
International Journal of Web Information Systems
The role of developers’ social relationships in improving service selection
Devis Bianchini Valeria De Antonellis Michele Melchiori

Article information:
To cite this document:
Devis Bianchini Valeria De Antonellis Michele Melchiori , (2016),"The role of developers’ social
relationships in improving service selection", International Journal of Web Information Systems, Vol.
12 Iss 4 pp. 477 - 503
Permanent link to this document:
http://dx.doi.org/10.1108/IJWIS-04-2016-0022

Downloaded on: 01 November 2016, At: 21:37 (PT)
References: this document contains references to 35 other documents.
To copy this document: permissions@emeraldinsight.com
The fulltext of this document has been downloaded 16 times since 2016*

Users who downloaded this article also downloaded:
(2016),"Learning to rank with click-through features in a reinforcement learning framework",
International Journal of Web Information Systems, Vol. 12 Iss 4 pp. 448-476 http://dx.doi.org/10.1108/
IJWIS-12-2015-0046
(2016),"Formal analysis and verification support for reactive rule-based Web agents", International
Journal of Web Information Systems, Vol. 12 Iss 4 pp. 418-447 http://dx.doi.org/10.1108/
IJWIS-04-2016-0024

Access to this document was granted through an Emerald subscription provided by emerald-
srm:563821 []

For Authors
If you would like to write for this, or any other Emerald publication, then please use our Emerald
for Authors service information about how to choose which publication to write for and submission
guidelines are available for all. Please visit www.emeraldinsight.com/authors for more information.

About Emerald www.emeraldinsight.com
Emerald is a global publisher linking research and practice to the benefit of society. The company
manages a portfolio of more than 290 journals and over 2,350 books and book series volumes, as
well as providing an extensive range of online products and additional customer resources and
services.

Emerald is both COUNTER 4 and TRANSFER compliant. The organization is a partner of the
Committee on Publication Ethics (COPE) and also works with Portico and the LOCKSS initiative for
digital archive preservation.

*Related content and download information correct at time of download.

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 2
1:

37
 0

1
N

ov
em

be
r

20
16

 (
PT

)

http://dx.doi.org/10.1108/IJWIS-04-2016-0022

The role of developers’ social
relationships in improving

service selection
Devis Bianchini, Valeria De Antonellis and Michele Melchiori

Department of Information Engineering, University of Brescia,
Brescia, Italy

Abstract
Purpose – Modern Enterprise Web Application development can exploit third-party software
components, both internal and external to the enterprise, that provide access to huge and valuable data
sets, tested by millions of users and often available as Web application programming interfaces (APIs).
In this context, the developers have to select the right data services and might rely, to this purpose, on
advanced techniques, based on functional and non-functional data service descriptive features. This
paper focuses on this selection task where data service selection may be difficult because the developer
has no control on services, and source reputation could be only partially known.
Design/methodology/approach – The proposed framework and methodology are apt to provide
advanced search and ranking techniques by considering: lightweight data service descriptions, in terms
of (semantic) tags and technical aspects; previously developed aggregations of data services, to use in
the selection process of a service the past experiences with the services when used in similar
applications; social relationships between developers (social network) and their credibility evaluations.
This paper also discusses some experimental results regarding the plan to expand other experiments to
check how developers feel using the approach.
Findings – In this paper, a data service selection framework that extends and specializes an existing
one for Web APIs selection is presented. The revised multi-layered model for data services is discussed
and proper metrics relying on it, meant for supporting the selection of data services in a context of Web
application design, are introduced. Model and metrics take into account the network of social
relationships between developers, to exploit them for estimating the importance that a developer
assigns to other developers’ experience.
Originality/value – This research, with respect to the state of the art, focuses attention on developers’
social networks in an enterprise context, integrating the developers’ credibility assessment and
implementing the social network-based data service selection on top of a rich framework based on a
multi-perspective model for data services.

Keywords Collective knowledge, Data service, Developers social network, Service similarity,
Web API, Web application design

Paper type Research paper

1. Introduction
Modern Enterprise Web Application development can exploit third-party software
components, both internal and external to the enterprise, that provide access to huge and
valuable data sets, as well as advanced functionalities tested by millions of users, often
available as Web application programming interfaces (APIs) (e.g., Google Maps).
Availability of data services meeting these requirements is becoming more and more
important, as also witnessed by statistics of www.programmableweb.com one of the

The current issue and full text archive of this journal is available on Emerald Insight at:
www.emeraldinsight.com/1744-0084.htm

Improving
service

selection

477

Received 21 April 2016
Accepted 2 May 2016

International Journal of Web
Information Systems

Vol. 12 No. 4, 2016
pp. 477-503

© Emerald Group Publishing Limited
1744-0084

DOI 10.1108/IJWIS-04-2016-0022

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 2
1:

37
 0

1
N

ov
em

be
r

20
16

 (
PT

)

http://www.programmableweb.com
http://dx.doi.org/10.1108/IJWIS-04-2016-0022

most popular Web API repository (Vitvar and Musser, 2010). Data services need to be
discovered, selected and merged, but in a Web 2.0 context, their descriptions are often
very simple, mainly expressed in terms of categories and (semantic) tags. As far as the
enterprise operational environment evolves in terms of actors and their mutual social
relationships, social structures, organizational entities and modern Web 2.0
technologies, the Web application design process should evolve coherently, being able
to exploit new models and methodologies (Fuxman et al., 2001).

Selection criteria relying on lightweight service descriptions (Blasch et al., 2013; Ceri
et al., 2010) might be complemented by considering other perspectives. For instance, the
relevance of a data service with respect to a given Web application design project might
be high because the service has been already used in similar contexts (i.e., in applications
designed with similar data services) and revealed to be useful. Moreover, the importance
that a developer gives to past experiences of other developers, who have already used
the services for designing their own Web applications, becomes relevant.

In this paper, we present a data service selection framework, apt to providing
advanced search and ranking techniques that take into account:

• lightweight data service descriptions, in terms of (semantic) tags and technical
aspects on which service implementations rely (e.g., protocols, formats for data
exchange);

• previously developed aggregations of data services, to enhance selection by
considering services already used in similar contexts (i.e., in applications based on
similar data services); and

• a social network of developers, where social relationships represent explicit
endorsements among developers concerning their skill in Web application
development starting from third-party data service selection.

Moreover, developers can also express votes on data services as included in existing
applications, and these votes are used to estimate developers’ credibility according to a
majority-based approach.

We introduced the idea of engaging developers’ development experiences to improve
component selection as per Bianchini et al. (2013), where we described a
multi-perspective model, developed considering:

• a component perspective, focused on single components and their descriptions;
• an application perspective, focused on aggregations of components; and
• an experience perspective, focused on developers who used and voted components

to build their own aggregations.

Major novel contributions of this paper are as follows:
• We specialized the multi-perspective model in terms of data services with

lightweight descriptions (semantic tags and technical features) and their
aggregations.

• We extended the experience perspective with the social network of developers.
• We integrated developers’ ranking and credibility assessment in the service

selection process.

IJWIS
12,4

478

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 2
1:

37
 0

1
N

ov
em

be
r

20
16

 (
PT

)

The data service selection is based on the social network of developers and on the
analysis of their social relationships. This analysis combined with credibility evaluation
of each developer determines a ranking of developers. Specifically, the selection process
is organized through the following steps. First, candidate services are selected using
similarity metrics based on (semantic) tags, technical features and service co-occurrence
in existing applications. Then, candidate services are sorted. Sorting takes into account
both the rank of developers who used candidate services to develop their own Web
applications and votes assigned to candidate services in the context of these
development experiences.

The paper is organized as follows. First, we present in Section 2 an application
scenario to make clear the problem of data service selection and provide motivations for
our work. In Section 3, we provide some preliminary definitions, and we formalize the
problem discussed in this paper. In Section 4, we describe the architecture of our data
service selection framework derived from a previous prototype. Section 5 introduces the
specialized multi-perspective model for data services. In Section 6, we explain how
developer credibility and analysis of social relationships are performed and combined.
In Section 7, we describe the metrics for data service selection, based upon the model,
and service ranking. Experimental evaluation issues are discussed in Section 8. In
Section 9, the state of the art on data service selection is discussed and the cutting-edge
features of our approach are highlighted. Finally, conclusions and future work in Section
10 close the paper.

2. Application scenario
Let us consider a Web application developer, working for the marketing department of
an enterprise that has to build an application that integrates information about potential
markets, sales and demographic data. This application could be implemented by
merging data coming from sources internal to the enterprise (e.g., information about the
target clients) and external data sources (e.g., providing information about demographic
data), made available as data services.

The developer’s tasks can be intuitively organized into two main phases: first, the
developer has to select the right data services and might rely, to this purpose, on
advanced techniques, based on functional and non-functional data service descriptive
features; therefore, data integration and querying over multiple sources have to be
addressed, to deploy the application required by the marketing department.

In this paper, we focus on the former phase. Data service selection may be difficult
because the developer has no control on services, and source reputation could be only
partially known. These difficulties are mainly because of the high number and
heterogeneity of available data services over the Web and to their often unknown
origins. In this context, it is frequent that a developer:

• searches for advices from other developers (of the same enterprise or different
ones); and

• looks for votes/ratings assigned by other developers to data services.

