case, CafeOBJ returns the sequence of the transitions E8
and A8. This result is as expected, because according to the rules and our initial state,
the external event ExtLgtLow will be activated (as the external light intensity is low),
and as no one sleeps, the internal lights will be set to 6. This is a final state of the system,
as no other transitions can be applied. We can now proceed with checking the state for
confluence errors and cyclic paths.

4.3.4 Non-Confluence. A rule program’s state s is non-confluent if there exist two
traces trace1 and trace2 from this state that lead to distinct final states. That is, there

exist two traces and three states such that; s ¡
trace1

s1 and s ¡
trace2

s2 and ¬(s1 � s2), where
s1 and s2 are final states (Berstel and Leconte, 2010). Based on this sufficient condition,
we can check a state for non-confluence by using the following predicate we have
defined in Ksystra et al. (2012); eq notConfluent(s) = s =(2,*)=>! s’.

To check a rule-based system for non-confluence, we perform the search for all the
initial states of the system, as before, using red notConfluent?(init).

The above reduction instructs CafeOBJ to search, starting from the initial state of the
system, for two different final states. For this reason, we use again the predicate with the
exclamation mark at the end (final state), but in the number indicating the number of
solutions we assign the value 2 (two different states). If two such solutions are found, it
means that the state is not confluent.

To understand which rules cause the problem or in cases where the system’s
behavior remains unclear, we should continue the analysis of the rules by conducting
one more test. This last check basically simulates the execution behavior of the rules and
detects possible loops.

In our case study, if we use the command notConfluent?(init), Cafe OBJ will
return the result; found state 3 and no more possible transitions.

In that case, it is not clear how the initial state behaves, and further analysis is
required. For this reason, we use the command, red init =(*,*)=>* S, which
returns all the reachable states from the initial state of the system. This, in combination
with the command show path id, simulates the execution behavior of the rules.

In our running case study, if we use the following reduction: red init =(*,*)=>*
(event-memory: e1) (Slp: s1) (Mtn: l1) (Mtn-memory: m1)
(int-Lgts: i1) (lgtsTmr: t1) (ExtLgt: x1) and also use the command show
path id for each reachable state, we get the following result (Box 12):

This is graphically presented in Figure 1.

437

Rule-based
Web agents

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 2
1:

37
 0

1
N

ov
em

be
r

20
16

 (
PT

)

http://www.emeraldinsight.com/action/showImage?doi=10.1108/IJWIS-04-2016-0024&iName=master.img-011.jpg&w=343&h=74

In this way, we get a clear perception of the execution of the rules. Now, because of the
fact that CafeOBJ system visits each reachable state once, using this check, we can
discover that the last state of the execution path can be either:

• final, i.e. no transition can be applied in it;
• in between, i.e. a transition can be applied in it and will lead to an already visited

final state; and
• part of a loop, i.e. a transition can be applied in it, but it will lead to a non-final state

already visited in the same state path.

Based on the above result, we can decide whether the initial state of the rule-based
system behaves as expected[3]. Discovering a loop using the proposed methodology
allow us to isolate the rule that is responsible for it and the condition which causes
it. This useful information can be used to change the rules and redesign the system.

In our case study (Figure 1), state 3 is final, as the first check already showed. State 5
is an in-between state, because if Transition A8 will be applied in it, it will lead to state 3
again (that is why CafeOBJ does not apply A8). So, this initial state behaves well, as it
leads to the same final states.

However, after checking other possible initial states and using the returned feedback,
we changed Rules 8-10 as follows[4]:

r8=: on ExtLgtLow if (Slp � false) do set (intLgts, 6).
r9=: on ExtLgtLow if (Slp � true) do set (intLgts, 0).
r10=: on MtnOn if (Slp � false) do (set (intLgts, 4) par set (lgtsTmr, 0)).

