
International Journal of Web Information Systems
On proposing and evaluating a NoSQL document database logical approach
Cláudio Lima Ronaldo Santos Mello

Article information:
To cite this document:
Cláudio Lima Ronaldo Santos Mello , (2016),"On proposing and evaluating a NoSQL document
database logical approach", International Journal of Web Information Systems, Vol. 12 Iss 4 pp. 398 -
417
Permanent link to this document:
http://dx.doi.org/10.1108/IJWIS-04-2016-0018

Downloaded on: 01 November 2016, At: 21:37 (PT)
References: this document contains references to 17 other documents.
To copy this document: permissions@emeraldinsight.com
The fulltext of this document has been downloaded 27 times since 2016*

Users who downloaded this article also downloaded:
(2016),"Formal analysis and verification support for reactive rule-based Web agents", International
Journal of Web Information Systems, Vol. 12 Iss 4 pp. 418-447 http://dx.doi.org/10.1108/
IJWIS-04-2016-0024
(2016),"Learning to rank with click-through features in a reinforcement learning framework",
International Journal of Web Information Systems, Vol. 12 Iss 4 pp. 448-476 http://dx.doi.org/10.1108/
IJWIS-12-2015-0046

Access to this document was granted through an Emerald subscription provided by emerald-
srm:563821 []

For Authors
If you would like to write for this, or any other Emerald publication, then please use our Emerald
for Authors service information about how to choose which publication to write for and submission
guidelines are available for all. Please visit www.emeraldinsight.com/authors for more information.

About Emerald www.emeraldinsight.com
Emerald is a global publisher linking research and practice to the benefit of society. The company
manages a portfolio of more than 290 journals and over 2,350 books and book series volumes, as
well as providing an extensive range of online products and additional customer resources and
services.

Emerald is both COUNTER 4 and TRANSFER compliant. The organization is a partner of the
Committee on Publication Ethics (COPE) and also works with Portico and the LOCKSS initiative for
digital archive preservation.

*Related content and download information correct at time of download.

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
1:

37
 0

1 
N

ov
em

be
r 

20
16

 (
PT

)

http://dx.doi.org/10.1108/IJWIS-04-2016-0018


On proposing and evaluating a
NoSQL document database

logical approach
Cláudio Lima

Federal University of Santa Catarina, Florianopolis, Brazil, and

Ronaldo Santos Mello
Informatics and Statistics Department,

Federal University of Santa Catarina, Florianopolis, Brazil

Abstract
Purpose – NoSQL databases do not require a default schema associated with the data. Even that, they
are categorized by data models. A model associated with the data can promote better strategies for
persistence and manipulation of data in the target database. Based on this motivation, the purpose of
this paper is to present an approach for logical design of NoSQL document databases that consists a
process that converts a conceptual modeling into efficient logical representations for a NoSQL
document database. The authors also evaluate their approach and demonstrate that the generated
NoSQL logical structures reduce the amount of data items accessed by queries.
Design/methodology/approach – This paper presents an approach for logical design of NoSQL
document database schemas based on a conceptual schema. The authors generate compact and
redundancy-free schemas and define appropriate representations in a NoSQL document logical model.
The estimated volume of data and workload information can be considered to generate optimized
NoSQL document structures.
Findings – This approach was evaluated through a case study with an experimental evaluation in the
e-commerce application domain. The results demonstrate that the authors’ workload-based conversion
process improves query performance on NoSQL documents by reducing the number of database
accesses.
Originality/value – Unlike related work, the reported approach covers all typical conceptual
constructs, details a conversion process between conceptual schemas and logical representations for
NoSQL document database category and, additionally, considers the estimated database workload to
perform optimizations in the logical structure. An experimental evaluation shows that the proposed
approach is promising.

Keywords Web databases, Extended entity-relationship, NoSQL data modeling,
NoSQL document database, NoSQL logical design, Workload-driven approach

Paper type Research paper

1. Introduction
Applications from several domains, such as Web data management, social networks,
sensor networks, e-commerce and educational evaluation, generate a massive amount of
data every day. It brings several challenges for data management in the cloud, including
how to handle and store these data. NoSQL databases (DBs) are designed to manage
large volumes of data, commonly referred to as Big Data, and a large number of

The current issue and full text archive of this journal is available on Emerald Insight at:
www.emeraldinsight.com/1744-0084.htm

IJWIS
12,4

398

Received 13 April 2016
Accepted 5 May 2016

International Journal of Web
Information Systems
Vol. 12 No. 4, 2016
pp. 398-417
© Emerald Group Publishing Limited
1744-0084
DOI 10.1108/IJWIS-04-2016-0018

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
1:

37
 0

1 
N

ov
em

be
r 

20
16

 (
PT

)

http://dx.doi.org/10.1108/IJWIS-04-2016-0018


read-and-write operations, a common feature in modern Web applications (Cattell,
2010).

NoSQL DBs support complex data types, semi-structured or unstructured data, and
although they do not require a default schema associated with the data, they are
categorized by data models (key-value, document, columnar and graph-based)
(McMurtry et al., 2013), demonstrating that their data show some degree of structuring.
In fact, data organization in NoSQL DBs requires significant design decisions because it
affects important quality requirements such as scalability and performance (Bugiotti
et al., 2014). In addition, the importance of a model associated with the data is related to
the definition of better strategies for persistence and manipulation of such data in the
target DB.

In this context of data modeling, conceptual schemas and ontologies are crucial to
define data semantics, providing access to them with higher accuracy. A traditional DB
design is a process consisting of three data modeling phases (Batini et al., 1992; Elmasri
and Navathe, 2011): conceptual, logical and physical design. At the conceptual modeling
phase, a schema with information about a domain is represented in a high-level
abstraction model. In the sequence, in the logical modeling phase, the conceptual schema
is transformed into a schema with lower abstraction but suitable to the target DB data
model. This logical design phase, specifically for NoSQL document DBs, is the scope of
this paper.

In database literature, support methodologies for the logical design of NoSQL DBs is
still a topic little explored, despite its importance (Atzeni et al., 2013). This paper aims to
contribute to this issue by proposing an approach for the logical design of NoSQL
document DBs. This approach consists a process that converts conceptual modeling for
suitable and efficient logical representations for a NoSQL document DB. We chose
document-oriented DBs because they are an appropriate category for Web applications
or applications that deal with Big Data, once they provide semi-structured data storage
and dynamic queries execution, as well as horizontal scalability and high availability
(Kaur and Rani, 2013).

