
International Journal of Web Information Systems
Distributed mashups: a collaborative approach to data integration
Tuan-Dat Trinh Peter Wetz Ba-Lam Do Elmar Kiesling A Min Tjoa

Article information:
To cite this document:
Tuan-Dat Trinh Peter Wetz Ba-Lam Do Elmar Kiesling A Min Tjoa , (2015),"Distributed mashups: a
collaborative approach to data integration", International Journal of Web Information Systems, Vol. 11
Iss 3 pp. 370 - 396
Permanent link to this document:
http://dx.doi.org/10.1108/IJWIS-04-2015-0018

Downloaded on: 01 November 2016, At: 22:54 (PT)
References: this document contains references to 36 other documents.
To copy this document: permissions@emeraldinsight.com
The fulltext of this document has been downloaded 470 times since 2015*

Users who downloaded this article also downloaded:
(2015),"A business-driven framework for automatic information extraction in professional media
production", International Journal of Web Information Systems, Vol. 11 Iss 3 pp. 397-414 http://
dx.doi.org/10.1108/IJWIS-03-2015-0005
(2015),"Raising resilience of web service dependent repository systems", International Journal of
Web Information Systems, Vol. 11 Iss 3 pp. 327-346 http://dx.doi.org/10.1108/IJWIS-04-2015-0011

Access to this document was granted through an Emerald subscription provided by All users group

For Authors
If you would like to write for this, or any other Emerald publication, then please use our Emerald
for Authors service information about how to choose which publication to write for and submission
guidelines are available for all. Please visit www.emeraldinsight.com/authors for more information.

About Emerald www.emeraldinsight.com
Emerald is a global publisher linking research and practice to the benefit of society. The company
manages a portfolio of more than 290 journals and over 2,350 books and book series volumes, as
well as providing an extensive range of online products and additional customer resources and
services.

Emerald is both COUNTER 4 and TRANSFER compliant. The organization is a partner of the
Committee on Publication Ethics (COPE) and also works with Portico and the LOCKSS initiative for
digital archive preservation.

*Related content and download information correct at time of download.

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
2:

54
 0

1 
N

ov
em

be
r 

20
16

 (
PT

)

http://dx.doi.org/10.1108/IJWIS-04-2015-0018


Distributed mashups:
a collaborative approach to data

integration
Tuan-Dat Trinh, Peter Wetz and Ba-Lam Do
Vienna University of Technology, Vienna, Austria

Elmar Kiesling
Information and Software Engineering Group,

Vienna University of Technology, Vienna, Austria, and

A. Min Tjoa
Vienna University of Technology, Vienna, Austria

Abstract
Purpose – This paper aims to present a collaborative mashup platform for dynamic integration of
heterogeneous data sources. The platform encourages sharing and connects data publishers,
integrators, developers and end users.
Design/methodology/approach – This approach is based on a visual programming paradigm and
follows three fundamental principles: openness, connectedness and reusability. The platform is based
on semantic Web technologies and the concept of linked widgets, i.e. semantic modules that allow users
to access, integrate and visualize data in a creative and collaborative manner.
Findings – The platform can effectively tackle data integration challenges by allowing users to
explore relevant data sources for different contexts, tackling the data heterogeneity problem and
facilitating automatic data integration, easing data integration via simple operations and fostering
reusability of data processing tasks.
Research limitations/implications – This research has focused exclusively on conceptual and
technical aspects so far; a comprehensive user study, extensive performance and scalability testing is
left for future work.
Originality/value – A key contribution of this paper is the concept of distributed mashups. These ad
hoc data integration applications allow users to perform data processing tasks in a collaborative and
distributed manner simultaneously on multiple devices. This approach requires no server
infrastructure to upload data, but rather allows each user to keep control over their data and expose only
relevant subsets. Distributed mashups can run persistently in the background and are hence ideal for
real-time data monitoring or data streaming use cases. Furthermore, we introduce automatic mashup
composition as an innovative approach based on an explicit semantic widget model.

Keywords Advanced web applications, Web data integration, Web semantics architectures,
Applications and standards, Workflow architectures in support of collaboration process

Paper type Research paper

1. Introduction
Data, due to their abundant availability, play an increasingly important role in everyday
life. Collecting relevant data from various sources and extracting useful information
from it, however, has not become easier, as the quantity of data made available by

The current issue and full text archive of this journal is available on Emerald Insight at:
www.emeraldinsight.com/1744-0084.htm

IJWIS
11,3

370

Received 23 April 2015
Revised 20 May 2015
Accepted 20 May 2015

International Journal of Web
Information Systems
Vol. 11 No. 3, 2015
pp. 370-396
© Emerald Group Publishing Limited
1744-0084
DOI 10.1108/IJWIS-04-2015-0018

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
2:

54
 0

1 
N

ov
em

be
r 

20
16

 (
PT

)

http://dx.doi.org/10.1108/IJWIS-04-2015-0018


organizations and governments has grown. Open data – which cover a wide range of
topics, e.g. economy, currency, geography, entertainment, weather, transportation, etc. –
can be used for various purposes.

For users to benefit from the available data’s value, however, we need to deal with a
number of data integration challenges:

• Data heterogeneity makes it difficult to integrate different kinds of data in various
formats (e.g. CSV, XML, JSON, RDF, JSON-LD) spread among various storage
infrastructures (e.g. databases, files, cloud, personal computers, mobile phones).

• Tedious manual data integration processes that users perform to collect, clean,
enrich, integrate and visualize data are typically neither reproducible nor reusable.

• Lack of support for exploration, as users often rely on available domain-specific
applications that do not allow for the integration of arbitrary data sources.