Regarding now the behavior of the rules, the built-in CafeOBJ search predicate can also
be used to prove safety properties for a system specified in rewriting logic. Ogata and
Futatsugi (2014) propose a methodology for model checking and theorem proving
rewrite specifications using CafeOBJ. We will describe this verification methodology
using the running case study again.

4.3.5 Invariant properties. A desirable safety property p is an invariant for a
rule-based system if it holds in each reachable state (Rs) of the system, i.e. ∀s � Rs.p(s).

For the verification of such properties, model checking and/or theorem proving can
be used. An invariant property can be model checked by searching if there is a state
reachable from the initial state such that the desirable property does not hold (Ogata and
Futatsugi, 2014). This can be achieved using the expression: red init =(1,*)=>* p
[suchThat c].

In the above term, c is a CafeOBJ term denoting the negation of the desired safety
property. Thus, CafeOBJ will return true for this reduction if it discovers (within the
given depth) a state which violates the safety property.

For example, suppose we are interested in the following invariant property; the lights
cannot be turned off if someone is in the room and he/she does not sleep. Also, considerFigure 1.

Graphical
representation of the
reachable states from
the initial state of the
system

IJWIS
12,4

438

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 2
1:

37
 0

1
N

ov
em

be
r

20
16

 (
PT

)

http://www.emeraldinsight.com/action/showImage?doi=10.1108/IJWIS-04-2016-0024&iName=master.img-012.jpg&w=167&h=31

an initial state in which the room is occupied, the person sleeps, the lights are on and the
intensity of the external lights is low. If we ask CafeOBJ to find a state reachable from
this initial state, in which the lights are off, the room is occupied and the person does not
sleep, it will return the result false.

This methodology is very effective for discovering (shallow) counterexamples.
However, model checking does not constitute a formal proof and is complementary to
theorem proving. Ogata and Futatsugi (2014) present a methodology to theorem prove
safety properties of specifications written in rewriting logic. This methodology can be
used to reason about rule-based systems expressed in our framework.

Suppose we are interested in the same invariant property; this is expressed in
CafeOBJ using the rewriting approach as follows:

Eq isSafe((event-memory: e1)(Slp: s1)(Mtn: l1)(intLgts:
i1)(Mtn-memory: m1) (lgtsTmr: t1)(ExtLgt: x1)) = not ((i1 == 0)
and (l1 == true) and (s1 == false)).

The proof is done by induction on the number of transition rules of the system using the
following operator (Ogata and Futatsugi, 2014); eq check(pre, con) = if (pre
implies con) == true then true else false fi.

This operator takes as input a conjunction of lemmas and/or induction hypotheses
and a formula to prove. It returns true if the proof is successful and false if pre implies con
does not reduce to true.

For the base case, all we have to do is to check if the following term reduces to true:
red check(true, isSafe(init)), which it does for our initial state.

The inductive step consists of checking whether from an arbitrary state, say s, we can
reach in one step a state, say s’, where the desired property does not hold. This can be
verified using the reduction (Ogata and Futatsugi, 2014): red s =(*, 1)=>+ s’
suchThat (not check(isSafe(s), isSafe(s’))).

When false is returned, it means that CafeOBJ was unable to find a state s’ such that the
safety property holds in s and it does not hold in s’[5]. If a solution is found, i.e. the above term
is reduced to true, then either the safety property is not preserved by the inductive step or we
must provide additional input to the CafeOBJ machine. In the second case, this input may be
either in the form of extra equations defining case analysis or by asserting a lemma (in which
case, the new lemma has to be verified separately).

Consider the inductive step where, for example, the transition Rule E8 is applied to s (Box 13):

CafeOBJ returns false, and, thus, this induction case is discharged. Consider now the
inductive step where the transition Rule A8 is applied to s (Box 14):

CafeOBJ returns false, and, thus, the induction step for Rule 8 is discharged.