Our conversion approach for generating NoSQL document logical schemas from
conceptual schemas can consider the expected workload of the target application.
Workload information is provided by the designer in terms of the amount of data
instances estimated for the NoSQL DB, as well as the main operations that will be
performed over these data. This information is used to determine an optimized logical
structuring for the NoSQL DB schema, contributing, in general, to a better access
performance for the application. We also evaluate our approach through a case study
with an experimental evaluation in the e-commerce domain. An existing data set was
redesigned by our approach to compare the number of accesses generated by queries
over the redesigned schema as well as over the schemas generated by our approach. We
demonstrate that our method can improve query performance on NoSQL documents by
reducing the number of access to the NoSQL DB. It highlights that our workload-aware
design process is promising.

The remainder of this paper is organized as follows. Section 2 presents an analysis of
related work. Section 3 gives an overview of our approach for converting conceptual
schemas into NoSQL document logical schemas. Section 4 presents a case study to
evaluate our logical design approach, and Section 5 is dedicated to the conclusion.

399

NoSQL
document
database

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
1:

37
 0

1 
N

ov
em

be
r 

20
16

 (
PT

)



2. Related work
This section presents a feature comparison of the (few) related works that focus on
NoSQL DBs modeling. A different related work comparison, including proposals
that deal with other non-relational schemas (XML and object-oriented), is
presented in Lima and Mello (2015) to identify the modeling levels (conceptual,
logical and physical) attended by each of them, being complementary to this
comparison.

The work of Bugiotti et al. (2014) presents an approach to the NoSQL DBs design that
explores the commonalities of some NoSQL DB categories. The proposal introduces a
data model called NoAM (NoSQL Abstract Model ) for the logical level, and
demonstrates how data modeled in NoAM can be implemented in some NoSQL DBs.
NoAM is based on the concept of aggregates for NoSQL data modeling, which is a term
of domain-driven design (DDD) area (Evans, 2003).

The work of Jovanovic and Benson (2013), uses IDEF1X (Integration DEFinition
for Information Modeling), a data modeling language for the development of
semantic data models, in the conceptual modeling phase to represent the application
domain, and also to represent an aggregate-based NoSQL logical model obtained
through a conversion process between these models. This proposal gives support to
the analysis of different modeling strategies like schema partitioning into
smaller and independent aggregates in the SOA context (service-oriented
architecture).

The approach of Chebotko et al. (2015) presents a data modeling methodology,
directed by main application queries, to the NoSQL columnar DB Cassandra. It
introduces principles of modeling, rules and standard mappings to guide the logical
data modeling to the Cassandra DB. Visual diagrams for logical and physical data
model for Cassandra DB are defined, which are called Chebotko diagrams.

Table I presents a feature comparison of these approaches for NoSQL DBs
modeling. Our approach is also considered in this comparison (last column of
Table I). The first column lists the features of the considered approaches, which are
detailed below. As shown in Table I, the evaluation of the approaches regarding
these features is provided by setting one of the four possible choices:

Table I.
Feature comparison
of related approaches

Feature

Approach
Bugiotti et al.

(2014)
Jovanovic and Benson

(2013)
Chebotko et al.

(2015)
Lima and Mello

(2015)

1 ✓✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓✓
2 ✓✓ ✓✓✓ ✓✓✓ ✓✓✓✓
3 ✓ ✓✓ ✓✓✓ ✓✓✓✓
4 ✓ ✓ ✓✓ ✓✓✓✓
5 ✓✓✓✓ ✓ ✓ ✓✓✓✓
6 ✓ ✓ ✓✓✓ ✓✓✓✓
7 ✓✓✓✓ ✓ ✓ ✓✓✓✓
8 ✓ ✓ ✓✓✓ ✓✓✓✓
9 ✓✓✓ ✓✓✓ ✓ ✓✓

Notes: ✓✓✓✓ Complete/Detailed; ✓✓✓ Incomplete/Partial; ✓✓ Superficial/Specific; ✓ Poor/Very
specific/Non-existent

IJWIS
12,4

400

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
1:

37
 0

1 
N

ov
em

be
r 

20
16

 (
PT

)



(1) complete/detailed;
(2) incomplete/partial;
(3) superficial/specific; and
(4) poor/very specific/non-existent.

The proposed features as well as the consideration of each one of them by the related
work are presented in the following text.

2.1 Conceptual model considered for DB design
Our approach (identified as Lima and Mello) uses the EER model, and the Bugiotti et al.
(2014) approach uses the UML class diagram. We consider that both models are suitable
to a DB conceptual design. Jovanovic and Benson (2013) use IDEF1X and Chebotko et al.
(2015) use the ER model. These conceptual models have lower modeling capabilities
compared to the EER model or UML class diagram.

2.2 Full use of the concepts of the conceptual model
Different from the related work, our proposal covers all typical conceptual constructs of
the EER model. Bugiotti et al. (2014) consider few concepts of the UML class diagram
and, for this reason, we evaluate it as superficial. Jovanovic and Benson (2013) and
Chebotko et al. (2015) deal with a bigger set of concepts, being evaluated as incomplete.

2.3 Conversion rules detailing (conceptual to logical levels)
Our approach details the conversion rules between conceptual constructors and logical
representations for a NoSQL document DBs category. Chebotko et al. (2015) present a set
of conversion rules on their website and, for this reason, we evaluate it as incomplete.
Jovanovic and Benson (2013) present a smaller set of conversion rules, being evaluated
as superficial. Bugiotti et al. (2014) do not present the conversion rules.

2.4 Conversion process detailing (conceptual to logical levels)
Different from the related work, our approach details the conversion process between
conceptual schemas and logical representations for a NoSQL document DBs category.
Chebotko et al. (2015) present some information about the conversion process on their
website and, for this reason, we evaluate as superficial. Bugiotti et al. (2014) and
Jovanovic and Benson (2013) do not present a conversion process.

2.5 Experimental evaluation
Our approach presents experiments with an analysis of the results. Jovanovic and
Benson (2013) and Chebotko et al. (2015) do not present experiments, although the latter
state that the approach is widely adopted in production environments. Bugiotti et al.
(2014) present experiments with an analysis of the results and, for this reason, we
evaluate it as complete.

2.6 Automation level of the conversion process
Only our approach defines a completely automatic conversion process. Chebotko et al.
(2015) automate their approach. However, user interaction is expected to generate the
logical schema. For this reason, their process is considered semi-automatic and the

401

NoSQL
document
database

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
1:

37
 0

1 
N

ov
em

be
r 

20
16

 (
PT

)



approach is evaluated as incomplete. Bugiotti et al. (2014) and Jovanovic and Benson
(2013) do not present a conversion process.