• Lack of means for the identification of relevant data sources and meaningful ways
to integrate them.

Furthermore, many data integration and analysis tasks are collaborative by nature.
They often require the sharing of data held privately by various stakeholders, a – often
geographically dispersed – team with a broad skill set, and the agreement on a common
interpretation to arrive at relevant insights. Conceiving data exploration, integration,
and analysis as a collaborative process hence creates strong potential for both simple ad
hoc data sharing and sophisticated data-driven decision support.

In this paper, we introduce a mashup-based collaborative data integration platform
that provides a technical infrastructure for such data-centric cooperative work. The
paper is an extended version of work published by Trinh et al. (2014). We extend our
previous work by introducing the concepts of collaborative and distributed mashups.
Following an end-user visual programming paradigm, we develop a widget-based
mashup approach that lets users create data-centric applications easily out of simple
building blocks. With a limited upfront learning time investment (Nardi, 1993), users
can collaboratively combine available widgets and build ad hoc applications that
integrate data from various sources.

Another innovative aspect of our work is that widgets can be executed in distributed
environments. Mashups can be composed of both client and server widgets. Client
widgets are executed in the local context of a Web browser environment. Server widgets
can be written in various programming languages such as C��, Objective-C, C#, PHP,
Python, JavaScript and Java. They can be executed as native applications on various
platforms, including personal computers, cloud servers, mobile devices or embedded
systems. Server widgets may be used to contribute data from the node they are deployed
on to one or multiple mashups or to use the computing resources of the node to
persistently process data in the background. This architecture allows stakeholders to
expose their private data selectively by contributing server widgets as functional black
boxes. Only the owner of each server widget can control its parameters and hence the
output it provides. This approach facilitates efficient ad hoc data integration involving
multiple stakeholders that contribute data and computing resources.

Consider, for example, the simple task of scheduling a meeting between users whose
calendars are spread among computers, mobile phones, Cloud services, etc. A
widget-based collaborative workflow would allow participants to selectively contribute

371

Distributed
mashups

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
2:

54
 0

1 
N

ov
em

be
r 

20
16

 (
PT

)



their calendar using server widgets such as locally executed Apps or Cloud-based
calendar widgets. They could then simply merge their calendar widgets in a
collaborative mashup to identify available timeslots.

The platform implementation follows three fundamental principles: openness,
connectedness and reusability. Openness means that developers can implement and
directly add their widgets to the platform. Connectedness implies that users can
integrate widgets from various developers and users by connecting them in a mashup.
Finally, we foster reusability by allowing users to share and adapt widgets and mashups.

A prototype implementation of the platform is available at http://linkedwidgets.org.
It provides:

• a tool that supports developers in creating and annotating widgets;
• a tool for users to locate relevant widgets; and
• a drag-and-drop collaborative mashup editor.

We make use of semantic Web technologies to model-linked widgets. This allows us to
leverage their internal model to automatically identify opportunities for the integration
of data sources. Furthermore, from a specified list of data sources and related available
linked widgets, we can automatically integrate the data.

The remainder of this paper is organized as follows. Section 2 provides an overview
of the platform architecture. Section 3 introduces linked widgets and their semantic
model, which constitute the basic elements of the platform; Section 4 outlines how server
and client widgets are linked and interact; Section 5 illustrates the applicability by
means of simple use cases and Section 6 discusses our prototype implementation.
Finally, we discuss related work, draw conclusions and outline future research
directions in Sections 7 and 8, respectively.

2. Architecture
Figure 1 provides an overview of the platform architecture. It serves three major groups
of stakeholders: developers, mashup creators and mashup users. The platform can
integrate raw data in CSV, XML, JSON or HTML formats; furthermore, data can be
collected from databases, cloud/API services or the linked open data (LOD) cloud.

Linked widgets constitute the basic elements of the platform; they extend the concept
of standard Web widgets[1] with a semantic model. This semantic model, which follows
the linked data principles (Bizer et al., 2009), is used to annotate the input and output of
widgets as well as their relations among each other.

To be able to connect widgets with each other, they have input and/or output
terminals. Connecting an input terminal of a widget with an output terminal of another
means the former widget accepts and processes the output data of the latter as its input
data. We use JSON-LD[2] for data transmission between widgets. Linked widgets are our
key concept to tackle the challenge of data heterogeneity. They standardize data and lift
arbitrary data sources to a semantic level.

Depending on their execution mode, widgets may be classified as client or server
widgets. From a functional point of view, we can furthermore categorize widgets as
follows:

IJWIS
11,3

372

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
2:

54
 0

1 
N

ov
em

be
r 

20
16

 (
PT

)

http://linkedwidgets.%20org.


• data widgets collect data from one or multiple data sources;
• processing widgets process and combine data in different ways through

enrichment, transformation and aggregation;
• visualization widgets finally display results.

Accordingly, widgets are organized into three layers, i.e. a data layer, a business logic
layer and a presentation layer. Each mashup consists of at least one data widget and a
single or multiple visualization widgets; processing widgets are optional. Widgets are
reusable and can be parametrized per mashup.

Developers can contribute client widgets to the platform; run server widgets on their
own infrastructure; or provide them for deployment on personal computers, mobile
phones or other devices. They use the widget annotator tool to semantically annotate the
widget’s input and output models and to provide provenance and license information.
The annotation is stored as linked data and is used by several modules of the platform.