439

Rule-based
Web agents

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 2
1:

37
 0

1
N

ov
em

be
r

20
16

 (
PT

)

In the same way, the induction case for all the transition rules are discharged, and,
thus, the proof concludes. The whole specification of the rule based system and the proof
can be found in cafeobj@ntua.blogspot.com

5. Discussion
We present here some lessons learned throughout our research in formalizing reactive
rule-based systems. A more general comment is that we believe that equational and
rewriting logic is easier to learn than other logics, such as higher order, because they are
similar to everyday life reasoning. Hence, we believe that the verification with CafeOBJ
is easier to learn than those with other methods.

Also, transition rules expressed either in equational or in rewriting logic are closer to
reactive rules in researchers’ mindset (as their reasoning is similar to that of rules), thus, the
transformation is more straight forward. But, that was not obvious from the beginning.

One of the difficulties we faced during our research in reactive rules was the semantic
difference between events and actions, i.e. the fact that although events can occur at
anytime and can be straightforwardly mapped to transitions, actions must be executed
after the detection of their triggering events. This issue was addressed by mapping an
ECA rule into two different transition rules and by introducing appropriate observers
that can handle this difference (by helping us decide if the system must react to a
transition or treat it as an incoming event).

Another difficult point was selecting the most appropriate definition of termination and
confluence for rule-based systems that can also be expressed in Cafe OBJ terms. To
overcome this, we conducted a thorough search in the related literature and more precisely
we based our definitions on those of Berstel and Leconte (2010) and Baba-hamed and
Belbachir (2007), which had the level of abstraction that met our purposes.

As to which of the proposed methodologies is better, we should mention that
although the equational approach has better modeling capabilities as it provides
succinct, composable specifications and provides stronger verification support, to
decide which of the two is the most suitable, we have to take into account that these
frameworks aim in bringing reactive rules’ researchers closer to the area of formal
methods. Thus, we have to mainly considerate their needs and focus. To this end, we
believe that the equational approach should be adopted when the specified system is
complex and critical, and we need a really expressive formalism for modeling the
reactive rule-based system. However, the rewriting approach is better suited for
the reactive rules researchers community, as it is more natural and easier to use. Also,
the rewriting logic approach offers a seamless framework for verifying reactive rules, as
both safety properties and structure errors can be checked. Finally, it supports both
theorem proving and model-checking techniques. Thus, we believe that in most cases,
the rewriting approach is preferred.

For this reason and to make the rewriting approach even more friendly for the
potential users, we have developed a tool that automatically transforms a set of reactive
rules into a set of rewrite rules in CafeOBJ.

Before introducing the tool, we briefly discuss about interesting work that exists in
the literature, namely, abstract interpretation, abstract execution models and automatic
program analyzers, applied to various formalizations of transition systems, for example,
in the context of logic programs.

IJWIS
12,4

440

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 2
1:

37
 0

1
N

ov
em

be
r

20
16

 (
PT

)

http://cafeobj@ntua.blogspot.com

In a nutshell, abstract interpretation (Delzanno et al., 2010) is a theory of sound
approximation of the semantics of computer programs, based on monotonic functions
over ordered sets, especially lattices. It can be viewed as a partial execution of a
computer program which gains information about its semantics (e.g. control flow and
data flow) without performing all the calculations. Abstract execution (Gustafsson et al.,
2006) is a form of symbolic execution, which is based on abstract interpretation.
Abstract execution executes the program in the abstract domain, with abstract values
for the program, and abstract versions of the operators in the language. Finally,
automatic program analyzers (Shankar, 2000) are used for analyzing properties of
transition systems by combining tools for program analysis, model checking and
theorem proving. The above methodologies are mainly used for formal static analysis,
i.e. the automatic extraction of information about the possible executions of computer
programs. The computation of execution time bounds, the calculation of loop bounds
and the detection of infeasible paths are few examples of their possibilities.