2.7 Avoidance of data redundancy at the logical level
Our process generates a redundancy-free schema. Jovanovic and Benson (2013) and
Chebotko et al. (2015) do not report about this issue. Bugiotti et al. (2014) state that the
approach generates a redundancy-free schema and, for this reason, we evaluate it as
complete.

2.8 Workload consideration
Only our approach considers the estimated DB workload to perform optimizations in the
logical structure. The Chebotko et al. (2015) approach is driven by queries and, for this
reason, we evaluate it as partial. Bugiotti et al. (2014) and Jovanovic and Benson (2013)
do not consider the estimated DB workload to perform optimizations in the logical
structure.

2.9 The considered logical model (NoSQL DB categories)
The Bugiotti et al. (2014) and Jovanovic and Benson (2013) proposals claim that three
categories of NoSQL DBs are supported:

(1) key-value;
(2) document; and
(3) columnar.

The Chebotko et al. (2015) approach is the most specific one because it covers only a
specific NoSQL columnar product. Our approach focuses on the NoSQL document DBs
and, for this reason, we evaluate it as (category) specific.

In short, our main contributions with respect to related work are that our proposal
covers all typical conceptual constructs, details the conversion algorithms between
conceptual schemas and logical representations for a NoSQL document DBs category
and additionally considers the estimated DB workload to perform optimizations in the
logical structure.

Our conversion process is presented in the following.

3. The conversion process
Our approach provides the conversion of conceptual schemas into NoSQL document
logical schemas. It starts with a conceptual schema and workload information given by
the application designer, as shown in Figure 1. The workload information is estimated
over a conceptual schema, being also used as input for the logical design phase to
generate appropriate logical structures. The mapping of the conceptual schema to a

Figure 1.
An overview of the
proposed approach

IJWIS
12,4

402

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
1:

37
 0

1 
N

ov
em

be
r 

20
16

 (
PT

)

http://www.emeraldinsight.com/action/showImage?doi=10.1108/IJWIS-04-2016-0018&iName=master.img-000.jpg&w=191&h=61


NoSQL document logical schema is governed by a set of rules that converts each
conceptual constructor to an equivalent representation in the NoSQL document logical
model.

Our logical model is an abstract model to represent NoSQL document
implementation models. In the implementation design phase, a NoSQL document logical
schema is translated to the common implementation model for NoSQL documents, i.e.
the JSON[1] specification. Even though the implementation design phase is considered
by our approach, this paper focuses on generating NoSQL document structures from a
conceptual schema in the logical design phase.

Our input conceptual schema is defined by the extended entity-relationship (EER)
model (Batini et al., 1992; Elmasri and Navathe, 2011), a classical and suitable model for
representing data concerning an application domain. We adopt EER because it contains
the essential constructs for conceptual modeling. Workload information and the logical
model defined by our approach are briefly presented in the following.

Workload information corresponds to the data load expected for a NoSQL-based
application. This information allows our conversion process to choose an optimized
NoSQL document structure to represent a conceptual schema. According to Batini et al.
(1992), we may concentrate on the 20 per cent of the most frequent operations that will be
performed by the application. This assumption is rooted on the so-called 20-80 rule,
which says that 20 per cent of the operations produce 80 per cent of the application load.
Our workload analysis identifies the concepts frequently accessed by transactions and
is based on the workload modeling methodology defined in Batini et al. (1992), Schroeder
and Mello (2008) and Schroeder et al. (2011). More details about the workload modeling
methodology can be found in Lima and Mello (2015).

We propose a NoSQL document logical model to represent the document data model.
Our conversion approach generates NoSQL schemas defined by this logical model in the
logical design phase. The NoSQL document logical model is an abstract representation
for NoSQL document schemas and consists an adaptation of the aggregate approach
(Evans, 2003). In this context, an aggregate represents a collection of related objects, in
a nested way, which can be treated as a unit. Such a notion is suitable to NoSQL
documents, given that they are hierarchical data structures that consist of nested data
collections and scalar values (Sadalage and Fowler, 2013). A NoSQL document logical
schema is composed of collections, blocks and attributes. A schema has one or more
collections, and each collection has a root block. All updates to a collection pass through
its respective root block, ensuring the business rules. The root block is the only block
accessible out of the collection. More details about the NoSQL document logical model
can be found in Lima and Mello (2015).

Our conversion process is based on the conversion rules for mapping EER constructs
into equivalent NoSQL document constructs in the logical model. Figure 2 presents the
overall process, which comprises two main steps:

(1) conversion of hierarchy types; and
(2) conversion of relationship types.

As shown in Figure 2, hierarchy types are converted first, followed by the conversion of
the relationships. The blocks generated by the hierarchy conversion step are maintained
by the relationship conversion step. At the end of the process, a list of collections is

403

NoSQL
document
database

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
1:

37
 0

1 
N

ov
em

be
r 

20
16

 (
PT

)



returned. Load information can be considered during the conversion process to generate
well-structured NoSQL document logical schemas.

The next sections summarize the hierarchy and relationship conversion. More details
about them can be found in Lima and Mello (2015).

3.1 Hierarchy types conversion
A generalization hierarchy in the EER model defines a subset relationship between a
generic entity, namely, superclass, and one or more specialized entities, namely,
subclasses. The disjointeness and completeness constraints that are set to the subclasses
establish four possible constraints on generalization types:

(1) total and disjoint (t, d );
(2) partial and disjoint ( p, d );
(3) total and overlapping (t, o); and
(4) partial and overlapping ( p, o) (Batini et al., 1992).

Categories or union types of the EER model can be considered restricted cases of multiple
inheritance (Batini et al., 1992). Thus, their conversion strategies are similar to the
strategies for processing generalization types. For sake of paper space, we omit these
strategies.

In this section, we present alternative rules to convert a generalization hierarchy from
an EER schema to a NoSQL document logical schema. We also introduce the process
that selects the suitable rule to be applied on each occurrence of an EER generalization
type.

3.1.1 Conversion rules. Three alternatives are provided to convert generalization
types inspired by the relational logical design methodology (Batini et al., 1992). The
difference among these alternatives is given by the different size of the NoSQL
document schema that each one generates and the constraints on generalization types
they are able to support, as shown in Figure 3.

The conversion strategy defined by Rule 1 generates only one block from a
generalization hierarchy. The block represents the superclass and its attributes, as well
as the attributes of its subclasses. Subclasses’ attributes are defined as optional in the
content model of the superclass block. On applying this rule, we assume that the
subclasses’ attributes will act as discriminating attributes to identify an instance of a
subclass in the NoSQL documents. The subclasses previously converted (marked
subclasses) become an optional inner block of the block generated by this rule.