The core of the data integration architecture is a Web-based collaborative mashup
editor. Multiple mashup creators (or data integrators) and mashup users can compose

Figure 1.
Mashup platform

architecture

373

Distributed
mashups

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
2:

54
 0

1 
N

ov
em

be
r 

20
16

 (
PT

)

http://www.emeraldinsight.com/action/showImage?doi=10.1108/IJWIS-04-2015-0018&iName=master.img-000.jpg&w=311&h=326


mashups simultaneously and collaboratively. This also allows users to create mashups
that integrate private data with publicly available data sources.

Using semantic widget search, mashup creators locate and group available widgets of
different developers into collections that are relevant for a particular application domain.
They then connect those widgets and build mashups. Because combining widgets does
not require any particular technical skills, average users can become mashup creators.
Moreover, as mashup users, they can adapt widget parameters of existing mashups to
their needs before executing them.

We classify mashups into three types:
(1) local mashups that consist exclusively of client widgets;
(2) hybrid mashups that make use of both client and server widgets; and
(3) distributed mashups that consist entirely of server widgets, except for the final

visualization widget(s).

A local mashup does not use any resources of the platform server because it is executed
completely inside the client browser. This implies that intermediate and final data are
lost once the Web browser is closed. In contrast, widgets in distributed mashups are
executed remotely as persistent applications; their output can hence be accessed at any
time. Hybrid and distributed mashups can be executed in a distributed manner, which
may involve multiple nodes that each execute individual server widgets. This is highly
useful, for instance, for streaming data use cases where data must be collected and
processed continuously.

The mashup execution coordinator is a critical component that enables widgets to
cooperate. It links client and server widgets that are executed in different environments,
e.g. browsers, Android, iOS smart phones, personal computers or Web servers. For each
type of mashup, the coordination mechanisms differ to conserve computing resources.
Details of the protocols and mechanisms are discussed in Section 4.

When mashup creators build a mashup, a common task is to connect an input
terminal of a widget to an output terminal of another widget. To enforce valid
connections (i.e. ensure that the output terminal can provide all data required at the
input terminal), creators can use the terminal matching module; the module validates
connections using the semantic model. It helps creators to speed up the mashup creation
process.

The automatic mashup composition module is a more advanced approach in that it
can automatically compose a complete mashup from a widget or a complete branch that
consumes/provides data for a specific output/input terminal. “Complete” in this context
means that all terminals must be wired, i.e. have a valid connection.

Mashup users can save and publish mashups on their Web site by means of the
mashup publication module. A published mashup shows the final visualization widget
only and hides all previous data processing steps from the viewer. The mashup itself can
also be saved as a new data widget using this module. This encourages users’ creativity
by allowing them to reuse mashups without the need for programming skills.

3. Linked widgets
A linked widget is similar to a Web service, in that it has multiple inputs and a single
output. Important distinctions, however, include that:

IJWIS
11,3

374

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
2:

54
 0

1 
N

ov
em

be
r 

20
16

 (
PT

)



• widgets are intended to be used by end users, whereas Web services are intended
for developers;

• widgets have a user interface and are hence easier to handle than Web services;
• widgets are more versatile than Web services, e.g. they can visualize data;
• a valid combination of widgets can collaborate automatically by default, whereas

Web service composition requires more technical work, e.g. conformation of
parameters;

• connected widget can interact with each other both ways, Web service
communication is always sequential and unidirectional;

• widgets can be deployed on various devices and in various environments,
whereas Web services typically run on a server; and finally

• linked widgets are always associated with a semantic model.

Developers can implement linked widgets as either client or server widgets. The
following two sub-sections provide technical details on each of those types.

3.1 Client widgets
Most of the widgets currently implemented are client widgets. They are executed on the
client side, i.e. they use client memory and processor resources; data are collected and
processed on-the-fly in the browser. The server hosting the client widgets is not
necessarily the platform server, i.e. a mashup may combine widgets hosted on various
servers. This makes the platform flexible, allowing external parties to host widgets on
their own infrastructure and using their technological basis.

Each client widget consists of:
• a semantic model;
• an execution function;
• input and/or output terminals;
• a core widget interface which is automatically generated for users to control the

widget, e.g. to run, cache, view output data, resize or destroy the widget
(cf. Figure 2); and

• its own user interface programmed by developers.

The execution function transforms the received input into an output according to the
parameters specified in the interface.

To implement a client widget, developers create a user interface in an arbitrary Web
language and then follow three steps:

(1) inject a JavaScript file[3] to facilitate cooperation with other widgets;
(2) define the input and/or output configuration; and
(3) implement a JavaScript function [run(data)] that is invoked when the widget is

executed in a mashup.

If a widget has no input, then the corresponding data object is null. Otherwise, upon
execution of a widget, we collect output data from all relevant widgets to build the data
object and pass it to the run.

375

Distributed
mashups

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
2:

54
 0

1 
N

ov
em

be
r 

20
16

 (
PT

)



A client widget is instantiated when users drag and drop a widget item from the widget
list into the mashup editor. We associate each widget with an identifier to differentiate
widgets used in a mashup. A widget item consists of the widget name, and the URI of the
widget. If the widget is already annotated and published, from its URI, we can retrieve
its URL; and later, to execute advanced functions, such as terminal matching and
automatic mashup composition, we use the URI to load the widgets’ model and other
metadata. On the other hand, if the widget is still in the developing/testing stage, we
simply use its URL as follows: we first create the core widget interface with an HTML
iframe inside. After that, we use the widget URL to load its source code into the iframe
and read the input/output configuration to create the corresponding input/output
terminals. At this stage, the platform displays a complete widget interface as shown in
Figure 2. We decided to decouple input/output configuration from the widget annotation
to simplify the widget developing, testing and maintenance processes. It allows a widget
to operate even before it is semantically annotated; however, users cannot use advanced
functions as long as semantic annotations are not complete.