Also, among other well-known formalisms that deal with state transitions, that can
be used to describe the effect of actions, is the Situation Calculus. Situation Calculus Gu
et al. (2006) is a logical language for representing changes. The basic concepts in
Situation Calculus are situations, actions and fluents. Briefly, actions are what make the
dynamic world change from one situation to another when performed by agents. Fluents
are situation-dependent functions used to describe the effects of actions. Situation
Calculus is mainly used for representing temporal domains and for performing
reasoning about change and causality in dynamic domains.

Compared to the above methodologies, algebraic specifications, such as CafeOBJ, are
more concerned with reasoning about the behavior of specified systems and verifying
desired properties of them. The type of properties that can be verified are safety
properties, which hold in any reachable state of the system (called invariant properties)
and liveness properties (something will eventually happen).

6. Tool: from reactive rules to CafeOBJ rewrite rules
The developed tool is written in Java and takes as input a set of reactive rules, written using
the generic style described in Section 2, and automatically produces a set of rewrite transition
rules written in CafeOBJ, implementing the proposed definitions of the rewriting
methodology (Section 3.2). The steps need to be taken to use the tool are the following:

• Choose and open a Reactive rules specification file.
• Press the ’Translate to CafeOBJ’ button.
• Save the generated CafeOBJ specification.
• Verify the behavior of the reactive-rule based system using CafeOBJ and the

proposed methodology.

The reactive rules specification has to obey in some syntactic guidelines. In more details,
rules declaration should start with an identification number (e.g. r1). The definition of
variables, events and rules should end with a fullstop (.), and, finally, external events
should be accompanied with their detection conditions.

The tool comprises two main parts. The first part contains classes that provide the
required functionality to parse a reactive rules specification and to store appropriately

441

Rule-based
Web agents

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 2
1:

37
 0

1
N

ov
em

be
r

20
16

 (
PT

)

the elements of the rules. The second part translates the set of rules into an executable
CafeOBJ rewrite theory specification based on the proposed definitions.

For example, in the following piece of code, the external event of an ECA rule is
translated into a rewrite transition rule (Box 15):

Suppose that we have the external event E1: MtnOn, activated when Mtn � true. The
outcome of the tool for this event will be the following CafeOBJ rewrite transition rule;
ctrans [E1]: (event-memory: null) (Mtn: l) �� (event-memory: MtnOn) (Mtn: l) if (l �
true)[6].

Figure 2.
ECA rules that define
the intelligent light
system

IJWIS
12,4

442

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 2
1:

37
 0

1
N

ov
em

be
r

20
16

 (
PT

)

http://www.emeraldinsight.com/action/showImage?doi=10.1108/IJWIS-04-2016-0024&iName=master.img-015.jpg&w=343&h=147
http://www.emeraldinsight.com/action/showImage?doi=10.1108/IJWIS-04-2016-0024&iName=master.img-016.jpg&w=344&h=256

Eca2CafeEvent(rule) returns the name of the triggering event of the rule (here
MtnOn) which is stored in the observer event-memory after the detection of the
event. rule.getdetectvariable() returns the name of the variable which activates the
event, here Mtn, and rule.getEnvVar() returns an arbitrary value for that variable,
here l. Finally, the part after the if statement is basically the detection condition of
the event, here if (l � true). In an analogous way, and based on the presented
definitions, the rest types of events and the actions are translated into CafeOBJ
rewrite rules.

For demonstration purposes, we present in the following screenshots, part of the
transformation of the ECA rules of the running case study into CafeOBJ rewrite rules. In
Figure 2, we can see part of the rules we wish to translate. Clicking on ’Translate to
CafeOBJ’ button will result in the outcome shown in Figure 3. As we can see, the
developed tool hides the details of the translation.

Moreover, except from the automatically generated rewrite rules, the tool also
creates the rest of the CafeOBJ specification which is required so that the output
specification can be given as input to the CafeOBJ processor. In this way, there is no
need for the user to add any additional information, such as module and sort
declarations, observers, variables and so on (Figure 4). After the transformation,
the user can use CafeOBJ directly to further analyze and verify the behavior of the
rules.