An approach that exclusively relies on the latter is error-prone, as no information is
available on the credibility of people who rated the data services. Although some
techniques for credibility assessment have been proposed in the literature (Bianchini
et al., 2013; Malik and Bouguettaya, 2009), a typical Web application design project

479

Improving
service

selection

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 2
1:

37
 0

1
N

ov
em

be
r

20
16

 (
PT

)

prevents from exclusively using these techniques (Hertzum, 2014; Schafermeier and
Paschke, 2011). It is reasonable to assume that developer’s preference is for experts who
can be contacted/engaged, because some mutual social or organizational relationships
exist among them. These considerations are confirmed by studies, for example Hertzum
(2014) conducted on employees of medium- and large-sized companies, that demonstrate
how employees often prefer to talk to experts instead of using ratings or comments
spread over the network. Therefore, social aspects play an important role by lowering
the effort in the identification of candidate data services, that are suitable to be
aggregated in the Web application to be designed. In the rest of the paper, we will
assume the following preliminary definitions.

3. Preliminary definitions
Formally, we define the concepts data services and service aggregations as follows.

Definition 1. We define a data service s (hereafter, also service) as an operation/
method/query to access data of a source �, whose underlying data schema might be
unknown to those who use the service. Within the scope of this paper, we model a service
s as �ns, URLs, �ts�, �fs��, where: ns is the service name; URLs is the service endpoint; �ts� is
a set of tags; �fs� is a set of technical features (e.g., programming languages and data
formats compatible with the service). We denote with G the overall set of available services.

Our definition of data services is suitable for describing resource-oriented services
(i.e., RESTful ones). Concerning SOAP (Simple Object Access Protocol) services which
present an operation-oriented description (e.g., WSDL [Web Service Definition
Language]), we consider only data they work on, represented through tags as a
simplification of service descriptors originally introduced in our first works on Web
services’ similarity analysis (De Antonellis et al., 2003). We admit different ways for
assigning tags to services:

• keywords automatically extracted from the service name, names of I/O
parameters and related textual descriptions through the application of
text-mining techniques (Gupta and Lehal, 2009); and

• tags manually assigned by developers who used the service to design their own
applications.

Examples of data services are the methods of a Web API (for instance, the method of
GeoData Demographics API[1] that provides demographic data for a given zone),
queries formulated by using search-specific languages (such as Yahoo! Query
Language, https://developer.yahoo.com/yql/), services delivering data in tabular
format (e.g., Google Fusion Tables; http://tables.googlelabs.com/) or in row format
(such as Factual, http://www.factual.com). Data services are usually wrapped as
Web services, that can be implemented according to different styles (e.g., using
REST or SOAP).

Definition 2. A service aggregation describes a set of services that can be used to deploy
an enterprise Web application. An aggregation g is modeled as a triple �ng,S(g),d�, where:
ng is the aggregation name; S(g) � �s1,…,sn� is the set of data services used in g; d � D
is the developer who designed the Web application by composing services in g. We denote
with G the overall set of service aggregations, that is, g � G, and with G(s) the set of
aggregations where s has been included.

IJWIS
12,4

480

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 2
1:

37
 0

1
N

ov
em

be
r

20
16

 (
PT

)

https://developer.yahoo.com/yql/
http://tables.googlelabs.com/
http://www.factual.com

As remarked in Section 2, the development process requires service selection and
then service composition/integration. This is why we distinguish between applications
and data service aggregations.

Problem statement. Given a developer d � D, who is designing a new Web
application starting from a set of available data services S, given the set G�dk�
(∀k � 1…n) of data service aggregations abstracting the applications designed in
the past by developer dk � D. Our aim is supporting d in performing data service
selection, by proposing an ordered set of candidate data services S * � S. Ordering
takes into account the past experience in G�dk� for each developer dk and weighs the
experience based on social relationships established between developers to form a
social network.

4. Architecture of the WISeR framework
WISeR (Web apI Search and Ranking) presented by Gupta and Lehal (2009) is a
framework we originally implemented to provide advanced Web APIs’ selection
facilities by enabling application developers to actively take part in the semantic
tagging and rating of Web APIs. The aim is allowing developers to share experiences
obtained when producing their own Web APIs’ aggregations and mashups. In
particular, we adapt similarity metrics based on semantic tag matching, used by WISeR
for Web API search, and we introduce similarity based on technical features. Then, we
combine these metrics with developers’ ranking metrics to implement the data service
selection.

To enable this social network-based selection of data services, we extend the WISeR
framework and the resulting architecture as shown in Figure 1.

First, the resulting WISeR is based on a multi-layered model, developed considering
different description perspectives where components are data services in the extended
version of WISeR:

• a component perspective, focused on single components and their descriptions;
• an application perspective, focused on aggregations of components; and
• an experience perspective, focused on developers who used and voted

components to build their own aggregations.

The framework allows different kinds of search, either for single isolated services or for
services needed to complete/update an existing application. Furthermore, two
modalities of search are provided: simple and proactive. In the simple search, the user
receives suggestions about relevant data services after explicitly specifying search
features (e.g., tags, required technical features and so on). In the proactive search, that is
the most explorative search modality, the developer does not have in mind the services
of interest, or he/she just provides a partial specification of what he/she is looking for,
and the framework proactively suggests candidate data services trying to complete the
aggregation that is being developed. The framework is equipped with proper wizards
that guide the developer in formulating the request depending on the desired kind of
search. A set of similarity metrics, based on the three perspectives, has been defined in
WISeR to quantify the compliance of available data services with respect to the specified
request:

481

Improving
service

selection

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 2
1:

37
 0

1
N

ov
em

be
r

20
16

 (
PT

)

(1) the tag similarity, to denote the similarity between the request and each
candidate service based on tags associated with both of them;

(2) the technical feature similarity, to denote the similarity between the request and each
candidate service based on technical features; and

(3) the aggregation similarity, to denote the similarity between the request and each
candidate service based on average similarity between the aggregation that is being
developed and aggregations where candidate services have been used in the past.

An overall similarity between request and each candidate service is then defined as a
combination of the above similarities. The adapted versions of these metrics and the
way they are combined will be defined formally in the Section 7 of this paper.

Services are kept within public and enterprise repositories, where they are
advertised. Proper wrappers have been designed to collect relevant service features (e.g.,
tags already assigned within such repositories) and to maintain a reference toward
original service, thus ensuring full compatibility. In particular, we have currently
implemented a wrapper that relies on the http://api.programmableweb.com methods for
accessing the ProgrammableWeb API repository contents to make available data
services implemented as Web APIs methods. Wrappers are invoked within the Data

Data
service

repositories

Web application
developer

SocializeContributeSearch

Request
Manager

Content
Manager

SN
Manager

Similarity

Developer
Rank

Ranking

Data Access Layer (Hibernate)

Internal
Registry

Data service feature extractor

Credibility
Assessment

Aggregation
Similarity

Tag Similarity

Front-end

Back-end

Tech Similarity

Figure 1.
The framework
architecture

IJWIS
12,4

482

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 2
1:

37
 0

1
N

ov
em

be
r

20
16

 (
PT

)

http://api.programmableweb.com

Service Features Extractor (Figure 1). Service descriptions according to Definition (1)
are stored within the Internal Registry shown in the figure.

Ratings of services, information about aggregations they belong to and developers’
social relationships are saved within the Internal Registry as well. Developers interact
with the framework through the front-end developed as Web application and that
provides the following functionalities:

• Search, to search for services.
• Contribute, to tag and assign votes to services.
• Socialize, to manage social relationships between developers.

The Manager modules act as controllers for the front-end functionalities. The core
modules we added to the existing WISeR framework, namely, Developer rank and
Credibility Assessment, will be detailed in the next sections.

5. The three-layer model
The model we propose in this paper includes three layers, which specialize the
perspectives presented in the previous section. Moreover, the model extends the
experience perspective by also considering the social network of developers. The model
is shown in Figure 2, and the layers are defined as follows:

(1) A data service layer: Where data services are described and tagged; data services
are described according to Definition (1).

(2) A service aggregation layer: Where usage experiences of data services, in terms
of data service aggregations, are described according to Definition (2).

(3) A social layer: Where developers are registered, together with their declared
social relationships, to form a social network.

In particular, the model layers are formalized as follows.
Definition 3. The data service layer is formed by the set S � �sj� of the available data

services, where sj is a service defined according to Definition (1).

Metadata
(semantic

tags)
Data service

Data service layer

Service aggregation layer

Social layer

Data service
aggregation

follower-of

follower-of
follower-of

developers’ social networks

developer

Data service
aggregation Data service

aggregation

Metadata
(semantic

tags)
Data service

Metadata
(semantic

tags)
Data service

Figure 2.
The multi-layered

model for data
service selection

483

Improving
service

selection

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 2
1:

37
 0

1
N

ov
em

be
r

20
16

 (
PT

)

In this layer, a data service s is associated with some metadata that, in the current
version of the model, contains (semantic) tags and technical features referring to the
whole service, used to enable coarse-grained search of the services. Semantic tagging is
supported within the WISeR framework through sense disambiguation facilities based
on WordNet. In WordNet, the meaning of terms is defined by means of synsets. Each
synset has a human-readable definition and a set of synonyms. Starting from a tag
specified by the developer, WordNet is queried, all the synsets that contain the term are
retrieved and the developer is asked to select the intended meaning. Each semantic tag
is a triplet, composed of:

• the term itself, extracted from WordNet;
• the set of all the terms in the same synset selected by the developer (synonyms); and
• the human-readable definition associated with the synset.