3.2 Server widgets
Client widgets are easy to develop and necessary for a lightweight and scalable mashup
platform. However, their capabilities are restricted by the Web browser execution
environment. A Web browser is inadequate for hosting mashups that process data from
embedded devices or subsystems that are not yet available in the web. Furthermore, it
also cannot deal with heavy data processing tasks. Finally, as soon as a user closes the
browser, the mashup output data can no longer be accessed.

To overcome these limitations, we designed server widgets to shift the execution
function from the browser environment to standalone application environments. These
server widgets consist of two main parts:

(1) a user Web interface, which is the same as for client widgets, but without the run
function; and

(2) a remote executor, is the client interface for users to set up the parameter and
control the remote executor.

Figure 2.
Client widget
components

IJWIS
11,3

376

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
2:

54
 0

1 
N

ov
em

be
r 

20
16

 (
PT

)

http://www.emeraldinsight.com/action/showImage?doi=10.1108/IJWIS-04-2015-0018&iName=master.img-001.jpg&w=343&h=173


When users drag and drop a server widget into the mashup editor panel, a client user
interface of the server widget is instantiated. At the same time, we set up a
connection channel between this client interface and the remote executor of the
server widget. It is therefore necessary to keep the remote executor running
persistently and reachable via the Internet. For each server widget, we have only a
single remote executor, but potentially, many client user interfaces that are
instantiated for each instance of the widget that is created for various mashups.
When an instance of a server widget is executed, the client interface sends its
parameters to the remote executor, which, in turn, creates a widget job to process the
data received from the predecessor widgets. Details of the communication protocol
between client and server widgets are covered in Section 4.

Server widgets introduce the concept of distributed mashups – a type of ad hoc
application whose processing tasks are executed in a distributed manner on multiple
devices. Such mashups are particularly useful for streaming or real-time data
processing applications. Users can close the browser at any time while the backend
performs data collection and processing tasks. This distinguishes our platform from
previous approaches. Server widgets hence provide various benefits:

• They can act as a data connector to obtain and provide data on different services,
devices, or systems for a mashup.

• They introduces collaborative use cases where each participant contributes data
or processing widgets to a shared mashup.

• Because their computing tasks are performed within the hosting devices, similar
to client widgets, they reduce the platform server load.

• They can run persistently in the background to collect or process data for data
monitoring or data streaming applications.

• Server widgets deployed on powerful servers are capable of processing large
volumes of data over extended time periods.

There are two sub-types of server widgets, i.e. server data widgets and server processing
widgets; visualization widgets are always client widgets. Although we can deploy (server)
processing widgets on any kind of device, servers are the most suitable targets, as they
need to be consistently online; this also allows it to offload computationally intense data
processing tasks from mobile devices. Mobile devices, however, are ideal environments
for (server) data widgets. They can, for instance, collect and provide data from mobile
devices for a mashup. For example, smartphones can act as sensors that periodically
provide GPS data, foot steps, temperature data etc.

To create server widgets, developers first define the client interface in a similar
manner to the client widgets implementation. Furthermore, they need to build the remote
executor component. To this end, they download the widget library utilities for their
preferred programming language, and implement an abstract method to define the
widget job, i.e. to transform input data into output data. The widget cooperation protocol
is already implemented and included in the utilities.

3.3 Lined widget model
Client- and server-linked widgets have different execution environments, but they share
the same model. Due to similarities with Web services, we initially considered

377

Distributed
mashups

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
2:

54
 0

1 
N

ov
em

be
r 

20
16

 (
PT

)



describing linked widgets semantically using SAWSDL Kopecky et al. (2007), OWL-S[4]
or WSMO[5]. These languages are well-suited for the formal specification of interfaces,
such as our linked widgets’ input and output terminals. They do not, however, allow
establishing a well-defined semantic relation between input and output data. As a
precondition for advanced widget exploration and automatic mashup composition
algorithms, an explicit semantic link between input and output terminals is highly
beneficial. To this end, several formal annotation methods using a graph-based model
have been developed in the literature (Taheriyan et al., 2012, 2013; Verborgh et al., 2011).
To specify the internal and external semantic model of linked widgets, we adopt and
adapt the Karma model (Taheriyan et al., 2013). In addition to the input and output
specification, as well as their relation, the resulting linked widget model also includes
provenance and license information. All widget models are published as LOD and can be
accessed using the graph http://linkedwidgets.org of the http://ogd.ifs.tuwien.ac.at/
sparql SPARQL endpoint

Conceptually, both the input and the output data models are trees. The root and
intermediate nodes are single objects or arrays of objects, whose dimension is specified
by the lw:hasArrayDimension property. Each object can have multiple properties. Data
properties have leaf nodes with primitive values; object properties consist of sub-trees.
To present relations between two arbitrary nodes in the input and output trees, we reuse
the SWRL[6] vocabulary. We associate the input and output terminals with descriptions
that represent their full tree structures in JSON.

Figure 3 illustrates the model of the POI Search widget that will be used in our local
mashup example (Section 5.1). The widget takes an array of arbitrary objects containing
the wgs84:location property as input. Its domain is the Point class with two literal
properties, i.e. lat and long. The widget output is an array of GeoNames[7] features
satisfying the distance filter specified in the POI Search widget.