The alternative defined by Rule 2 generates only NoSQL document blocks for the
subclasses, and the superclass attributes are reproduced into each subclass block. In the

Figure 2.
The EER-NoSQL
conversion process

IJWIS
12,4

404

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
1:

37
 0

1 
N

ov
em

be
r 

20
16

 (
PT

)

http://www.emeraldinsight.com/action/showImage?doi=10.1108/IJWIS-04-2016-0018&iName=master.img-001.jpg&w=263&h=89


alternative defined by Rule 3, the superclass and subclasses are explicitly represented
by blocks. Hierarchical relationships are established among the superclass and
subclasses blocks to represent the relationship. The generalization constraints are
represented by the minimum and maximum occurrences of the subclasses’ blocks in the
superclass block.

3.1.2 Conversion process for hierarchy types. In our overall conversion process, a
function called convertHierarchies is responsible to choose the appropriate rule for
converting each generalization type of a conceptual schema. During the conversion
process, load information can be considered to generate well-structured NoSQL
document logical schemas. A generalization type is converted by analyzing the
constraints of the generalization hierarchy and, optionally, the workload data. For sake
of understanding, the conversion process is called conventional conversion when we do
not consider workload information, and optimized conversion when we consider
workload information.

The function establishes a conversion order in which the entities involved in a
generalization hierarchy must be treated. A bottom-up conversion is accomplished when
there is a multiple-level hierarchy, i.e. the entities are converted from the bottom to the
top of the hierarchy. Besides, when there is a multiple-inheritance case, the superclass
with the highest General Access Frequency (GAF) has high priority in the optimized
conversion. It means that the superclass that is most frequently accessed becomes the
parent block of a block that represents the subclass with more than one superclass. In
this case, the remaining superclasses are related by reference attributes, as defined in
Rule 3.

Once the conversion order of the generalization types is established, we apply the
conversion rules for generalization types (Rule 1, 2 or 3) and verify the preconditions of
each one, so that the rules that generate the smallest NoSQL document logical fragment
are verified first. For the conventional conversion, we verify the presence of
relationships among subclasses and superclasses for the application of the Rules 1 and
2, respectively. Rule 1 assumes that the explicit distinction between subclasses is
irrelevant for most instances of the superclass. The existence of relationships involving

Figure 3.
Three alternatives to

convert
generalization types

405

NoSQL
document
database

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
1:

37
 0

1 
N

ov
em

be
r 

20
16

 (
PT

)

http://www.emeraldinsight.com/action/showImage?doi=10.1108/IJWIS-04-2016-0018&iName=master.img-002.jpg&w=143&h=176


subclasses is the main impediment for the application of this rule. Rule 2 is not
considered for cases where the superclasses’ relationships must be converted into
relationships with each one of the subclasses. Otherwise, for the optimized conversion,
before applying Rule 1 and Rule 2, we verify whether the GAF of the entities that will be
omitted is lower than the Minimal Access Frequency (MAF). MAF is a value that
represents the minimal frequency for accesses involving operations, and values below it
are considered as insignificant frequencies. If the GAF is higher than MAF, it means that
these entities participate in frequent operations and the distinction between superclass
and subclasses must be preserved. If Rules 1 and 2 do not apply, the last option to
convert a generalization type is Rule 3.

3.2 Relationship types conversion
A relationship type is a common conceptual construct that establishes a correspondence
among two or more entities (Batini et al., 1992). The cardinality of a relationship type is
the main constraint that is considered in the conversion to a NoSQL document logical
structure. Our rules for converting EER relationship types also proceed from the logical
design of relational data models. In this section, we present these rules and their
constraints, as well as the process that selects the suitable rule to be applied on each
occurrence of an EER relationship type.

3.2.1 Conversion rules. We define three conversion rules that deal with specific
constraints for relationship types, as shown in Figure 4. Rule 4 is applied only to 1:1
relationships, Rule 5 regards 1:N relationships and Rule 6 is applied to relationships
with cardinality N:N, n-ary ones with n � 2 or in cases where 1:1 and 1:N relationships
cannot be treated by Rules 4 and 5.

Rule 4 generates only one block to represent the relationship type and its related
entities. Rule 5 generates blocks for each related entity, being one of them a nested block
of the other one, and the relationship attributes are appended to the nested block.
Finally, Rule 6 generates independent blocks for each entity of a relationship type, and
reference relationships are established among the generated blocks.

3.2.2 Conversion process for relationship types. In our overall conversion process, a
function called convertRelationships controls the execution of the conversion rules for
relationship types of an EER schema. It orders the relationship types, for conventional
conversion, using the concept of fully functional closures (Mok and Embley, 2006), which
determines the list of entities that can be reached from a starting entity through
relationship pathways determined by participation (1,1) of entities in the relationships.
After identifying the fully functional closures of the entities of the conceptual schema, a

Figure 4.
Three alternatives to
convert relationship
types

IJWIS
12,4

406

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
1:

37
 0

1 
N

ov
em

be
r 

20
16

 (
PT

)

http://www.emeraldinsight.com/action/showImage?doi=10.1108/IJWIS-04-2016-0018&iName=master.img-003.jpg&w=143&h=109


list of entities (EL) is generated. These entities must be ordered in EL so that the
participating entities on more fully functional closures appear first in the list. Then, the
remaining entities are added to the end of EL, so that the entities that have a higher
number of relationships appear first.

In case of the optimized conversion, the function orders the relationship types so that
relationships with the highest GAF appear first. This order is established to give
priority to the relationships that represent the largest impact on the application
workload. Then, if there is more than one nesting possibility for an entity type giving all
the relationship types on which it participates, we process this entity by considering the
relationship with the highest GAF first. This order ensures that relationship types
involving associative entities are converted after the internal relationship types of these
associative entities.

For converting a relationship type, we first determine which entity will be the one on
the top of the hierarchy in the NoSQL document logical schema. If the relationship type
is binary and there is an entity with participation (1,1) in the relationship, the top entity
is the other entity of the relationship type. For other cases, on considering the optimized
conversion, the top entity is the entity type with the highest GAF in the relationship, i.e.
we assume that the relationship type is more frequently accessed through this entity for
the considered operations.

In the next section, we evaluate our approach with a case study in the e-commerce
domain.