In WordNet, synsets are related by hyponymy/hypernymy relations, used to represent the
specialization/generalization relationship between two tags. Such a sense
disambiguation process is supported by a wizard (Bianchini et al., 2012).

Example. In Figure 3(a), four sample data services are listed: the first two, namely, s1
and s2, are fictitious services for the marketing department of the enterprise in the
running example described above; the others, namely, s3 and s4, are real data services
provided within the GeoData Demographics API. For each data service, inputs, outputs,
a short textual description and semantic tags disambiguated using WordNet and
technical features are given. Note that some tags are obtained from the inputs sIN and
outputs sOUT of services as explained in Section 3. In Figure 3(b), a portion of WordNet
thesaurus is shown where terms that include also tags for the sample data services are

Figure 3.
(a) Sample data
services for the
running example; (b)
a portion of WordNet
thesaurus used for
semantic
disambiguation of
tags; (c) WordNet
synsets and
corresponding
definitions for the
age term

IJWIS
12,4

484

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 2
1:

37
 0

1
N

ov
em

be
r

20
16

 (
PT

)

http://www.emeraldinsight.com/action/showImage?doi=10.1108/IJWIS-04-2016-0022&iName=master.img-106.jpg&w=343&h=235

related by hyponymy/hypernymy relations. Finally, in Figure 3(c), examples of
WordNet definitions for the Age term are listed.

Definition 4. The data service aggregation layer is formed by the set G � �gi� of the
available aggregations, where gi is a service aggregation defined according to
Definition (2).

In this layer, past usage experiences of data service selection are stored, in the form of
data service aggregations.

The social layer includes the social network of developers defined as follows.
Definition 5. The social network of developers is a pair SN � �D, ��, where: (a) D is the

set of developers; (b) � is a set of follower-of relationships between developers, defined as

� � �di ¡
f

dj�di, dj � D�, where di ¡
f

dj indicates that di explicitly declares to be inclined to
learn from the choices made in the past by dj for web application design purposes.

Definition 6. Each developer di � D in the network is modeled as �G(di), D*�, where
G(di) � G is the set of aggregations designed by di in the past, D* � D is the set of other
developers, whom di declares to be inclined to learn from to design Web applications, that

is, D* � �dk�di ¡
f

dk � ��.
The set of follower-of relationships determines the network topology. This kind of

relationship, for example, is used within the ProgrammableWeb and Mashape
repositories. The same viewpoint is assumed by our framework that, in the current
version, is based on the ProgrammableWeb contents. Other kinds of social applications
for developers, such as GitHub, are more focused on code sharing and collaborative
coding. In the current version of our approach, the follower-of relationships are set after
an explicit endorsement of developers. An overview of the network of social
relationships between developers might reveal different kinds of topologies of social
relationships that can be recognized (dos Santos et al., 2010) and representing different
design scenarios. In fact, the developers’ social network can be represented as one or
more directed graphs, as shown in Figure 4, where a graph can assume different
topologies. For example, it can be restricted to a hierarchy. On the other hand, a
peer-based network has a topology where a hierarchy is not present; there can be pairs
of developers that mutually follow each other, and this is typical of modern enterprises
in a totally collaborative and open context. An example is the network in Figure 4(a). A
third kind of topology, Figure 4(b), represents a hybrid case, where a developer is or has
been involved in different Web application design projects and, may be depending on

dev2

dev1

dev3

dev4

dev5

dev6 dev7

dev8

dev9 dev10 dev11

dev12 dev13 dev14

(a) (b)

Figure 4.
Sample social

network of
developers, that

present a peer-based
(a) and hybrid

(b) topology

485

Improving
service

selection

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 2
1:

37
 0

1
N

ov
em

be
r

20
16

 (
PT

)

the particular application domain, can follow different reference developers (consider, as
an example, dev3, who declares to follow both dev4 and dev8).

6. Social-based evaluation of developers
6.1 Service request
A developer, who is responsible for a project based on data services, hereafter denoted as
the requester dr, formulates the request, denoted with sr, that is matched against the set
S of available data services. The aim is at finding data services to complete/expand the
application that is being designed. Therefore, the request sr is formulated as a set of
desired (semantic) tags, a set of data services, that have been already included in the
application and a set of desired technical features. Formally, s r � ��t r�, gr, �f r��, where
�t r� is the set of tags, gr � �s1, s2, …sn� is the set of already selected data service
descriptions and �f r� is a set of technical features.

For example, the following request sr is formulated to find a demography data
service, annotated with a postal code, to produce a distribution of people by sex. The
service will be used in a Web application, that is being designed and already contains
data services s1 and s2 (Figure 3). The application will be written in PHP and a REST
service is looked for:

sr � �t1
r � ��postal code, {zip code, ZIP, postcode}”, a code of

letters and digits added to a postal address to sort mails”�};
t2

r � ��sex, {gender, sexuality},” the properties that distinguish
organisms on the basis of their reproductive roles”�};

t3
r � ��demography, {human ecology},” the branch of sociology that

studies the characteristics of human populations”�};
gr � {s1, s2}�
f r � {PHP, REST}�

It is worth noting that the search for a single data service (or for the first data service to
be included in the new Web application that is being designed) is a particular case of the
same definition, that is, s r � ��t r�, gr, �f r��, where gr � �.

Answering the service request sr is based in our approach on the following phases:
• developers’ credibility evaluation;
• developers’ ranking;
• service selection; and
• service ranking.

In the following, we detail these phases, and Figure 5 provides a short summary, where
each phase uses the output of previous one, and references to relevant sections.

6.2 Developers’ credibility evaluation
In WISeR, a developer may assign votes to services used in the applications. In
particular, because developers exchange their experiences in using services, votes
become an enabling feature to this purpose. Following this perception, for example, all of
the most popular Web API repositories (and, among them, ProgrammableWeb) include
a rating system. Votes are assigned by the developers with the adoption of the NIH
nine-point Scoring System[2]. This scoring system has few rating options (only nine) to

IJWIS
12,4

486

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 2
1:

37
 0

1
N

ov
em

be
r

20
16

 (
PT

)

increase potential reliability and consistency and with enough range and appropriate
anchors to encourage developers to use the full scale (from poor, to denote completely
useless and wrong services, to exceptional, to denote services with very good
performances and functionalities and easy to use). During the rating, the developer is
provided with the set of options and corresponding meaning (such as, for example, the
ones associated with poor (9) and exceptional (1) options, as mentioned above). These
options are then uniformly distributed over the [0,1] interval so that the highest vote is
corresponding to 1 and the lowest to 0. Our approach introduces an important
distinction for service rating, compared to existing systems, because it takes into
account the aggregation in which services have been evaluated according to the
following definition.

Definition 7. Given a service sj � S, we denote with v(sj, gk, di) � �0,1� the vote assigned
to the service sj by a developer di � D with reference to the aggregation gk � G in which sj
has been used. Votes are assigned according to the NIH nine-point Scoring System and
mapped to the [0,1] interval.

Aggregation-contextual rating helps in properly weighing votes assigned to
services. For instance, different votes might be assigned to the Amazon APIs, depending
on the aggregations where they have been used. When a developer is looking for the
average of votes assigned to a service, relevant votes to be considered are those that
have been assigned with reference to aggregations that are similar to the ones that is
being developed (according to the aggregation similarity, AggSim(), mentioned in
Section 4).

It is important to estimate the credibility of a developer, who expresses votes or
judgments. Therefore, we include credibility evaluation techniques with respect to
which we introduce the notion of aggregation-contextual rating. Votes are used in the
Credibility Assessment Module (Figure 1). The basic idea is that, if the reported vote
does not agree with the majority opinion, the developer’s credibility is decreased,
otherwise it is increased. Suppose the developer di assigned some votes to the service sj
with reference to the aggregations g1, g2, · · ·, gt, respectively. For each gm in these
aggregations, we consider the set Agm of aggregations go � G that have similarity
AggSim(go, gm) above a given threshold.