Sometimes, it is difficult for inexperienced users to do interactive theorem
proving especially for complex systems. This is another reason why we believe that

Figure 3.
Output of the tool –

generated rewrite
rules in CafeOBJ

terms

443

Rule-based
Web agents

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 2
1:

37
 0

1
N

ov
em

be
r

20
16

 (
PT

)

http://www.emeraldinsight.com/action/showImage?doi=10.1108/IJWIS-04-2016-0024&iName=master.img-017.jpg&w=343&h=257

the rewriting logic approach is better suited for verifying reactive rule-based
systems, as it supports model checking as well, which is easier to learn and use.
Also, we hope that through this paper, which presents how to verify reactive rules
with simple steps, the verification process will become clear even for unexperienced
users.

7. Conclusion and future work
Reactive rules are extensively used for the development of complex systems and are
a promising approach, as they support flexibility, expressivity and are
user-friendly. However, they can present unpredictable behavior because of their
ability to interact during execution. Thus, the need for verifying their behavior has
become clear.

To this end, we have presented a framework based in the CafeOBJ algebraic
specification language that can be used to formally specify reactive rule-based
systems in both equational and rewriting logic. This allows the verification of safety
properties of the systems using model checking and theorem proving techniques, as
well as the detection of confluence and termination errors. Moreover, it provides
understanding of the specified systems and, thus, reliability in their development.
Finally, we have developed a tool that automatically translates a set of reactive rules
into a rewrite theory executable specification in CafeOBJ, thus making the proposed
methodology easier for users without much experience in formal methods
techniques.

Figure 4.
Output of the tool –
generated auxiliary
CafeOBJ modules

IJWIS
12,4

444

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 2
1:

37
 0

1
N

ov
em

be
r

20
16

 (
PT

)

http://www.emeraldinsight.com/action/showImage?doi=10.1108/IJWIS-04-2016-0024&iName=master.img-018.jpg&w=343&h=257

In the future, we plan to integrate the proposed tool and methodologies with other
specification systems, such as Maude, so as to have better tool support and broader
use.

Notes
1. We assume that each transition is atomic and instantaneous.

2. In cases where the initial state of the system is not known beforehand, we can define a set of
possible initial states by defining an arbitrary initial state and discriminating the cases based
on the conditions of the transition rules.

3. In cases where CafeOBJ system does not apply a rule because it will lead to an already visited
state, the check can be performed again with starting state, that is, the state where the
previous check had stopped.

4. We could not explain in detail because of space limitations; for more details, we refer the
reader to Jin et al. (2013) and cafeobj@ntua.blogspot.com

5. To modularly verify each transition rule separately, we define for each such transition a new
module which only contains one transition rule at a time.

6. This rule denotes that in a state where event-memory is empty and the observer Mtn is
equal to l, if l is true, then we derive a successor state where MtnOn is stored to
event-memory.

References
Baba-hamed, L. and Belbachir, H. (2007), “The priority of rules and the termination analysis

using Petri Nets”, The International Arab Journal of Information Technology, Vol. 4
No. 2.

Badica, C., Braubach, L. and Paschke, A. (2011), “Rule-based distributed and agent systems”, 5th
International Conference on Rule-Based Reasoning, Programming, and Applications,
RuleML, Springer, London, pp. 3-28.

Berstel, B., Bonnard, P., Bry, F., Eckert, M. and Patranjan, P.L. (2007), “Reactive Rules on the
Web”, Third International Summer School, Vol. 4636, LNCS, Dresden, pp. 183-239.

Berstel, B. and Leconte, M. (2010), “Using constraints to verify properties of rule programs”,
ICST Third International Conference on Software Testing, Verification and Validation,
Paris.