4. Case study
This section presents a case study to evaluate our conversion approach with an
experiment in the e-commerce domain. Our intention here is to exemplify the application
of our process and show its positive effects, in terms of processing time, on considering
the application workload. In fact, we show here that our method can improve query
performance on NoSQL documents by reducing the number of accesses to the NoSQL
document DB. The process application, the experiment settings and the experiment
results are presented in the following text.

4.1 Process application
The EER schema considered in this case study is presented in Figure 5. We perform a
reverse engineering from a real e-commerce application data set to represent the main
business processes related to e-commerce, that are related to transactions of customer’s
orders. We apply our conversion process twice over the conceptual schema. In the first
time, we do not consider workload information, and the generated logical schema was
called conventional schema. In the second time, we consider workload information, and
the generated logical schema was called optimized schema.

For the generation of the conventional schema, presented in Figure 6, Rule 2 was
applied to Person’s generalization hierarchy and Rule 3 was applied to the Payment’s
category hierarchy. On considering relationship types, after identifying the fully
functional closures of the entities of the conceptual schema, the list of entities obtained
was EL � {Customer, Category, Order, Product, Carrier, Item, Supplier, CreditCard,
Payment, Bill, Person}, and the relationship types request, owner, delivery, composite,
reference, catalog, furnishing and commitment were converted by the rules 5, 6, 5, 5, 6, 6,

407

NoSQL
document
database

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
1:

37
 0

1 
N

ov
em

be
r 

20
16

 (
PT

)



Figure 5.
The EER schema for
an e-commerce
application

Figure 6.
The conventional
NoSQL document
logical schema

IJWIS
12,4

408

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
1:

37
 0

1 
N

ov
em

be
r 

20
16

 (
PT

)

http://www.emeraldinsight.com/action/showImage?doi=10.1108/IJWIS-04-2016-0018&iName=master.img-004.jpg&w=311&h=213
http://www.emeraldinsight.com/action/showImage?doi=10.1108/IJWIS-04-2016-0018&iName=master.img-005.jpg&w=191&h=244


6 and 6, respectively. Note that all information of the considered EER schema was
represented at the produced NoSQL document logical schema, called conventional
schema (Figure 6).

To generate the NoSQL document logical schema that considers workload
information, called optimized schema, we applied the workload modeling
methodology defined in Batini et al. (1992), Schroeder and Mello (2008) and
Schroeder et al. (2011). The EER schema, the volume of data, a set of operations and
their average frequencies were given as input for the conversion process. The
volume of data was included in the conceptual schema and is also shown in
Figure 5. The number of instances from the original e-commerce application data set
was used to measure the volume of data in our case study, i.e. the average number of
instances of the entities and relationships, as well as the average cardinality of the
entities in each relationship type.

We also obtained the main operations that comprise the application workload. They
are shown in Table II and were provided by an expert user application considering the
concepts (entity and relationship types) defined in the conceptual schema. Operation O3,
for example, has an average frequency ( f(O)) of 450 times a day. The entity and
relationship types Customer, request, Order, delivery and Carrier are accessed, in this
sequence, by O3. The fourth column of Table II presents the operation load in terms of
access frequency for each concept of the conceptual schema.

The GAF of each concept involved in the operations on the conceptual schema was
also measured. They are shown in Table III. To obtain the MAF measure, we considered
that the set of operations produces 80 per cent of the load. Thus, the total data volume
generated on the conceptual schema (1,340,990 daily accesses) represents 80 per cent of
the total of accesses, which can be performed by the application over the conceptual
types. We assume that 0.8 per cent is also given by an expert user application and
denotes the MAF in percentage value. Such a percentage is applied over the total volume
and we obtain 13,410 accesses as the MAF value.

Based on these input information, for the generation of the optimized schema
(Figure 7), Rule 2 was applied to the Person’s generalization hierarchy and Rule 1
was applied to the Payment’s category hierarchy. The function convertRelationships
ordered the relationship types so that relationships with the highest GAF appear
first. On considering Table III, the list obtained is R � {composite, reference,
request, delivery, commitment, catalog, furnishing, owner}, and the applied
conversion rules were 5, 6, 5, 6, 4, 6, 6 and 6, respectively.

It is important to notice that the generation of the conventional and optimized
schemas have the same goal, which is to generate compact and redundancy-free
schemas and define appropriate representations in the NoSQL document logical model.
The main difference between the conversion processes is that the optimized schema is
generated based on the consideration of workload information to select appropriate
conversion rules.

4.2 Experiment settings
The produced logical schemas were evaluated in terms of the performance of the
operations over compliant NoSQL documents. The performance of the operations was
measured over the access volume generated by each operation over each logical schema
using the same workload methodology applied to measure the access volume of the

409

NoSQL
document
database

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
1:

37
 0

1 
N

ov
em

be
r 

20
16

 (
PT

)



operations over the conceptual schema. Proposed queries were executed over JSON
documents stored in the NoSQL document-oriented DB MongoDB[2] to show the access
volume provided by the operations on each schema.

For evaluating the performance of the schemas produced by our conversion
approach (conventional and optimized), we also consider a logical schema artificially

Table II.
Operations on
schemas

O f(O) Concept

Access frequency

Conceptual
schema

Conventional
logical
schema

Optimized
logical
schema

Real application
logical schema

O1 1,500 Order 1,500 1,500 1,500 1,500
request 51,600 – – –
Customer 51,600 51,600 51,600 1,670,926,500
composite 82,560 – – –
Item 82,560 82,560 82,560 2,673,482,400
reference 82,560 – – –
Product 82,560 74,304,000 74,304,000 2,406,134,160,000
Subtotal: 434,940 74,439,660 74,439,660 2,410,478,570,400

O2 900 Order 900 900 900 900
request 900 – – –
Customer 900 900 900 29,176,200
commitment 900 900 – –
Payment 900 1,002,555,900 900 1,002,555,900
Subtotal: 4,500 1,002,558,600 2,700 1,031,733,000

O3 450 Customer 450 450 450 450
request 15,480 – – –
Order 15,480 15,480 15,480 501,277,950
delivery 15,480 15,480 15,480 –
Carrier 15,480 247,680 247,680 8,020,447,200
Subtotal: 62,370 279,090 279,090 8,521,725,600

O4 300 Customer 300 300 300 300
request 10,320 – – –
Order 10,320 10,320 10,320 334,185,300
commitment 10,320 10,320 – –
Payment 10,320 11,495,974,320 10,320 372,266,049,120,300
Subtotal: 41,580 11,495,995,260 20,940 372,266,383,305,900