Figure 3.
Semantic model of
the POI Search
widget

IJWIS
11,3

378

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
2:

54
 0

1 
N

ov
em

be
r 

20
16

 (
PT

)

http://linkedwidgets.org
http://ogd.ifs.tuwien.ac.at/sparql%20SPARQL%20endpoint
http://ogd.ifs.tuwien.ac.at/sparql%20SPARQL%20endpoint
http://www.emeraldinsight.com/action/showImage?doi=10.1108/IJWIS-04-2015-0018&iName=master.img-002.jpg&w=343&h=215


To specify that input/output is an array of objects, we use the literal property
hasArrayDimension (0: single element; n � 0: n-dimensional array). Because the input of
POI Search is an “arbitrary” object, we apply the owl:Thing class to represent it in the
data model.

The point, location, lat and long terms are available in different vocabularies.
However, due to its wide distribution we chose wgs84. The widget annotator module
should interactively recommends frequently used terms of the most popular
vocabularies to developers. This eases the annotation process and fosters consistency
by diminishing the use of different terms to describe the same concepts.

Because we explicitly model the geo:nearby relation between the two instances owl:
thing and geo:feature (Figure 3), we know that the output feature is nearby the input
location. If we had used SAWSDL, OWL-S or WSMO, we would not have been able to
specify this input-output relation and hence could not distinguish between this and
other possible relations between two locations.

4. Mashup communication protocol
This section discusses the communication protocol between widgets for the three types
of mashups, i.e. local, hybrid and distributed mashups. The protocol is designed to
facilitate efficient communication between independently developed widgets executed
on various devices while minimizing platform server load.

4.1 Local protocol
Local mashups consist entirely of locally executed client widgets that communicate
entirely within the client’s Web browser. Technically, each client widget is an HTML
iframe that can trigger events. Each event is associated with messages that are
consumed by listeners registered by other iframes. As an example for how the protocol
facilitates communication at runtime, consider a mashup with three widgets A ¡ B ¡
C. Typically, when a user triggers an action to run a widget, e.g. widget C, this action
requires all preceding widgets to run first. Because widget C requires output from
widget B, which in turn, requires output from widget A, widgets A and B need to run
first. Figure 4 shows the messages transferred between the coordinator and the widgets.
This involves the following types of messages:

• requestToRun messages inform the coordinator that a widget has to be executed
in order to deliver output;

• requestOutput messages are passed from the coordinator to widgets to request
their output; and

Figure 4.
Local mashup

communication
protocol

379

Distributed
mashups

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
2:

54
 0

1 
N

ov
em

be
r 

20
16

 (
PT

)

http://www.emeraldinsight.com/action/showImage?doi=10.1108/IJWIS-04-2015-0018&iName=master.img-003.jpg&w=263&h=99


• setInput messages supply the input for a widget, and (iv) returnOutput messages
submit a widget’s output to the coordinator.

4.2 Remote protocol
To support distributed mashups, which consist of a local visualization widget and a
number of remote widgets that may be distributed among nodes, a remote protocol is
necessary.

For the remote mashup communication protocol, we use the publish/sub-scribe
model and a coordination server. To explain the protocol, consider a sample mashup
with four widgets (cf. Figure 5):

(1) S1, a server data widget, which runs on a personal computer to get data from a
file.

(2) S2, another server data widget, which runs on an Android phone to obtain its
data, e.g. call logs.

(3) S3, a server processing widget, which runs on a Web server.
(4) C1, a client visualization widget.

Figure 5.
Remote mashup
communication
protocol

IJWIS
11,3

380

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
2:

54
 0

1 
N

ov
em

be
r 

20
16

 (
PT

)

http://www.emeraldinsight.com/action/showImage?doi=10.1108/IJWIS-04-2015-0018&iName=master.img-004.jpg&w=343&h=312


To differentiate multiple instances of a server widget used in multiple mashups, we
associate each mashup with a universally unique identifier (UUID), e.g. id1 in our
example. As soon as a user triggers the execution of a mashup, the platform collects the
parameters for all server widgets and forwards them to the coordinator
(Step 1 in Figure 5). These parameters are:

• the list of URIs of widgets used;
• the configuration of the mashup, i.e. all connections between an output terminal of

a widget and an input terminal of another widget; and
• the parameters set by the user in the widget user interfaces (as parameter; value

pairs).

Next, the coordinator sends run requests to the remote executors of S1, S2 and S3 (Step 2).
Details on these executors are provided in Section 3.2. Each request contains widget
parameters and an identifier of the event the widget should subscribe to. Based on this
information, each executor can instantiate a widget job (Step 3). In our example, we have
three such jobs, i.e. S1

id1, S2
id1 and S3

id1, for the mashup identified by the UUID id1. Next,
S3

id1 needs to subscribe to the output event of S1
id1 and S2

id1 because S3 requests the output
data of S1 and S2 as its input data. Similarly, C1 subscribes to the output event of S3

id1

(Step 4).
Jobs S1

id1 and S2
id1 are executed immediately with the parameters sent from the

requests before because S1 and S2 do not need input data from any other widget (Step 5).
When these jobs are finished, they publish output events to the coordinator. The
coordinator then sends the output to the jobs that have subscribed to the respective
output events, i.e. from S1

id1 and S2
id1 to S3

id1 (Step 6). As soon as S3
id1 has received its two

inputs, it is executed and publishes an output event to the coordinator (Step 7). Finally,
because C1 has subscribed to this event, it receives and visualizes the final data in the
browser (Step 8).

This protocol ensures that a user can close the browser and reopen a mashup that is
being executed remotely. Upon reopening a distributed mashup, the client visualization
widget immediately requests and displays the current output data of its predecessor
server widget(s). Furthermore, the visualization widget listens for output events and
updates its display immediately whenever new data arrive.