A k-mean clustering algorithm is then applied to the set of votes assigned by other
developers to the service sj in the context of aggregations in Agm. By grouping similar
ratings together, we define the majority opinion in the context of specific aggregations.
The rationale for clustering votes can be explained with the help of an example: if a
service receives votes 1,1,1,2,9,9,8 (considered before their normalization to [0,1]) and we
adopt an average-based model, we obtain an overall rating of 4.4 out of 9. Actually, the

Figure 5.
Services selection

and ranking phases
in the extended

version of WISeR

487

Improving
service

selection

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 2
1:

37
 0

1
N

ov
em

be
r

20
16

 (
PT

)

average rating does not well describe the depicted situation, where most of the voters
give very high votes. So we choose a majority opinion approach inspired by the Malik
and Bouguettaya (2009). The majority opinion on sj is hence represented by the most
densely populated cluster, whose centroid is taken as the majority vote:

M(sj) � centroid (maxi�1
k (Ci)) (1)

where Ci is the i-th cluster, k � ��Ci)}� is the total number of clusters, max() returns the
cluster with the largest membership and centroid() computes the centroid of the cluster.
The number k of desired clusters is set to >�N/2?, where N is the number of considered
votes and >x? is the smallest integer not less than x. Therefore, considering a developer
di, having a credibility cn(di) after he already assigned n votes. Considering also a new
vote v(sj, gm, di) assigned by di to a service sj when used within an aggregation gm, then
the new credibility value for di is computed as follows:

cn�1 (di) �
cn(di) · n � (1 � �M(sj) � v (sj, gm, di)�)

n � 1
� [0, 1] (2)

According to equation (2), if the vote v(sj, gm, di) � �0,1� differs from the centroid
M(sj) � �0,1�, then the term 1 � �M(sj) � v(sj, gm, di)� tends to be zero; therefore, cn�1
(di) � cn(di) (the decrement is controlled by denominator n � 1, to avoid the case in which
a designer loses too quickly his/her credibility for few assigned votes that are not
aligned with majority opinion). Vice versa, if the vote v(sj,gm,di) is close to M(sj), then the
term 1 � �M(sj) � v(sj, gm, di)� tends to 1 and cn�1(di) 	 cn(di) until cn�1(di) reaches 1
(maximum credibility). Initial values c0(di) are set to 0.5. However, note that credibility of
a developer with a high number \em{n} of votes is quite stable according to Equation (2).
That is, even if his vote is different from the majority, his credibility according to
Equation (2) decreases of a small amount. In fact, this type of vote is not necessarily
describing an incoherent behavior of the developer and could be the result of a recent
change in the service conditions or quality perceived by the voter. Generally speaking,
defining credibility in a more general way and performing its assessment is a complex
problem (Malik and Bouguettaya, 2009) and here we give a definition of credibility
based on the information available in the context we are considering.

6.3 Ranking of developers
Let us suppose that dr has formulated the request sr. Consider two candidate services s1
and s2, used by two developers d1 and d2, respectively, in aggregations that are similar
to the one in sr. If s1 and s2 are equally relevant with respect to sr, then s1 will be ranked
better than s2 if the experience of d1, who used s1, is ranked better than the experience of
d2, who used s2. The point here is at ranking the experience of developers d1 and d2.

Rank of a developer di � D is computed as the product of two different rankings,
according to the following formula:

dr (di) �
rel
d r

(di) ·
abs(di) � [0, 1] (3)

where:

IJWIS
12,4

488

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 2
1:

37
 0

1
N

ov
em

be
r

20
16

 (
PT

)

• a relative ranking
rel
d (di) � �0,1� ranks developer di based on the follower-of

relationships between di and dr (this rank is introduced to take into account the
viewpoint of dr, who explicitly declared to learn from other developers to select the
right service); and

• an absolute ranking
abs(di) is based on the overall network of developers, to take
into account the authority of di in the network independently of the developer dr,
who issued the request.

6.3.1 Relative ranking. In particular, the relative ranking
rel
d r

(di) is inversely proportional
to the distance �(dr, di) between dr and di, in terms of follower-of relationships, that is:

rel
d r

(di) �
1

�(dr, di)
� [0, 1] (4)

If there is no a path from dr to di, �(dr, di) is set to the length of the longest path of
follower-of relationships that relate dr to the other developers, incremented by 1, to
denote that di is far from dr more than all the developers within the dr sub-network.
Consider, for example, the network shown in Figure 4, where the developer dev3 is the
requester and has to choose among services that have been used in the past by the
developers dev4, dev5, dev6, dev8 and dev11, whose follower-of relationships are
depicted in the figure. In the example, �(dev3, dev4) � �(dev3, dev8) � 1, �(dev3,
dev5) � 2 and �(dev3, dev6) � �(dev3, dev11) � 4 � 1 � 5.

6.3.2 Absolute ranking. The absolute ranking
abs(di) � �0,1� is evaluated no matter
the viewpoint of the requester dr. This ranking is composed of two different parts. The
first one depends on the number of aggregations designed by di and the second one
depends on the topology of the network of other developers who declared their interest
for di past experiences, that is:

abs(di) �
1 � �

�D�
· �G(di)��� · 	

j�1

n c(dj) ·
abs(dj)
F(dj)

(5)

This expression is an adaptation of the known PageRank metrics for Web search engines to
the context we are considering. The original PageRank calculates an authority degree for
Web pages based on the incoming links to pages. The value
abs(di) represents the
probability that a developer will consider the example given by di in using a service for
designing an enterprise Web application. Therefore, 	 i
abs(di) � 1. Initially, all developers
are assigned with the same probability, that is,
abs(di) � 1/�D�. Furthermore, at each
iteration of the absolute ranking computation, the absolute rank of a developer dj, such that

dj ¡
f

di, is “transferred” to di according to the following criteria:
(1) if dj follows more developers, his/her rank is distributed over all these

developers, properly weighted considering the credibility c(dj) of dj [see the
second term in equation (5), where F(dj) is the number of developers followed by
dj]; and

489

Improving
service

selection

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 2
1:

37
 0

1
N

ov
em

be
r

20
16

 (
PT

)

(2) a contribution to
abs(di) is given by the experience of di and is therefore
proportional to the number of aggregations designed by di [see the first term in
equation (5)].

A damping factor � � �0,1� is used to balance contributions explained in Steps (1) and (2)
above. At each step, a normalization procedure is applied to ensure that 	 i
abs(di) � 1.

The algorithm actually used to recursively compute equation (5) is similar to the one
applied for PageRank. In particular, denoting with
abs(di,�N) the N-th iteration in
computing
abs(di), with DR(�N) the column vector whose elements are
abs(di,�N), we
have:

DR (�N�1) �
1 � �

�D�
·

�G(d1)�
�G(d2)�
É

�G(dn)�
� � � · M · DR(�N) (6)

where M denotes the adjacency matrix properly modified to consider credibility, that is,

Mij � c(dj)/F(dj) if dj ¡
f

di, zero otherwise. As demonstrated in PageRank, computation
formulated in equation (6) reaches a high degree of accuracy within only a few iterations.

For example, let us consider Table I, that lists developers’ features considered for the
running example and approach validation described in Section 8. In particular, we set
� � 0.6. At time �0, we set
abs(di) � 1/�D� � 0.0714 for all di. During the next iteration:

abs(dev4, �1) � [1 � 0.6
14

· 4 � 0.6 · 1.0·0.0714
2

] � 0.1357

Similarly,
abs(dev8,�1) � 0.1299. After each iteration, normalization is applied to have
	 i
abs(di) � 1. In the example, after five iterations, the error measured as a Euclidean
norm of the vector DR(�5) � DR(�4) is less than 0.001. And we obtain
abs(dev4) �
0.0997 and
abs(dev8) � 0.0801.

Table I.
Details about
developers’ features,
considered for the
running example

Developer (di) �G(di)� Credibility c (di)

dev1 5 1.0
dev2 3 0.7
dev3 2 1.0
dev4 4 0.1
dev5 3 0.7
dev6 2 0.2
dev7 2 1.0
dev8 2 0.2
dev9 2 0.7
dev10 3 0.6
dev11 3 0.7
dev12 2 0.9
dev13 1 0.5
dev14 2 0.7

IJWIS
12,4

490

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 2
1:

37
 0

1
N

ov
em

be
r

20
16

 (
PT

)

7. Data service selection
7.1 Data service selection metrics
Different metrics are applied and properly combined to find the set of candidate data
services, given the request sr formulated as shown above. The overall similarity
between sr and each available data service s � S, denoted with Sim(s r, s) � �0,1�, is used
to filter out irrelevant data services and is computed by combining two matching
techniques, based on (semantic) tags and available data service aggregations, adapted
from Bianchini et al. (2013).

7.1.1 Tag matching. The closeness between the request and each available data
service according to their associated (semantic) tags, denoted with Simtag(�t r�, �t�), is
computed by evaluating the affinity between pairs of (semantic) tags, one from the set
�t r� assigned to the request and one from the set {t} of tags assigned to the data service
s � S, and by combining them through the Dice formula, that is:

Simtag(�t r�, �t�) �
2 · 	 t r,t

TagAff(t r, t)

��t r�����t��
� [0, 1] (7)

where ��t r�� (resp., ��t��) denotes the number of tags in �t r� (resp., {t}). Pairs of tags to be
considered for the Simtag computation are selected according to a maximization function
that relies on the assignment in bipartite graphs. The point here is how to compute
TagAff(t r, t) � �0,1�. First, we distinguish the case in which tr and t have been
semantically disambiguated using WordNet. In this case, the tag affinity between tr and
t is computed as extensively described by Bianchini et al. (2012). Tag affinity is equal to
1.0 if the two tags belong to the same synset or coincide; it decreases as long as the path
of hyponymy/hypernymy relations between the two synsets of the tags increases. In
particular, tag affinity is equal to 0.8L, where there is a path of L hyponymy/hypernymy
relations between the synsets which the two tags belong to. The value of 0.8 has been
proven to be optimal in our experiments on WordNet-based affinity.