O5 100 Product 100 100 100 100
reference 198,800 – – –
Item 198,800 178,908,200 178,908,200 178,908,200
composite 198,800 – – –
Order 198,800 178,908,200 178,908,200 178,908,200
Subtotal: 795,300 357,816,500 357,816,500 357,816,500

O6 100 Supplier 100 100 100 100
furnishing 550 90,000 90,000 –
Product 550 90,000 90,000 90,000
catalog 550 – 90,000 –
Category 550 5,490,000 5,490,000 5,490,000
Subtotal: 2,300 5,670,100 5,760,100 5,580,100

Total 1,340,990 12,936,759,210 438,318,990 374,686,778,731,500

IJWIS
12,4

410

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
1:

37
 0

1 
N

ov
em

be
r 

20
16

 (
PT

)



produced by industry recommendations (Jboss Teiid, 2015; MongoDB, 2015). It was
generated by the mapping of a relational physical schema to a NoSQL document schema
in MongoDB. The physical schema comes from a real application data set compatible
with the EER conceptual schema of Figure 5. For identification purposes, the produced
logical schema was called real application logical schema and is shown at Figure 8.

It is relevant to notice that the accomplished conversion that produced the real
application schema did not consider the EER conceptual schema of Figure 5. Instead, the
logical schema was generated from the relational physical schema by applying
mappings from industry recommendations, as stated before. This generated NoSQL

Table III.
GAF of concepts of

Figure 5

Concept GAF Concept GAF

Item 281,360 Composite 281,360
Order 277,100 Reference 281,360
Product 83,210 Request 78,300
Carrier 15,480 Delivery 15,480
Payment 11,220 Commitment 11,220
Customer 3,150 Catalog 550
Category 550 Furnishing 550
Supplier 100 Owner 0
CreditCard 0
Bill 0

Figure 7.
The optimized

NoSQL document
logical schema

411

NoSQL
document
database

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
1:

37
 0

1 
N

ov
em

be
r 

20
16

 (
PT

)

http://www.emeraldinsight.com/action/showImage?doi=10.1108/IJWIS-04-2016-0018&iName=master.img-006.jpg&w=191&h=252


logical schema was then represented in the NoSQL document logical model defined by
Lima and Mello (2015). As the conventional and optimized schemas, the real application
logical schema tries to minimize data redundancy through the generation of the more
compact logical schema fragments whenever possible.

We also emphasize that the goal of the real application logical schema is to provide a
comparison with the produced schemas by our proposed conversion process. It was
necessary because related work to logical design of NoSQL (document) DBs presented in
Section 2 (Bugiotti et al., 2014; Chebotko et al., 2015; Jovanovic and Benson, 2013) did not
detail conversion processes between a conceptual and a logical schema, which makes
difficult the development and implementation of their processes to compare with our
approach. On the other hand, the industry recommendation mappings considered for the
generation of the real application logical schema are available on the manufacturers’
websites.

The access volume generated by the operations over the three presented logical
schemas is measured considering the estimated access volume for the EER conceptual
schema concepts (Figure 5) and the estimated frequency for each operation according to
the application workload. The same methodology used to produce the data values in the
fourth column of Table II is applied again, considering the execution of these operations
on the defined structures of the three NoSQL document logical schemas.

The three last columns of Table II show the access volume generated for each schema and
for each involved concept (entity or relationship) on the considered operations. For example,
consider the NoSQL document logical schema of Figure 6 and the operation O4 in Table II.
As the estimated execution of O4 is 300 times a day, the accesses amount over the Customer
block is considered 300 for the conventional logical schema. As the commitment concept is
represented as a nested block of Order’s block which, in turn, is a Customer’s nested block, it
is necessary to execute a structure join, and we must multiply the number of daily access of
the Customer block by the average cardinality associated with the Order and commitment
concepts, resulting in 10,320 (300 � 34.4 � 1) accesses over the commitment block.

However, to obtain payments related with customers, it is necessary compare the
Payment’s block identifier with the reference attribute payment_REF from all
commitment blocks. It means that to obtain the payments associated with 300 customers

Figure 8.
The real application
NoSQL document
logical schema

IJWIS
12,4

412

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
1:

37
 0

1 
N

ov
em

be
r 

20
16

 (
PT

)

http://www.emeraldinsight.com/action/showImage?doi=10.1108/IJWIS-04-2016-0018&iName=master.img-007.jpg&w=343&h=156


accessed per day, it is necessary compare the value of 10,320 reference attributes
payment_REF with 1,113,951 instances of Payment. Thus, this value join generates
11,495,974,320 (10,320 � 1,113,951) accesses per day over the Payment’s block of the
conventional logical schema.

The same operation O4 generates 10,320 daily accesses over Payment’s block on the
optimized logical schema due to the fact that Payment’ block is modeled as an Order’s
nested block. In this case, as the average cardinality to Order on the request relationship
is 34.4, to obtain payments related to customers it is necessary to execute structure joins
that return, in average, 34.4 Order’s nested block. On considering the 300 times per day,
10,320 accesses are recorded.

As stated before, to evaluate the effects of the query processing on these logical
schemas, the operations were performed on compliant NoSQL documents generated and
stored in the NoSQL document-oriented DB MongoDB. We develop a Java application to
produce JSON documents defined by each collection for all schemas. For each schema,
we generate a set of documents with the same volume of data presented in Figure 5.

The tests were carried out in a processor Core i7 2.40 GHz with 8 GB of memory,
1 TB of disk and Windows 8.1 Pro. All processed queries over MongoDB were
executed on the same environment conditions using the default settings of
MongoDB Server 3.0.3. The MongoDB-shell query specifications were defined
according to the structure of the schemas and the sequence of accesses for the query
operations, as presented in Table II. We use the trial version of NoSQL Manager for
MongoDB Professional tool to execute the queries.

Table IV presents the response time in seconds for the execution of each one of the six
operations on JSON documents conformed to the conventional, optimized and real
application schemas. For each schema, it is shown the spent time in a single run[3] (one
execution) of a query, as well as the daily spent system time (accumulated execution) to
run a query considering its daily frequency. For example, for conventional schema, a
single query O1 shows the response time of 0.573 seconds. On considering the frequency
of 1,500 times a day, the daily occupation system time to perform this accumulated
operation is 859.500 seconds (0.573 � 1,500).

The next section discusses the experiment results.