4.3 Hybrid protocol
Hybrid mashups are an extension of distributed mashups. Hybrid mashups do not require
that all data and processing widgets are server widgets, i.e. client widgets can be used
anywhere in a hybrid mashup.

The communication protocol for hybrid mashups is similar to the remote protocol. If
the predecessor of a client widget is a server widget, it needs to subscribe to the output
data event of the server widget. If its successor is a server widget and when it returns
output data to the coordinator, the coordinator will publish an output event so that the
server widget can receive the output data.

5. Sample data integration use cases
In the following, we illustrate the use of local and hybrid mashups by means of two
simple example use cases.

381

Distributed
mashups

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
2:

54
 0

1 
N

ov
em

be
r 

20
16

 (
PT

)



5.1 Local mashups
The example depicted in Figure 6 illustrates how a mashup can inform everyday
decision-making. All widgets used are client widgets. Our goal is to find suitable
locations for running in a park under the condition that it should also possible to have a
swim nearby. In particular, in this example, we want to find a park in Vienna that is near
a swimming pool and provides good air quality and comfortable air temperature.

We start from a list of public swimming pools in Vienna – which can be retrieved
from Vienna Open Government Data[8] – and use the POI Search widget to retrieve
nearby parks via a SPARQL query to the Linked Geo Data server. At this point, we have
all parks that satisfy the condition of being near a swimming pool. Next, we add weather
forecasts from Wunderground[9], using the Weather Forecast and Weather Condition
widgets. We specify our preferred time period in the Weather Forecast widget and select
the weather conditions we prefer (e.g. temperature or air pressure) in the Weather
Condition widget. For each park in the input, this widget obtains measurements of the
nearest station (out of 30,000 Wunderground stations all over the world). We use the Air
Quality Filter widget[10] to get parks with good air quality only. We then add Flickr
images of the parks based on their location using the Flickr Geo Image widget.

Finally, we present the collected information in the Map Viewer visualization widget.
This widget leverages the semantics of the input to appropriately visualize the data.
Location input data with wgs84:lat and wgs84:long properties are displayed as pins on
the map. If the foaf:depiction property of an input is set, the respective images will be
shown in an information window. In particular, if the value of an input property is an
instance of the cube http://purl.org/linked-data/cube#DataSet class, then the Map
Viewer will automatically parse the data and visualize it in a chart. In the mashup, we
display charts of the weather forecast for each park. The validity of all connections
between widgets is enforced by the platform based on the underlying semantic model. In
this case, the mashup is valid because all widgets only require input as instances of
wgs84:Point with wgs84:lat and wgs84:long values.

5.2 Hybrid mashups
For the second example, situated in an enterprise context, consider the need to integrate
data from several Excel and Google spreadsheets. The typical process to achieve this
goal is to download all of them, copy, delete columns and create formulas to aggregate
the data. These tedious tasks may take a lot of time and have to repeated whenever the
source data changes.

A mashup example that accomplishes such a task collaboratively is illustrated in
Figure 7. It combines and visualizes sales data for a series of retail points of sale (e.g. ice
cream stores). We have two types of spreadsheets:

(1) a point of sale (POS) spreadsheet that contains their respective ID, name,
latitude, longitude, city, country; and

(2) three sales spreadsheets, each listing the number items per category sold per day
at that point of sale.

Whereas the point of sale spreadsheet is on Google Drive, the three sale spreadsheets of
POS A, B, C are stored on personal computers of the local branch manager, who updates
the data every day by adding new rows into the spreadsheet.

IJWIS
11,3

382

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
2:

54
 0

1 
N

ov
em

be
r 

20
16

 (
PT

)

http://purl.org/linked-data/cube#DataSet


Figure 6.
Local mashup

example for locating
a park

383

Distributed
mashups

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
2:

54
 0

1 
N

ov
em

be
r 

20
16

 (
PT

)

http://www.emeraldinsight.com/action/showImage?doi=10.1108/IJWIS-04-2015-0018&iName=master.img-005.jpg&w=239&h=511


To integrate the data, the branch and headquarter managers may collaboratively build
their single shared mashup using our Web-based mashup editor as follows. They first
use the Google Sheet widget to load the shop spreadsheet from Google Drive and convert
it into datasets that follow the W3C data cube vocabulary[11]. Next, each branch
manager contributes their respective Excel Sheet widget (which is a server widget) to
load and convert his sale data into a cube dataset. To this end, they install the Excel Sheet
server widget as a standalone application on their device; we hence have multiple remote
executors of this server widget. To differentiate between these respective deployments of
the server widget so that a client user interface can connect to its respective counterpart
(e.g. the client interface of POS A is connected to A’s Excel Sheet server widget), each
deployment is associated with a unique token. Figure 7 is the mashup as seen by point
of sale manager A; he has to enter the token of his Excel Sheet server widget’s
deployment into his client interface of the widget. Meanwhile, the tokens of other shops
are filled out by the respective branch managers. To prepare the data for visualization,
the datasets are merged in the Spread Sheet Merger widget, and passed through a Filter
and an Aggregation widget. The C3 Chart widget visualizes the final data in a chart.

The options inside the Filter and Aggregation widgets are generated automatically
based on the data. They can be manipulate by all collaborators concurrently. Their view
of the mashup is synchronized, i.e. changes immediately become visible to all
participants. By changing the automatically generated options inside the Filter and
Aggregation widgets, various analyses can be performed easily. For example,
collaborators can “compare all-time sales of all POS”; “compare sales of all POS in 2014”;
“compare sales of fruit, milk and chocolate items of POS A in 2014”; “compare aggregate
sales in different countries or cities” or “compare sales of fruit items in different cities in
2014” as shown in Figure 7.