In cases where either tr or t has not a disambiguation based on WordNet, the
TagAff(t r, t) computation is performed as follows:

• if both tr and t have no disambiguation, then tag affinity TagAff(t r,t) �
StringSim(t r,t) (or vice versa), where StringSim(·) � �1 � NLevDist(·)� � �0,1�,
where NLevDist(·) is the Levenshtein distance normalized within the [0,1]
range[3].

• if tr has not been disambiguated, while t presents a sense disambiguation using
WordNet, let’s denote with W the set of synonyms of t, then TagAff(t r,t) �
maxt i�W �StringSim(t r,t i)� (for symmetry, the same case applies if tr has been
disambiguated and t has not).

Example. For instance, Simtag() computation for data services of the running example is
summarized in Figure 6, that also shows the table containing TagAff() values according
to the portions of WordNet reported in Figure 3.

7.1.2 Data service aggregation matching. To check how much an available data service
s � S fits the request sr � ��tr�, gr�, fr, the similarity between gr and the aggregations in
G�s�, corresponding to the applications where s has been used in the past, also plays an
important role. The more aggregations in G�s� are similar to gr, the better s is considered

491

Improving
service

selection

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 2
1:

37
 0

1
N

ov
em

be
r

20
16

 (
PT

)

as candidate search result for sr. The metric AggSim(gr, g) computes the similarity
between two aggregations, that is, the one that is being designed, gr, and an existing
aggregation g � G�s�. Such similarity is based on the similarity between data services
included within the two compared aggregations and relies on the Dice formula, that is:

AggSim(gr, g) �
2 · 	 i,j

Simtag(�ti�, �tj�)

�gr���S[g]�
� [0, 1] (8)

where S�g� is the set of services used in g � G�s�, si � gr, sj � S�g�, �ti� is the set of tags
used to annotate si, �tj� is the set of tags used to annotate sj, �gr� (resp., �S�g��) is the
number of data services in gr (resp., S�g�). Pairs of data services to be considered for the
Simtag computation are selected according to the maximization function on which
computation of equation (7) is based too. The rationale here is that, the more data
services associated with the two compared aggregations are similar according to their
tag similarity, the more the two aggregations are similar as well.

Example. Let us suppose that data services s3 and s4 of Figure 3(a) are associated with
the two aggregations g1 � ��s1, s2, s3�, de� by a developer de and g2 � ��s1, s4�, df� by a
developer df, respectively. Values of Simtag(�t r�, �t3�) � 0.667 and Simtag(�t r�, �t4�) �
0.862 have been computed in Figure 6. Because gr already contains s1 and s2, we have:

AggSim(gr, g1) �
2
 (1.0 � 1.0 � 0.667)

3 � 3
� 0.889 (9)

AggSim(gr, g2) �
2
 (1.0 � 0.862)

3 � 2
� 0.745 (10)

7.1.3 Overall similarity. The overall similarity Sim(s r,s) � �0,1� between sr and each
available data service s � S is computed as follows:

Figure 6.
Simtag computation
for the data services
considered in the
running example

IJWIS
12,4

492

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 2
1:

37
 0

1
N

ov
em

be
r

20
16

 (
PT

)

http://www.emeraldinsight.com/action/showImage?doi=10.1108/IJWIS-04-2016-0022&iName=master.img-121.jpg&w=311&h=182

�s·Simtag(�t r�, �t�) � (1 � �s) · 1
�G[s]�

· 	
g�G[s]

AggSim(gr, g) (11)

where �·� denotes the set cardinality; the second term in equation (11) represents the
average AggSim() value over all the aggregations where s has been used in the past,
�s � �0,1� is used to balance the impact of similarity based on (semantic) tags and
similarity based on data service aggregations. In Section 8, we will provide some hints
about the procedure we used to choose �s value. If gr � �, then �s � 1. In the running
example, Sim(s r,s3) � 0.778 and Sim(s r,s4) � 0.804. Data services included in the search
results (that we denote with S=� S) are those whose overall similarity Sim(s r,s) � �,
where � is set by the requester. In our experiments (see Section 8), we set � � 0.4.

7.1.4 Technical features matching. Similarity based on technical features is used to filter
out services that have been included into S* because their overall similarity fulfills Sim
(sr, s) � � but they are not compliant with sr based on technical features.
In this way, we improve the precision of selection process. This similarity, denoted with
Simtech(�fr�, �f�), is computed by evaluating total similarity between pairs of technical
features, one from the set �fr� specified in the request and one from the set {t} featuring the
data service s � S, and by combining them through the Dice formula. Actually, we use here
a similarity definition that deals asymmetrically with the request and the candidate service.
In fact, Simtech(�fr�, �f�) � 1 when �fr� � �f�. In other words, when the requested technical
features are offered by a candidate service, the similarity is set to the maximum does not
matter if the service offers more technical features. Formally:

Simtech(�f r�, �f �) �
��f r� � �f ��

��f r��
� [0, 1] (12)

where ��f r� � �f�� (resp., ��f r��) denotes the number of technical features in ��f r� � �f��
(resp., �t r�). Pairs of tags to be considered for the Simtech computation are selected
according to a maximization function like in the discussed computation of Simtag. A
candidate services s � S * is filtered out if it does not fulfill Simtech(�f r�,�f�) �
. In our
experiments, we usually set
 � 0.5.

Example. In our example of request �f r� � {PHP, REST}. The data service s4 of
Figure 3(a) has technical features {XML, JSON, REST}. Their similarity is therefore:

Simtech(�f r�, �f �) �
�PHP, REST� � �XML, JSON, REST�

��PHP, REST��
�

1.0
2

� 0.5 (13)

7.2 Data service ranking
Candidate data services S * are then ranked by combining the overall similarity value
with a ranking function
serv : S * � �0,1�, that is based on:

• the ranking of developers who used s � S *; and
• the votes v(s, gi, dk) assigned to s by each developer dk that used s in an aggregation gi;

In particular, the better the ranking of developers who used the service s and the higher
the votes assigned to s, the closer the value
serv(s) to 1.0 (maximum value). The value

serv(s) is therefore computed as follows:

493

Improving
service

selection

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 2
1:

37
 0

1
N

ov
em

be
r

20
16

 (
PT

)

serv(s) �
	 k�1

n 	 i�1

mk dr(dk) · v(s, gi, dk)

N
� [0, 1] (14)

where dk � D, ∀k are the developers who used the service s in their own mk Web
application design projects, the vote v(s, gi, dk) is weighted by dr(dk) that is the ranking
of developer dk according to equation (3). Moreover, N is the number of times the service
s has been selected (under the hypothesis that a developer might use a data service s in
m � 1 projects, then dr(dk) is considered m times), thus N � 	 k�1

n mk The Sim(s r, s) and

(s) elements are finally combined in the following harmonic mean:

rank(s) �
2 ·
(s) · Sim(s r, s)

(s) � Sim(s r, s)

� [0, 1] (15)

8. Experimental evaluation
We performed experiments to evaluate the extended WISeR according two main parts
concerning: service selection and developers’ ranking.

8.1 Experiments on service selection
First, we tried to consider benchmarks for comparing Web source selection approaches
which are described in The UIUC Web Integration Repository (2003). Nevertheless,
available data sets within this repository list Web sources (e.g., Deep Web sources), but
do not provide any information about past experiences in using such sources, namely,
data about the Web applications designed with them and details about the social
network of developers. Therefore, in the laboratory experiments we performed to test
the effectiveness of our approach, we created a proper data set that is compliant with the
model depicted in Figure 2. To this purpose, we considered Web APIs and data services
from ProgrammableWeb. We started from this repository to:

• collect a set of data services for the data service layer, in the form of 1,000 methods
of about 250 Web APIs in the application domain of the motivating example,
where in particular selected Web APIs are classified within the eCommerce,
Marketing, Advertising, CRM, Business, Enterprise and Localization categories
of ProgrammableWeb;

• collect a set of Web applications designed with such methods for the Web
application layer, in the form of about 400 mashups, and extract from them the
corresponding aggregations, as sets of Web APIs in each mashup; and

• collect a set of developers for the social layer, in the form of mashup owners.

Within the ProgrammableWeb repository, no information is provided about social
relationships between developers. Nevertheless, developers may follow/track mashups
designed by other developers. Therefore, if di follows at least a mashup developed by dj,
a candidate follower-of relationship is identified from di to dj; such relationship is then

confirmed (di ¡
f

dj) if and only if there exists at least a pair of data services used in the
same application by di that have been used together in the past also by dj. Finally, we
performed WordNet-based semantic tagging of data services starting from the
keywords extracted from the Web APIs and mashups’ descriptions. Semantic tagging
has been performed with the support of the wizard described by Bianchini et al. (2012).

IJWIS
12,4

494

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 2
1:

37
 0

1
N

ov
em

be
r

20
16

 (
PT

)

We ran the experiments on a 2.8 GHz Intel Core i7 processor, equipped with 16 GB
RAM. Specifically, we randomly selected a Web application g � G, we chose a data
service s � S�g� and we issued a request s r � ��t r�, gr, ���, where �t r� is the list of tags
assigned to s and gr � S�g�/s. We carefully manually browsed available data services,
selecting and ranking each candidate service si according to:

• the compliance of si with s, based on their descriptions and assigned tags; and
• the popularity of si in terms of its use in past Web application design projects.