4.3 Result analysis
Initially, we compare Total Access Frequency (TAF) of 1,340,990 estimated for EER
conceptual schema (fourth column of Table II) with the values of the last three columns
of Table II and verify that the TAF for NoSQL document logical schemas increases

Table IV.
Operation processing
total time in seconds

O f(O)
Conventional Optimized Real application

One Accumulated One Accumulated One Accumulated

O1 1500 0,573 859,500 0,569 853,000 1,170 1.755,500
O2 900 1,018 915,900 0,750 675,300 0,510 459,300
O3 450 0,884 397,800 0,601 270,600 1,283 577,200
O4 300 0,776 232,800 0,143 42,900 1,189 356,600
O5 100 2,097 209,667 2,080 208,033 1,825 182,500
O6 100 0,471 47,100 0,524 52,400 0,518 51,800
Total 5,818 2.662,767 4,667 2.102,233 6,495 3.382,900

413

NoSQL
document
database

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
1:

37
 0

1 
N

ov
em

be
r 

20
16

 (
PT

)



substantially for all kinds of schema. This increase is due to the large number of
comparisons caused by value joins. Value joins are necessary to retrieve conceptual
relationships represented by reference relationships on NoSQL document logical
schemas. These logical schemas, presented in Figures 6, 7 and 8, establish a total of 6, 5
and 7 reference relationships, respectively. The presented TAFs for each one of these
schemas are different and the biggest difference occurs between the FAT of optimized
schema (438,318,990 daily accesses) and the FAT of real application schema
(374,686,778,731,500 daily accesses).

Although a small difference in the number of reference relationships exists, the
nesting structures presented by these schemas produce an access volume differentiated
for the considered operations. The optimized schema presents a nesting for the Payment
block different than the conventional logical schema. It occurs because, in the optimized
schema, Rule 1 was applied to convert the union type involving the subclass Payment.
This rule was considered because the GAF of the superclasses is lower than the assumed
MAF. Besides, for the relationship commitment, the associative entity Sale was nested
on the Order block content, as the GAF of the Order entity (277,100) is higher than the
Payment entity (11,220). Due to this, the process that converts relationship types had
chosen Order as a block to represent the relationship type, and Rule 4 was processed.
This nesting structure allows that only 900 accesses are necessary to achieve the
instances of payments of 900 orders through the operation O2. For the same operation,
conventional and real application schemas generate 1,002,555,900 accesses to retrieve
payments. This elevated number of accesses is due to the reference relationship
established between Order and Payment to represent the commitment relationship.
Giving also the nesting of the Payment block, the operation O4 generates a smaller
number of accesses in the optimized schema (20,940) with respect to other schemas
(11,495,995,260 accesses for conventional schema and 372,266,383,305,900 accesses for
real application schema).

In practice, the impact of these different logical structures is evaluated by measuring
the query processing time on the three schemas at MongoDB NoSQL document DB. The
results, as shown in Table IV, reveal that the optimized schema had spent times close to
the ones spent for the conventional schema for some operations. However, the cost to
perform O4 on conventional and real application schemas are notoriously higher because
it is necessary to retrieve Payment instances in the Order block through value joins by a
reference relationship. This result demonstrates the positive effect of avoiding the value
joins. The daily total accumulated execution of operations performed on NoSQL
documents demonstrates that the optimized schema produces a better response time. It
raises the relevance of considering the workload information.

The queries response time presented in Table IV also confirms the difference in the
processing time generated by queries executed over the optimized schema in comparison
to the others logical schemas. Note that the sum of the single execution of all queries for
conventional schema (5,818 seconds) has a value in seconds close to the sum of the single
execution of all queries for optimized schema (4,667 seconds). As for the real application
logical schema, the total value of single executions is higher than the other schemas,
totalizing 6,495 seconds. The sum of accumulated executions also is superior for real
application schema, totalizing 3.382,900 seconds. Note that the proportion between the
total accesses of each operation presented in Table II and the accumulated execution of
an operation presented in Table IV is not always equivalent. We argue that these

IJWIS
12,4

414

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
1:

37
 0

1 
N

ov
em

be
r 

20
16

 (
PT

)



differences may be caused by variations in the size of the considered documents and
specific features of the used instances for each document in each query execution. These
and other variations are not analyzed in this paper because the purpose of the
experimental evaluation on MongoDB was to confirm the difference of the access
volume generated by the three schemas according to Table II.

Although the considered operations in this case study do not represent a large
volume of DB daily access, it could be seen by the performance comparison that the
estimated DB workload information guides the conversion process to generate
optimized NoSQL document schemas. The spent time of operations over the optimized
schema is considerably less than the produced time by the other schemas. Note that the
gain generated by the application of the optimized conversion is dependent of possible
optimizations to be applied on the conceptual schema and provided workload
information. The existence of several options for the nesting of concepts of the schema
and the indicative that certain nestings have greater impact on operations provide
information that allow to perform optimizations on a NoSQL document schema.

Finally, is important to observe that the conventional schema also provides a good
logical design strategy for NoSQL document DBs, and it is an option to be adopted in
cases where the estimate workload information is not available, often by the difficulty of
an application in predict such a workload.

5. Conclusion
Indeed, NoSQL DBs are suitable solutions for Big Data management, specially in
environments as the Web and the cloud. An associated data model allows the definition
of better strategies for persistence and manipulation of data in the target DB. In this
context, the aggregate-based logical representation, a related work tendency, provides
support to scalability and consistency, as they are a natural unit for sharding and atomic
manipulation of data in distributed environments.

This paper raises from this motivation and presents an approach for logical design of
NoSQL document DB schemas based on a conceptual schema. We generate compact and
redundancy-free schemas and define appropriate representations in the NoSQL
document logical model. NoSQL document DBs are a suitable category for Web and
cloud applications that provide dynamic queries execution, horizontal scalability and
high availability. In our proposal, the estimated volume of data and workload
information can be considered to generate optimized NoSQL document structures in
terms of the main application operations and their frequency.

We evaluate our approach through a case study with an experimental evaluation in
the e-commerce application domain. The results had shown that our workload-based
conversion process improves query performance on NoSQL documents by reducing the
number of DB accesses.

As future work, we intend to evaluate the application of our process over a larger
volume of data, in a distributed environment, over another Big Data application domain,
as well as to consider the NoSQL DB physical design, including the definition of indexes.

We also consider the comparison of our approach with a baseline to evaluate
application performance for the logical schemas generated by each one of them. It
depends on the availability of detailed conversion algorithms by related work.

Finally, we consider the possibility of extending the approach to reduce the number
of reference relationships in a NoSQL document logical schema by analyzing the access

415

NoSQL
document
database

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
1:

37
 0

1 
N

ov
em

be
r 

20
16

 (
PT

)



type (query or update) of the estimated DB operations. This new approach would allow
data redundancy in some parts of the logical schema if the involved concepts are very
frequently accessed by query operations. .