Boukhebouze, M., Amghar, Y., Benharkat, A. and Maamar, Z. (2011), “A rule-based approach to
model and verify flexible business processes”, International Journal of Business Process
Integration and Management, Vol. 5 No. 4.

Bry, F., Eckert, M. and Patranjan, P.L. (2006), “Reactivity on the web: paradigms and applications
of the language XChange”, Journal of Web Engineering, Vol. 5 No. 1, pp. 003-024.

Clavel, M., Durn, F., Eker, S., Lincoln, P., Mart-Oliet, N., Meseguer, J. and Quesada, J. (1999),
“Maude: specification and programming in rewriting logic”, Maude system
documentation.

Delzanno, G., Giacobazzi, R. and Ranzato, F. (2010), “Static analysis: abstract interpretation
and verification in (Constraint logic) programming”, A 25-Year Perspective on Logic
Programming, Volume 6125 of the series Lecture Notes in Computer Science,
pp. 136-158.

Diaconescu, R., Futatsugi, K. and Ogata, K. (2003), “CafeOBJ: logical foundations and
methodologies”, Computing and Informatics, Vol. 22, pp. 257-283.

445

Rule-based
Web agents

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 2
1:

37
 0

1
N

ov
em

be
r

20
16

 (
PT

)

http://cafeobj@ntua.blogspot.com
http://www.emeraldinsight.com/action/showLinks?crossref=10.1007%2F978-3-642-22546-8_3
http://www.emeraldinsight.com/action/showLinks?crossref=10.1007%2F978-3-642-22546-8_3
http://www.emeraldinsight.com/action/showLinks?crossref=10.1007%2F978-3-642-22546-8_3
http://www.emeraldinsight.com/action/showLinks?isi=000187746300004
http://www.emeraldinsight.com/action/showLinks?crossref=10.1109%2FICSTW.2010.42
http://www.emeraldinsight.com/action/showLinks?isi=000250870500002
http://www.emeraldinsight.com/action/showLinks?crossref=10.1007%2F978-3-642-14309-0_7
http://www.emeraldinsight.com/action/showLinks?crossref=10.1007%2F978-3-642-14309-0_7
http://www.emeraldinsight.com/action/showLinks?crossref=10.1007%2F978-3-540-74615-7_3
http://www.emeraldinsight.com/action/showLinks?crossref=10.1504%2FIJBPIM.2011.043389
http://www.emeraldinsight.com/action/showLinks?crossref=10.1504%2FIJBPIM.2011.043389

Ericsson, A., Berndtsson, M. and Pettersson, P. (2008), “Verification of an industrial rule-based
manufacturing system using REX”, 1st International Workshop on Complex Event
Processing for Future Internet, (iCEP08) Colocated with the Future Internet Symposium
(FIS2008),Vienna, in Anicic, D., Brelage, C., Etzion, O. and Stojanovic, N. (Eds), CEUR
Workshop Proceedings, Vol. 412.

Futatsugi, K., Gaina, D. and Ogata, K. (2012), “Principles of proof scores in CafeOBJ”, Theoretical
Computer Science, Vol. 464 No. 1, pp. 90-112.

Gilbert, D. (1997), “Intelligent agents: the right information at the right time”, IBM Intelligent
Agent White Paper, IBM Corporation, Research Triangle Park, NC.

Gu, Y. and Kiringa, I. (2006), “Model checking meets theorem proving: a situation calculus based
approach”, The Proceedings of the Eleventh International Workshop on Non-Monotonic
Reasoning, Lake District.

Gustafsson, J., Ermedahl, A., Sandberg, C. and Lisper, B. (2006), “Automatic derivation of loop
bounds and infeasible paths for WCET analysis using abstract execution”, RTSS ’06
Proceedings of the 27th IEEE International Real-Time Systems Symposium, Rio de Janeiro,
pp. 57-66.