We used the Kendall’s tau coefficient to compare the manually performed ranking with
three different configurations of our system:

(1) without considering the semantic disambiguation of tags and without
considering the social layer (prototype #1);

(2) considering the semantic disambiguation of tags, but without considering the
social layer (prototype #2); and

(3) considering both the semantic disambiguation of tags and the social layer
(prototype #3).

If the agreement between two rankings is complete (i.e., the two rankings are the same),
the coefficient has a value that is equal to 1. Results are shown in Figure 7, where we also
tuned the �s weight using the following values: �s � 1 (only Simtag() is considered),
�s � 0.7 (Simtag() is considered as more important than aggregation similarity), �s �
0.5 (Simtag() and aggregation similarity are considered as equally relevant) and �s �
0.3 (Simtag() is considered as less important than aggregation similarity). The
experiment has been performed ten times using different requests and setting � � 0.4.
Figure 7 shows the average results.

Figure 7 shows how Prototype #3 presents better performances than the others, if
compared to the ideal ranking manually prepared. Specifically, semantic
disambiguation of tags enables to discard irrelevant data services, thus avoiding

Figure 7.
Experimental results:

Kendall’s tau
coefficient values for

different �s
configurations

495

Improving
service

selection

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 2
1:

37
 0

1
N

ov
em

be
r

20
16

 (
PT

)

limitations imposed by tag polysemy and synonymy. As expected, considering only
Simtag() values for selecting relevant data services is not effective, as the use of a specific
data service for a particular Web application cannot be inferred by only inspecting tags
used to classify the service; instead, aggregation similarity values and ranking based on
social network of developers should also be exploited to this purpose. This has been
investigated by varying the �s parameter. Kendall’s tau values are greater for �s �
0.3 than for �s � 0.7: this means that in the data set considered in the experiments, the
importance of past developers’ experiences in using candidate data services is even
greater than the information coming from data service (semantic) tagging.

8.2 Experiments on developers’ ranking
In this part of the experimentation, we focus on determining the effectiveness of our
developers’ ranking procedure and metrics. To this purpose, we perform some
experiments based on 14 developers organized according to the social network depicted
in Figure 4, whose features are summarized in Table I. This data set has been built with
the aim of differentiating the features of the involved developers, namely:

• developers with high credibility (0.8 � c(di) � 1.0), who designed many
aggregations (�G(di)� � 3), that is, dev1, and who designed few aggregations
(�G(di)� � 3), that is, {dev3, dev7, dev12};

• developers who present medium credibility (0.4 � c(di) � 0.8) and designed many
aggregations (�G(di)� � 3), that is, {dev2, dev5, dev10, dev11}, and who designed
few aggregations (�G(di)� � 3), that is, {dev9, dev13, dev14}; and

• developers with low credibility (0 � c(di) � 0.4), who designed many aggregations
(�G(di)� � 3), that is, dev4, and who designed few aggregations (�G(di)� � 3), that
is {dev6, dev8}.

In the following, we focus on ranking of developers and we compare manual rankings
with results of automated ranking as produced by the extended WISeR framework.

For each developer in the data set, the ideal ranking of the other developers has been
considered, based on their features (Figure 4 and Table I). In particular, to manually
determine the ideal ranking of developers from the viewpoint of a requester dr, we performed
pairwise comparisons of developers �di, dj� with respect to the following criteria:

• relevant differences in their credibility (c(di) �� c(dj) or vice versa, see for example,
dev1 and dev4);

• the existence of a direct follower-of relationship between dr and di and/or dj; and
• relevant difference in the number of designed applications (see, for example,

�G(dev1)� � 5 and �G(dev13)� � 1).

If an overall preference between di and dj cannot be identified considering these criteria
(see, for example, dev2 and dev11), the credibility of their followers and the presence and
length of a path of follower-of relationships between dr and di and/or dj are further
considered. For instance, considering dev3 as the requester, developers in the data set
should be ideally ranked as: dev1 – dev11 – dev2 – dev7 – dev9 – dev12 – dev14 –
dev5 – dev4 – dev8 – dev10 – dev13 – dev6.

Then, we run our system, using different values for the damping factor � � �0,1� and
we compared the obtained ranking against the ideal one using the Kendall tau distance

IJWIS
12,4

496

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 2
1:

37
 0

1
N

ov
em

be
r

20
16

 (
PT

)

k � �0,1�, where k � 0 means that the compared rankings fully agree (Kendall and
Gibbons, 1990). We repeated the experiments for all the 14 developers in the data set and
we calculated the average value of the Kendall tau distance. Figure 8 shows average
values of the Kendall tau distance with respect to the values of the damping factor
� � �0,1�.

Finally, we used the ideal ranking and the Kendall tau distance to compare:
• our approach, setting � � 0.6;
• an optimistic situation, where maximum credibility is assigned to all developers

(i.e., c(di) � 1.0, ∀i), setting � � 0.6; and

• a situation biased on the requester, where only the relative ranking
rel
d r

(di) has
been considered.

We repeated the experiments for all the 14 developers in the data set and we calculated
the average value of the Kendall tau distance. The resulting values of the average
Kendall tau distance are given in Figure 9, showing the accuracy of our ranking solution.

9. Related work
In literature, data service (or data source) selection and their integration or composition
to enable querying over them, are as we already remarked in this paper clearly
distinguished into two distinct phases (Ceri et al., 2010). According to this viewpoint,
various approaches consider as separate the activities of selection and integration when
applied to Deep Web data querying (Calì and Martinenghi, 2010), multi-domain queries
issued over multiple data services (Campi et al., 2010; Quarteroni et al., 2013), as well as
Web application development driven by design patterns (Brambilla and Tziviskou,
2014). For example, the approach described by Quarteroni et al. (2013), which shares
with our many preliminary definitions, focuses on data service integration and
querying, considering the data service selection results as given. In our paper, we have
dealt with data service selection issues, which have to be solved before beginning
integration of data and metadata coming from the selected sources. Concerning selection
on data service or Web data source, recent trends focused their attention on search over
Deep Web data sources (Li et al., 2013), search computing (Bozzon et al., 2013; Cafarella
et al., 2011), quality-driven ranking (Barbagallo et al., 2012; Dillon et al., 2013; Xian et al.,
2009), collaborative filtering (Cao et al., 2014), users’ experience (Liu et al., 2015) and
social-based (Maaradji et al., 2011) selection.

9.1 Deep Web search
Querying Deep Web contents can be hampered by access constraints that are
superimposed by Web forms used to query data from hidden databases (Calì and
Martinenghi, 2010). Li et al. (2013) propose a divide-and-conquer strategy, that properly
combines a page classifier, a link scoring algorithm and novel crawling policies to
discover and recognize entry points of domain-specific Deep Web databases, that is,
Web forms.Malki et al. (2016) propose an approach to describe data services with
semantic-based uncertain descriptions. On top of these descriptions, a method is defined
to evaluate user queries over data services that show correlated semantics (i.e., when
data services share the same data sources).

497

Improving
service

selection

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 2
1:

37
 0

1
N

ov
em

be
r

20
16

 (
PT

)

Figure 8.
Average Kendal tau
distances computed
on developers’
ranking with respect
to the damping
factor �

Figure 9.
Average Kendal tau
distances computed
for the approach
validation

IJWIS
12,4

498

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 2
1:

37
 0

1
N

ov
em

be
r

20
16

 (
PT

)

9.2 Search computing
The Search Computing Project Campi et al. (2010) focuses on search services, properly
identified and registered within a search service integration platform; search services
are combined to define vertical applications through conceptual modeling of the domain
of interest. The Search Computing approach aims at formulating exploratory queries,
that is, queries that enable the users to follow the links across related concepts and to
iteratively refine the query on the basis of previous search results (Bozzon et al., 2013).
Cafarella et al. (2011) apply the concept to all structured data over the Web using
Google’s Web Tables and a Deep Web Crawler.

9.3 Quality-based ranking
Source ranking, based on quality criteria, is addressed by Xian et al. (2009) and Barbagallo
et al. (2012). Xian et al. (2009) propose a data source selection approach based on the quality
of Deep Web sources, assessed by evaluating quality dimensions that represent the features
of the sources. Barbagallo et al. (2012) present a platform for data mashup, supporting
quality-driven filtering and composition of Web 2.0 sources. The approach used by Dillon
et al. (2013) considers as very important the quality of data sources as well. To ensure the
selection of Web sources, authors present a framework that is based on a subject-specific
database, curated by domain experts and dynamically generated through a large user input.
The intervention of domain experts could become the bottleneck of the overall system.
Functional requirements and quality requirements can be combined for service discovery
and search, as we discussed by Bianchini et al. (2004).