This is a hybrid mashup where we use four server widgets (i.e. three Excel Sheet
widgets and a Spread Sheet Merger widget) and four client widgets. The data collecting

Figure 7.
A collaborative
mashup example for
sales data integration

IJWIS
11,3

384

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
2:

54
 0

1 
N

ov
em

be
r 

20
16

 (
PT

)

http://www.emeraldinsight.com/action/showImage?doi=10.1108/IJWIS-04-2015-0018&iName=master.img-006.jpg&w=343&h=210


tasks are performed on multiple devices. Because the Spread Sheet Merger widget is a
server widget, we can access its output data at any time. POS can easily be added to or
removed from the mashup.

6. Prototype implementation
6.1 Communication protocols
Local widget interaction: the client mashup coordinator is written in JavaScript and
executed locally. This implies that platform resources are only required to initiate
mashups, but are not used during mashup execution. A client widget can use third-party
services to collect and/or process data. This reduces server load and favors performance
and scalability.

Remote widget interaction: we have identified two major architectural options for
implementing the remote mashup protocol. The first is using Web services; the second
is to implement it on top of a WebSocket Vanessa et al. (2013) infrastructure. We will
discuss each of these options below.

If we follow the Web service approach, the coordinator is a collection of services that
server widgets use for communication. A remote executor that runs on a Web server can
provide an execution service and an output service. Therefore, we have a bidirectional
communication channel between the remote executor and the coordinator. Based on
that, the publish/subscribe model can be set up as follows: first, the coordinator calls the
execution service of S1 and the job S1

id1 is performed. When this job has been completed,
it sends the coordinator the token used to receive its output data. The coordinator, in
turn, calls the execution service of S3 and sends this token as a parameter to S3

id1. This job
uses the token to call the output service of S1

id1 to load the data. Data, hence, are
transferred between and processed inside the remote executors themselves. This
reduces the server load because the coordinator just calls the execution services. It does
not perform any data processing tasks, neither does it interact with the intermediate
widget output data.

However, the Web service-based approach is ill-suited for server widgets running in
environments such as mobile phones. We cannot deploy Web services on such devices.
This would result in unidirectional communication channels. To simulate bidirectional
connections and the publish/subscribe model, we would have to use polling or
long-polling solutions. However, this approach has unfavorable scaling characteristics
and generate large amounts of unnecessary network traffic when a large number of
server mashups are executed concurrently. Furthermore, the coordinator represents a
bottleneck in this scenario.

The second potential implementation approach is based on WebSockets.
WebSockets provide full-duplex communication channels over a single TCP connection.
Although the technology was conceived as a communication channel between Web
browsers and Web servers, they can be natively implemented in various programming
environments and on various devices.

Once a WebSocket connection is established, data frames can be sent back and forth
between the client and the server in full-duplex mode. This eases interaction between
clients (e.g. browsers) and servers. A server can send content to the browser and
allowing for messages to be passed back and forth while keeping the connection open.
As a result, we have a two-way communication channel and can easily set up the
protocol.

385

Distributed
mashups

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
2:

54
 0

1 
N

ov
em

be
r 

20
16

 (
PT

)



Following the WebSocket approach, the remote executors are essentially WebSocket
clients, and the coordinator is a WebSocket server. We use WAMP[12] to implement
these components. WAMP is an open standard WebSocket subprotocol that provides
two application messaging patterns, i.e. remote procedure calls and publish/subscribe. It
has client implementations for many programming language such as JavaScript, Java,
Python, Erlang, C��, C#, Objective-C (for iOS) or PHP. As a result, it allows to develop
server widgets for ubiquitous computing environments.

A potential disadvantage of this architecture is that remote executors cannot directly
transmit data to each other on their own. All data need to be passed through the WAMP
server. The coordinator therefore becomes the performance bottleneck of the platform.
To tackle this problem, we can deploy multiple WAMP servers and make use of
load-balancing methods (Bourke and Server Load Balancing, 2001). Furthermore, server
widgets that run on a Web server may return the token rather than the complete data to
the coordinator, which can then forward the token to subsequent widgets which may use
it to download the output data.

Overall, we opted for the WebSocket approach due to its advantages, which include:
• lower latency compared to traditional HTTP connections;
• lower amount of data transferred; and
• the wide range of supported languages, which provide the basis for ubiquitous

computing environments for server widgets.

6.2 Collaborative mashup editor
The mashup editor is a key element of the platform; it allows users to collaboratively
compose, publish and share their mashup applications. From a selected widget
collection placed at the left-hand side, they drag and drop a widget item into the editor to
create an instance of the widget. Users can then wire the input of a widget to the output
of another one and thus build up a data-processing flow.

Multiple users can collaboratively edit the same mashup. Each editing mashup is
assigned a UUID which a user can send to other people. This UUID can be used to access
and collaboratively create and edit the mashup. All operations such as adding/removing
a widget to/from the mashup, connecting two widgets, resizing a widget are propagated
and synchronized in all editors sharing the same UUID. We make use of WAMP
WebSocket framework with the publish/subscribe model to implement this feature.

The combination of server widgets and the collaborative editor has great potential
for collaborative data integration across various devices. Each collaborator can use their
own widget collection that might contain private server widgets. These private widgets
are black boxes to others and work as a data collector; they can, for example, provide
users’ private data from their mobile phones, databases, cloud services, etc. selectively
for a shared data integration task. This approach gives users full control over the output
data of their private widget. As soon as they stop the widget, their data are no longer
shared.