Notes
1. A lightweight data-interchange format (json.org).

2. A document-oriented database (mongodb.org).

3. A single run refers to the average of five runs of each query operation on each schema.

References
Atzeni, P., Jensen, C.S., Osri, G., Ram, S., Tanca, L. and Torlone, R. (2013), “The relational model is

dead, SQL is dead, and I don’t feel so good myself”, SIGMOD Record, Vol. 42 No. 2, pp. 64-68.
Batini, C., Ceri, S. and Navathe, S.B. (1992), Conceptual Database Design: An Entity-Relationship

Approach, Benjamin/Cummings, San Francisco, CA.
Bugiotti, F., Cabibbo, L., Atzeni, P. and Torlone, R. (2014), “Database design for NoSQL systems”,

ER 2014, pp. 223-231.
Cattell, R. (2010), “Scalable SQL and NoSQL data stores”, SIGMOD Record, Vol. 39 No. 4, pp. 12-27.
Chebotko, A., Kashlev, A. and Lu, S. (2015), “A big data modeling methodology for apache

Cassandra”, International Congress On Big Data, IEEE, pp. 238-245.
Elmasri, R. and Navathe, S.B. (2011), Fundamentals of Database Systems, Addison-Wesley,

Boston, MA.
Evans, E. (2003), Domain-Driven Design: Tackling Complexity in the Heart of Software,

Addison-Wesley Professional, Boston, MA.
Jboss Teiid (2015), “MongoDB translator”, available at: https://docs.jboss.org/author/display/teiid

812final/MongoDB�Translator (accessed 3 September 2015).
Jovanovic, V. and Benson, S. (2013), “Aggregate data modeling style”, SAIS 2013, pp. 70-75.
Kaur, K. and Rani, R. (2013), “Modeling and querying data in NoSQL databases”, International

Conference on Big Data, IEEE, Silicon Valley, CA, pp. 1-7.
Lima, C. and Mello, R.S. (2015), “A workload-driven logical design approach for NoSQL document

databases”, Proceedings of the 17th International Conference on Information Integration
and Web-based Applications & Services (iiWAS ’15), ACM, New York, NY.

McMurtry, D., Oakley, A., Sharp, J., Subramanian, M. and Zhang, H. (2013), “Data access for
highly-scalable solutions: using SQL, NoSQL, and polyglot persistence”, Microsoft,
available at: www.microsoft.com/en-us/download/details.aspx?id�40327 (accessed 5 June
2014).

Mok, W.Y. and Embley, D.W. (2006), “Generating compact redundancy-free xml documents from
conceptual-model hypergraphs”, IEEE Transactions on Knowledge and Data Engineering,
Vol. 18 No. 8, pp. 1082-1096.

MongoDB (2015), “RDBMS to MongoDB migration guide”, available at: www.mongodb.com/
collateral/rdbms-mongodb-migration-guide (accessed 3 September 2015).

Sadalage, P.J. and Fowler, M.J. (2013), NoSQL Distilled, Addison-Wesley, Upper Saddle River, NJ.
Schroeder, R. and Mello, R.S. (2008), “Improving query performance on XML documents: a

workload-driven design approach”, DocEng, Vol. 2008, pp. 177-186.
Schroeder, R., Duarte, D. and Mello, R.S. (2011), “A workload-aware approach for optimizing the

XML schema design trade-off”, iiWAS 2011, ACM, New York, NY, pp. 12-19.

IJWIS
12,4

416

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
1:

37
 0

1 
N

ov
em

be
r 

20
16

 (
PT

)

http://json.org
http://mongodb.org
https://docs.jboss.org/author/display/teiid812final/MongoDB+Translator
https://docs.jboss.org/author/display/teiid812final/MongoDB+Translator
http://www.microsoft.com/en-us/download/details.aspx?id=40327
http://www.mongodb.com/collateral/rdbms-mongodb-migration-guide
http://www.mongodb.com/collateral/rdbms-mongodb-migration-guide
http://www.emeraldinsight.com/action/showLinks?crossref=10.1109%2FBigDataCongress.2015.41
http://www.emeraldinsight.com/action/showLinks?crossref=10.1145%2F2095536.2095542
http://www.emeraldinsight.com/action/showLinks?crossref=10.1145%2F1978915.1978919&isi=000291106400002
http://www.emeraldinsight.com/action/showLinks?crossref=10.1145%2F2503792.2503808&isi=000321322500009
http://www.emeraldinsight.com/action/showLinks?crossref=10.1145%2F1410140.1410176
http://www.emeraldinsight.com/action/showLinks?crossref=10.1109%2FTKDE.2006.125&isi=000238297300007
http://www.emeraldinsight.com/action/showLinks?crossref=10.1109%2FBigData.2013.6691765
http://www.emeraldinsight.com/action/showLinks?crossref=10.1109%2FBigData.2013.6691765


About the authors
Cláudio Lima is an IT Analyst at the Federal University of Santa Catarina (UFSC), Brazil. He
received his BS degree in 2008 from the Federal University of Santa Catarina (UFSC) and MSc in
2016 from the Federal University of Santa Catarina (UFSC), both in Computer Science. He received
a specialization degree in 2012 from the University of Southern Santa Catarina (UNISUL) in
Software Projects Engineering. His main research interests are data modeling, Web data
management and cloud databases. He is a member of UFSC Research Group on Databases and
author of papers in national and international conferences. Cláudio Lima is the corresponding
author and can be contacted at: claudio.lima@ufsc.br

Ronaldo Santos Mello is a PhD Professor at the Federal University of Santa Catarina (UFSC),
Brazil. He held a post-doc grant as a Visiting Professor in the University of Utah, Salt Lake City,
USA, in 2009. His research interests are concentrated in the database area, with a current focus on
data integration, Web and cloud data management, non-conventional data modeling and data
integrity constraints. Dr Mello is the head of UFSC Research Group on Databases, having
publications in national and international conferences and journals. He also acts as an external
reviewer of national and international conferences and journals.

For instructions on how to order reprints of this article, please visit our website:
www.emeraldgrouppublishing.com/licensing/reprints.htm
Or contact us for further details: permissions@emeraldinsight.com

417

NoSQL
document
database

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
1:

37
 0

1 
N

ov
em

be
r 

20
16

 (
PT

)

mailto:claudio.lima@ufsc.br
mailto:permissions@emeraldinsight.com

	On proposing and evaluating a NoSQL document database logical approach
	1. Introduction
	2. Related work
	3. The conversion process
	4. Case study
	5. Conclusion
	References