Hayes, P.J. (1971), “The frame problem and related problems in artificial intelligence”, Technical
Report, Stanford University Stanford, CA.

Jin, X., Lembachar, Y. and Ciardo, G. (2013), “Symbolic verication of ECA rules”, International
Workshop on Petri Nets and Software Engineering (PNSE’13) and International Workshop
on Modeling and Business Environments (ModBE’13), Milano, pp. 41-59.

Jin, X., Lembachar, Y. and Ciardo, G. (2014), “Symbolic termination and confluence checking for
ECA rules”, Transactions on Petri Nets and Other Models of Concurrency IX Lecture Notes
in Computer Science, Springer, Berlin, Vol. 8910, pp. 99-123.

Ksystra, K., Stefaneas, P. and Frangos, P. (2014), “An algebraic framework for modeling of
reactive rule-based intelligent agents”, SOFSEM: Theory and Practice of Computer
Science – 40th International Conference on Current Trends in Theory and Practice of
Computer Science, LNCS, High Tatras, pp. 407-418.

Ksystra, K., Triantafyllou, N. and Stefaneas, P. (2012), “On verifying reactive rules using rewriting
logic”, RuleML, 67-81 6th International Symposium, RuleML, Springer, Berlin, pp. 136-150.

Lukichev, S. (2011), “Improving the quality of rule-based applications using the declarative
verification approach”, International Journal of Knowledge Engineering and Data Mining,
Vol. 1 No. 3, pp. 254-272.

Meseguer, J. (1992), “Conditional rewriting logic as a unified model of concurrency”, Theoretical
Computer Science, Vol. 96 No. 1, pp. 73-155.

Ogata, K. and Futatsugi, K. (2013), “Compositionally writing proof scores of invariants in the
OTS/CafeOBJ method”, Journal of Universal Computer Science, Vol. 19 No. 6, pp. 771-804.

Ogata, K. and Futatsugi, K. (2014), “Theorem proving based on proof scores for rewrite theory
specifications of OTSs”, Specification, Algebra, and Software, Essays Dedicated to Kokichi
Futatsugi, LNCS, 8373, Springer, Berlin, pp. 630-656.

Paschke, A. (2005), “ECA-RuleML: an approach combining ECA rules with temporal
interval-based kr event/action logics and transactional update logics”, ECA-RuleML
Proposal for RuleML Reaction Rules Technical Goup.

Paschke, A. (2006), “ECA-LP/ECA-RuleML: a homogeneous event-condition-action logic
programming language”, International Conference on Rules and Rule Markup Languages
for the Semantic Web, Athens, GA.

IJWIS
12,4

446

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 2
1:

37
 0

1
N

ov
em

be
r

20
16

 (
PT

)

http://www.emeraldinsight.com/action/showLinks?crossref=10.1016%2F0304-3975%2892%2990182-F&isi=A1992HM81000004
http://www.emeraldinsight.com/action/showLinks?crossref=10.1016%2F0304-3975%2892%2990182-F&isi=A1992HM81000004
http://www.emeraldinsight.com/action/showLinks?crossref=10.1016%2Fj.tcs.2012.07.041&isi=000311985000007
http://www.emeraldinsight.com/action/showLinks?crossref=10.1016%2Fj.tcs.2012.07.041&isi=000311985000007
http://www.emeraldinsight.com/action/showLinks?crossref=10.1007%2F978-3-319-04298-5_36
http://www.emeraldinsight.com/action/showLinks?crossref=10.1007%2F978-3-319-04298-5_36
http://www.emeraldinsight.com/action/showLinks?crossref=10.1007%2F978-3-642-54624-2_31
http://www.emeraldinsight.com/action/showLinks?crossref=10.1007%2F978-3-642-54624-2_31
http://www.emeraldinsight.com/action/showLinks?crossref=10.1504%2FIJKEDM.2011.037646
http://www.emeraldinsight.com/action/showLinks?crossref=10.1007%2F978-3-662-45730-6_6
http://www.emeraldinsight.com/action/showLinks?crossref=10.1007%2F978-3-662-45730-6_6
http://www.emeraldinsight.com/action/showLinks?isi=000322592200004
http://www.emeraldinsight.com/action/showLinks?crossref=10.1109%2FRTSS.2006.12
http://www.emeraldinsight.com/action/showLinks?crossref=10.1109%2FRTSS.2006.12