9.4 Collaborative filtering
Other quite recent approaches are based on techniques of collaborative filtering applied
to Web APIs recommendation. For example, in the CSCF (Content Similarity and
Collaborative Filtering) Web API recommender system, described by Cao et al. (2014),
users’ ratings have also been considered to refine service ranking by applying
collaborative filtering techniques. In Li et al.’s (2014) study, tags used to annotate both
RESTful data services and mashups are classified into topics through a probabilistic
distribution. Topics are used to add semantics on top of traditional tagging. The API
popularity is taken into account as experience dimension, computed as the number of
times a Web API has been used in the past. API popularity is used during search to
weigh API relevance (with respect to the issues request), based on topics. The work
described by Tapia et al. (2011) is similar, because it combines the API popularity and
API co-occurrence in mashups with traditional keyword search techniques. With
respect to these approaches, we exploit the network of social relationships between
developers, integrating the credibility assessment techniques and the concept of
aggregation-contextual rating and adapting them to the enterprise context, considering
the requirements presented in the introduction.

9.5 Users’ experience for service selection
Recent trends on (data) service selection integrated users’ experience aspects (ratings/votes,
co-usage of the same services in several applications, service popularity, etc.) with traditional
recommendation techniques, mainly based on functional and non-functional features. For
example, matrix factorization techniques have been used in dynamic service exploration and
recommendation, to identify user-/topic-/service-related latent factors that influence users to
make service selections (Liu and Fulia, 2015). For service recommendation, emerging

499

Improving
service

selection

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 2
1:

37
 0

1
N

ov
em

be
r

20
16

 (
PT

)

techniques based on user behavior similarity and service usage can be interesting too (Liu
et al., 2015). Al-Sharawneh et al.’s (2011) and Malik and Bouguettaya’s (2009) approaches
study service selection based on votes/ratings and introduced techniques to evaluate the
reputation and credibility of raters. They are mainly focused on these aspects, compared to
our approach, where credibility assessment is integrated in a complex framework for data
service selection. This enables a finer and more effective selection of data services. The
system described by Cao et al. (2013) first extracts users’ interest as a set of tags weighted
based on description documents of mashups the user has used in the past. Second, users’
interests are used to recommend RESTful services and mashups described by tags similar to
the user’s interest.

9.6 Social-based service selection
An attempt to introduce social network exploitation for Web API/service selection is
described by Maaradji et al. (2011). In the SoCo (Social Composer) system (Maaradji et al.,
2011), based on collaborative filtering, components are suggested to the user u considering
other users that are similar tou in a social network. Social relationships may be explicit (ucan
explicitly declare to share the same interests, in terms of components, of other users) or
implicit (that is, inferred according to the activities of users, e.g., when a person uses many of
the components created by other persons). Specifically, a component is suggested to u
depending on the number of times the component has been used by other users socially
related to u and on the social proximity between such users and u. The notion of social
network in the previously cited paper by Cao et al. (2013) presents a different meaning
compared to our definition. Indeed, it is not a social network of developers, social
relationships are defined between mashups, if their tag-based similarity and the number of
common services are over a pre-defined threshold.

Nevertheless, these approaches do not take into account the topology of the developers’
social network to support service selection. Moreover, we focused our attention on
developers’ social networks in an enterprise context, integrating the developers’ credibility
assessment and implementing the social network-based data service selection on top of a
more complex framework based on a multi-perspective model.

10. Conclusions
In this paper, we presented a data service selection framework that extends and
specializes existing ones for Web APIs selection. We discussed the revised multi-layered
model for data services and introduced proper metrics relying on it, meant for
supporting the selection of data services in a context of Web application design. Model
and metrics take into account the network of social relationships between developers, to
exploit them for estimating the importance that a developer assigns to past experience of
other developers. In summary, the framework is apt to provide advanced search and
ranking techniques by considering:

• lightweight data service descriptions, in terms of (semantic) tags and technical aspects;
• previously developed aggregations of data services, to use in the selection process of a

service the past experiences with the services when used in similar applications;
• social relationships between developers’ developers (social network); and
• developers’ credibility evaluations.

IJWIS
12,4

500

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 2
1:

37
 0

1
N

ov
em

be
r

20
16

 (
PT

)

We also discussed some experimental results that we are planning to expand with other
experiments to check how developers feel themselves using the approach. An
interesting issue to be investigated concerns the time sensitivity of social relationships,
that is, relationships that have been established later could have a different impact for
data service ranking.

Finally, further studies are ongoing for extending the social network model: specifically,
other aspects such as the maturity of the use of data services (estimated through their
publishing data and the number and quality of aggregations including the services) and
specificity of the searched services (i.e., general purpose or domain-specific) may be
investigated with respect to a possible influence in the search and ranking process.

Notes
1. http://geodataservice.net

2. http://enhancing-peer-review.nih.gov/scoring%26reviewchanges.html

3. Note that the Levenshtein distance does not belong to the [0,1] range, as it is the number of
single-character edits to change one string into the other; however, by definition, it is at most
equal to the length of the longer string; therefore, this upper bound is used to normalize the
measure within [0,1] range.

References
Al-Sharawneh, J., Williams, M., Wang, X. and Goldbaum, D. (2011), “Mitigating risk in web-based

social network service selection: follow the leader”, Proceedings of Sixth International
Conference on Internet and Web Applications and Services, St. Maarten, pp. 156-164.

Balakrishnan, R., Kambhampati, S. and Manishkumar, J. (2013), “Assessing relevance and trust of
the deep web sources and results based on inter-source agreement”, ACM Transactions on
the Web, Vol. 7 No. 2, p. 32.

Barbagallo, D., Cappiello, C., Francalanci, C., Matera, M. and Picozzi, M. (2012), “Informing
Observers: Quality-driven Filtering and Composition of Web 2.0 Sources”, Proceedings of
International Workshop on Business Intelligence and the WEB, Berlin.

Bianchini, D., De Antonellis, V. and Melchiori, M. (2004), “QoS in ontology-based service
classification and discovery”, IEEE Proceedings of International Workshops on Database
and Expert Systems Applications - DEXA, Zaragoza, Spain, pp. 145-150.

Bianchini, D., De Antonellis, V. and Melchiori, M. (2012), “Semantic collaborative tagging for web
APIs sharing and reuse”, Proceedings of the 12th International Conference on Web
Engineering (ICWE), Berlin, pp. 76-90.

Bianchini, D., De Antonellis, V. and Melchiori, M. (2013), “A multi-perspective Framework for Web API
search in enterprise mashup design (best paper)”, Proceedings of 25th International Conference
on Advanced Information Systems Engineering (CAiSE), Valencia, pp. 353-368.

Blasch, E., Chen, Y., Chen, G., Shen, D. and Kohler, R. (2013), “Information fusion in a cloud-enabled
environment”, High Performance Cloud Auditing and Applications, Springer-Verlag, NY.

Bozzon, A., Brambilla, M., Ceri, S. and Mazza, D. (2013), “Exploratory search framework for web
data sources”, VLDB Journal, Vol. 22 No. 5, pp. 641-663.

Brambilla, M. and Tziviskou, C. (2014), “Model-driven design frameworks for semantic web
applications”, Semantic Web Enabled Software Engineering, IOS Press, Amsterdam,
pp. 179-204.

Cafarella, M.J., Halevy, A. and Madhavan, J. (2011), “Structured data on the web”, Communications
of the ACM, Vol. 54 No. 2, pp. 75-79.

501

Improving
service

selection

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 2
1:

37
 0

1
N

ov
em

be
r

20
16

 (
PT

)

http://geodataservice.net
http://enhancing-peer-review.nih.gov/scoring%26reviewchanges.html
http://www.emeraldinsight.com/action/showLinks?crossref=10.1145%2F2460383.2460390&isi=000323705500007
http://www.emeraldinsight.com/action/showLinks?crossref=10.1145%2F2460383.2460390&isi=000323705500007
http://www.emeraldinsight.com/action/showLinks?crossref=10.1109%2FDEXA.2004.1333464
http://www.emeraldinsight.com/action/showLinks?crossref=10.1109%2FDEXA.2004.1333464
http://www.emeraldinsight.com/action/showLinks?crossref=10.1007%2F978-3-642-38709-8_23
http://www.emeraldinsight.com/action/showLinks?crossref=10.1145%2F1897816.1897839&isi=000287699400029
http://www.emeraldinsight.com/action/showLinks?crossref=10.1007%2F978-3-642-38709-8_23
http://www.emeraldinsight.com/action/showLinks?crossref=10.1145%2F1897816.1897839&isi=000287699400029
http://www.emeraldinsight.com/action/showLinks?crossref=10.1007%2Fs00778-013-0326-x&isi=000324677400004
http://www.emeraldinsight.com/action/showLinks?crossref=10.1145%2F2320765.2320776
http://www.emeraldinsight.com/action/showLinks?crossref=10.1145%2F2320765.2320776
http://www.emeraldinsight.com/action/showLinks?crossref=10.1007%2F978-3-642-31753-8_6
http://www.emeraldinsight.com/action/showLinks?crossref=10.1007%2F978-3-642-31753-8_6

Calì, A. and Martinenghi, D. (2010), “Querying the deep web”, Proceedings of 13th International
Conference on Extending Database Technology (EDBT2010), Lausanne, pp. 724-727.

Campi, S., Ceri, S., Gottlob, G., Maesani, A. and Ronchi, S. (2010), “Chapter 9: service marts”, Search
Computing, Springer, Heidelberg, pp. 163-187.