Paschke, A. and Boley, H. (2009), “Rules capturing events and reactivity”, in Giurca, A.,
Gasevic, D. and Taveter, K. (Eds), Handbook of Research on Emerging Rule-Based
Languages and Technologies: Open Solutions and Approaches, IGI Publishing, Hershey,
PA, pp. 215-252.

Paschke, A., Boley, H., Zhao, Z., Teymourian, K. and Athan, T. (2012), “Reaction RuleML 1.0:
standardized semantic reaction rules”, 6th International Symposium, RuleML, LNCS 7438,
Springer, Berlin, pp. 100-119.

Shankar, N. (2000), “Symbolic analysis of transition systems”, From Abstract State Machines:
Theory and Applications, Lecture Notes in Computer Science, No. 1912, pp. 287-302.

Stavropoulos, T.G., Kontopoulos, E., Bassiliades, N., Argyriou, J., Bikakise, A., Vrakas, D. and
Vlahavas, I. (2015), “Rule-based approaches for energy savings in an ambient intelligence
environment”, Pervasive and Mobile Computing, Vol. 19 No. 1, pp. 1-23.

Zhang, M. and Ogata, K. (2009), “Modular implementation of a translator from behavioral
specifications to rewrite theory specifications”, 9th International Conference on Quality
Software (QSIC), Beijing, pp. 406-411.

Zhang, M. and Ogata, K. (2012), “Invariant-preserved transformation of state machines from
equations into rewrite rules”, 19th Asia-Pacific Software Engineering Conference (APSEC),
Hong Kong, pp. 551-556.

Corresponding author
Katerina Ksystra can be contacted at: katerinaksystra@gmail.com

For instructions on how to order reprints of this article, please visit our website:
www.emeraldgrouppublishing.com/licensing/reprints.htm
Or contact us for further details: permissions@emeraldinsight.com

447

Rule-based
Web agents

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 2
1:

37
 0

1
N

ov
em

be
r

20
16

 (
PT

)

mailto:katerinaksystra@gmail.com
mailto:permissions@emeraldinsight.com
http://www.emeraldinsight.com/action/showLinks?crossref=10.1007%2F3-540-44518-8_16
http://www.emeraldinsight.com/action/showLinks?crossref=10.1007%2F3-540-44518-8_16
http://www.emeraldinsight.com/action/showLinks?crossref=10.1109%2FQSIC.2009.60
http://www.emeraldinsight.com/action/showLinks?crossref=10.1109%2FQSIC.2009.60
http://www.emeraldinsight.com/action/showLinks?crossref=10.1007%2F978-3-642-32689-9_9
http://www.emeraldinsight.com/action/showLinks?crossref=10.1016%2Fj.pmcj.2014.05.001&isi=000353830400001
http://www.emeraldinsight.com/action/showLinks?crossref=10.4018%2F978-1-60566-402-6.ch010
http://www.emeraldinsight.com/action/showLinks?crossref=10.4018%2F978-1-60566-402-6.ch010
http://www.emeraldinsight.com/action/showLinks?crossref=10.1109%2FAPSEC.2012.99

	Formal analysis and verification support for reactive rule-based Web agents
	1. Introduction
	2. Preliminaries
	3. Proposed frameworks
	4. Case study: a light-control intelligent system
	5. Discussion
	6. Tool: from reactive rules to CafeOBJ rewrite rules
	7. Conclusion and future work
	References