Cao, B., Liu, J., Tang, M., Zheng, Z. and Wang, G. (2013), “Mashup service recommendation based
on user interest and social network”, Proceedings of International Conference on Web
Services (ICWS), Santa Clara, CA.

Cao, B., Tang, M. and Huang, X. (2014), “Cscf: A mashup service recommendation approach based
on content similarity and collaborative filtering”, International Journal of Grid and
Distributed Computing, Vol. 7 No. 2, pp. 163-172.

Ceri, S., Braga, D., Corcoglioniti, F., Grossniklaus, M. and Vadacca, S. (2010), “Search computing
challenges and directions”, Objects and Databases, Lecture Notes in Computer Sciences,
Vol. 6348, Springer-Verlag, Berlin, Heidelberg, pp. 1-5.

De Antonellis, V., Melchiori, M. and Plebani, P. (2003), “An approach to web service compatibility
in cooperative processes”, Proceedings of 2003 IEEE Symposium on Applications and the
Internet Workshops, SAINT 2003, Orlando, FL, pp 95-100.

Dillon, S., Stahl, F. and Vossen, G. (2013), “Towards the web in your pocket: curated data as a service”,
Advanced Methods for Computing Collective Intelligence, Springer-Verlag, Berlin, pp. 25-34.

dos Santos, T.A, de Araujo, R.M. and Magdaleno, A.M. (2010), “Identifying collaboration patterns in
software development social networks”, Journal of Computer Science, Vol. 9 No. 1, pp. 51-60.

Fuxman, A., Giorgini, P., Kolp, M. and Mylopoulos, J. (2001), “Information systems as social
structures”, Formal Ontology in Information Systems, ACM, New York, pp. 12-21.

Gupta, V. and Lehal, G.S. (2009), “A survey of text mining techniques and applications”, Journal of
Emerging Technologies in Web Intelligence, Vol. 1 No. 1, pp. 60-76.

Hertzum, M. (2014), “Expertise seeking: a review”, Information Processing and Management,
Vol. 50 No. 5, pp. 775-795.

Kendall, M. and Gibbons, J.D. (1990), Rank Correlation Methods, Edward Arnold, London, UK.
Li, C., Zhang, R., Huai, J. and Sun, H. (2014), “A novel approach for API recommendation in mashup

development”, Proceedings of International Conference on Web Services (ICWS), Anchorage,
AK, pp. 289-296.

Li, Y., Wang, Y. and Du, J. (2013), “E-FFC: an enhanced form-focused crawler for domain-specific
deep web databases”, Journal of Intelligent Information Systems, Vol. 40 No. 1, pp. 159-184.

Liu, R., Xu, X. and Wang, Z. (2015), “Service recommendation using customer similarity and
service usage pattern”, Proceedings of IEEE International Conference on Web Services
(ICWS 2015), New York, pp. 408-415.

Liu, X. and Fulia, I. (2015), “Incorporating user, topic, and service related latent factors into web
service recommendation”, Proceedings of IEEE International Conference on Web Services
(ICWS 2015), New York, pp. 185-192.

Maaradji, A., Hacid, H., Skraba, R., Lateef, A., Daigremont, J. and Crespi, N. (2011), “Social-based
web services discovery and composition for step-by-step mashup completion”, Proceedings
of International Conference on Web Services (ICWS 2011), Washington Marriott, DC.

Malik, Z. and Bouguettaya, A. (2009), “RATEWeb: reputation assessment for trust establishment
among web services”, VLBD Journal, Vol. 18 No. 4, pp. 885-911.

Malki, A., Benslimane, D., Benslimane, S.M., Barhamgi, M., Malki, M., Ghodous, P. and Drira, K.
(2016), “Data services with uncertain and correlated semantics”, World Wide Web, Vol. 19
No. 1, pp. 157-175.

Quarteroni, S., Brambilla, M. and Ceri, S. (2013), “A bottom-up, knowledge-aware approach to integrating
and querying web data services”, ACM Transactions on the Web, Vol. 7 No. 4, 33 pages.

IJWIS
12,4

502

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 2
1:

37
 0

1
N

ov
em

be
r

20
16

 (
PT

)

http://www.emeraldinsight.com/action/showLinks?crossref=10.1016%2Fj.ipm.2014.04.003&isi=000340307000011
http://www.emeraldinsight.com/action/showLinks?crossref=10.1145%2F1739041.1739138
http://www.emeraldinsight.com/action/showLinks?crossref=10.1145%2F1739041.1739138
http://www.emeraldinsight.com/action/showLinks?crossref=10.1109%2FICWS.2014.50
http://www.emeraldinsight.com/action/showLinks?crossref=10.1109%2FICWS.2013.23
http://www.emeraldinsight.com/action/showLinks?crossref=10.1109%2FICWS.2013.23
http://www.emeraldinsight.com/action/showLinks?crossref=10.1109%2FICWS.2015.61
http://www.emeraldinsight.com/action/showLinks?crossref=10.1109%2FICWS.2015.61
http://www.emeraldinsight.com/action/showLinks?crossref=10.1007%2F978-3-642-16092-9_1
http://www.emeraldinsight.com/action/showLinks?crossref=10.1145%2F2493536&isi=000327263000002
http://www.emeraldinsight.com/action/showLinks?crossref=10.4304%2Fjetwi.1.1.60-76
http://www.emeraldinsight.com/action/showLinks?crossref=10.4304%2Fjetwi.1.1.60-76
http://www.emeraldinsight.com/action/showLinks?crossref=10.1109%2FICWS.2011.122
http://www.emeraldinsight.com/action/showLinks?crossref=10.1109%2FICWS.2011.122
http://www.emeraldinsight.com/action/showLinks?crossref=10.1007%2F978-3-642-34300-1_3
http://www.emeraldinsight.com/action/showLinks?crossref=10.1007%2F978-3-642-12310-8_9
http://www.emeraldinsight.com/action/showLinks?crossref=10.1007%2F978-3-642-12310-8_9
http://www.emeraldinsight.com/action/showLinks?crossref=10.1007%2Fs11280-014-0317-x&isi=000368165400009
http://www.emeraldinsight.com/action/showLinks?crossref=10.1145%2F505168.505171
http://www.emeraldinsight.com/action/showLinks?crossref=10.1007%2Fs10844-012-0221-8&isi=000313657900008
http://www.emeraldinsight.com/action/showLinks?crossref=10.14257%2Fijgdc.2014.7.2.15
http://www.emeraldinsight.com/action/showLinks?crossref=10.14257%2Fijgdc.2014.7.2.15
http://www.emeraldinsight.com/action/showLinks?crossref=10.1109%2FICWS.2015.34
http://www.emeraldinsight.com/action/showLinks?crossref=10.1109%2FICWS.2015.34
http://www.emeraldinsight.com/action/showLinks?crossref=10.1109%2FSAINTW.2003.1210134
http://www.emeraldinsight.com/action/showLinks?crossref=10.1109%2FSAINTW.2003.1210134

Schafermeier, R. and Paschke, A. (2011), “Using domain ontologies for finding experts in corporate
wikis”, I-SEMANTICS, Graz, Austria, pp. 63-70.

Tapia, B., Torres, R. and Astudillo, H. (2011), “Simplifying mashup component selection with a
combined similarity- and social-based technique”, Proceedings of the 5th International
Workshop on Web APIs and Service Mashups, Lugano, Switzerland, pp. 1-8.

The UIUC Web Integration Repository (2003), Computer Science Department, University of
Illinois at Urbana-Champaign, available at: http://metaquerier.cs.uiuc.edu/repository

Vitvar, T. and Musser, J. (2010), “ProgrammableWeb.com: statistics, trends, and best practices”,
Keynote of the Web APIs and Service Mashups Workshop at the European Conference on
Web Services (ECOWS), Ayia Napa, Cyprus.

Xian, X., Zhao, P., Fang, W., Xin, J. and Cui, Z. (2009), “Quality-based data source selection for
web-scale deep web data integration”, Proceedings of the Eighth International Conference
on Machine Learning and Cybernetics, Baoding, Hebei, pp. 427-432.

Corresponding author
Michele Melchiori can be contacted at: michele.melchiori@unibs.it

For instructions on how to order reprints of this article, please visit our website:
www.emeraldgrouppublishing.com/licensing/reprints.htm
Or contact us for further details: permissions@emeraldinsight.com

503

Improving
service

selection

D
ow

nl
oa

de
d

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S
A

t 2
1:

37
 0

1
N

ov
em

be
r

20
16

 (
PT

)

http://metaquerier.cs.uiuc.edu/repository
mailto:michele.melchiori@unibs.it
mailto:permissions@emeraldinsight.com
http://www.emeraldinsight.com/action/showLinks?crossref=10.1145%2F2076006.2076015
http://www.emeraldinsight.com/action/showLinks?crossref=10.1145%2F2076006.2076015
http://www.emeraldinsight.com/action/showLinks?crossref=10.1145%2F2063518.2063527

	The role of developers’ social relationships in improving service selection
	1. Introduction
	2. Application scenario
	3. Preliminary definitions
	4. Architecture of the WISeR framework
	5. The three-layer model
	6. Social-based evaluation of developers
	7. Data service selection
	8. Experimental evaluation
	9. Related work
	10. Conclusions
	References