6.3 Automatic data exploration and integration facilities
Once a widget has been added to a mashup, semantic terminal matching allows users to
explore additional widgets that are relevant in the given context. Terminal matching is
available in the user interface via a click on the question mark symbol when hovering at
a terminal. Making use of the widget semantic model, we query widgets that can be

IJWIS
11,3

386

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
2:

54
 0

1 
N

ov
em

be
r 

20
16

 (
PT

)



connected to the input and output terminal(s) of a given widget. Conditions that have to
be satisfied for the terminals are:

• matching class and array dimension; and
• matching attributes, i.e. the set of attributes required by the input terminal must

be a subset of the attributes provided by the output terminal.

In the example presented in Figure 6, for instance, we can thereby determine that we can
connect the output terminal of POI search with the input terminal of Weather Forecast
and hence integrate geospatial data from Linked Geo Data with weather data from
Wunderground.

A mashup essentially integrates data from multiple sources; automatic mashup
composition hence can be seen as a type of automatic data integration. Despite the
similarities between mashup composition and service composition, we can automatize
the former more easily than the latter because every widget is associated with a
semantic model. Leveraging the terminal matching algorithm, we know exactly which
widgets can be connected. Based on that, we have designed a graph search algorithm to
determine all possible ways to integrate data based on a specified list of data sources and
related available linked widgets. The automatic mashup composition module is included
in the editor.

6.4 Linked widget annotator
The widget annotator allows developers to create and annotate widgets correctly and
efficiently. Developers simply drag and drop and then configure three components
called Widget Model, Object and Relation to visually define their widget models.

Figure 8 is an example that illustrates the definition of a semantic model for the POI
Search widget (Figure 3). In the Widget Model, we declare input and output terminals of
the widget. Their data models – arrays of Thing and Feature objects – are defined in the
Object components. We request the wgs84:location property from the Thing input and
define its domain, using another Object component. Similarly, we define the properties
for the output of the widget. Finally, we make use of a Relation component to specify the
geo:nearby relation between the input Thing and the output Feature objects.

After that, the system automatically generates the OWL description file for the model
as well as the corresponding HTML widget file. The HTML file represents either the
source code of the client widget or the client user interface of the server widget. It includes
the injected JavaScript code snippet required for the widget communication protocol and
sample JSON-LD input/output of the widget according to the defined model. Based on
that, developers can implement the widget’s processing function of the client widget or
the remote executor of the server widget, which receives input from preceding and
returns output to succeeding widgets.

Finally, as soon as they have deployed their widgets, developers can submit their
work to the platform where it will be listed and can be reused with other available
widgets; in particular, widget annotations are published into the LOD repository of
widgets which can be accessed via a SPARQL endpoint[13].

6.5 Semantic widget search
In line with the growth of open data sources, the number of available widgets can also be
expected to grow rapidly. In this case, to ensure that users can find widgets on the

387

Distributed
mashups

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
2:

54
 0

1 
N

ov
em

be
r 

20
16

 (
PT

)



Figure 8.
Visual model defined
for the POI Search
widget

IJWIS
11,3

388

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
2:

54
 0

1 
N

ov
em

be
r 

20
16

 (
PT

)

http://www.emeraldinsight.com/action/showImage?doi=10.1108/IJWIS-04-2015-0018&iName=master.img-007.jpg&w=125&h=511


platform, we provide a semantic search feature in addition to conventional search
methods which are based on keywords, categories, tags, etc. This and the terminal
matching module are two effective data exploration tools.

Because the widgets’ RDF metadata is openly available via the SPARQL endpoint,
other third parties can also develop their own widget-search tool. The search we provide
is similar to the annotator tool, but it is simpler and directed at end users. By defining the
model constraints for input/output, they, for example, can find widgets which receive
and return objects associated with location properties as shown in Figure 9. Users can
use short names for classes and properties in their model. We also provide tolerant
search. Tolerant search uses ontology alignment methods Euzenat and Shvaiko (2013)
to return widgets that have models similar to their specification.

7. Related work
Researchers have been developing mashup-based tools for years. Many of them are
geared toward end-users and aim to allow them to efficiently create applications by
connecting simple and lightweight entities.

Engard (2009) introduces definitions, summaries and practical uses of mashup.
Aghaee and Pautasso (2012a) provide a detailed overview of mashup approaches. They
discuss open research challenges which we partly address with our platform. For
instance, we address the Simplicity and Expressive Power Tradeoff challenges through
a semantic model. They also evaluate Yahoo! Pipes Pruett (2007), IBM Mashup
Center[14], Presto Cloud[15] and ServFace (Nestler et al., 2010). A common limitation
they identify for all these platforms is that the wiring paradigm is hard to grasp for
non-expert end users. We aim to overcome this barrier by recommending valid wiring
options to the user.

Other surveys in mashup literature (Aghaee and Pautasso, 2012b) have developed a
number of evaluation criteria and identified shortcomings of existing approaches.
Among these shortcomings are lacks of support for:

• event-based behavior;
• component discovery features; and
• language-dependent mashup components.

Computer scientists addressed some of these shortcomings in more recent contributions,
but some still remain an open challenge.

Grammel and Storey (2010) review six different approaches and identify potential
areas of improvement and future research. For instance, they argue that context-specific
suggestions could support learning of how to build and find mashups. Regarding user
interface improvements, they note that designing mechanisms such as automatic
mashup generation to provide starting points to end users would enhance usability
drastically. This feature is also provided by the platform presented in this paper.
However, detecting invalid mashups still remains a challenge that requires appropriate
debugging mechanisms for non-programmers.

Di Lorenzo et al. (2009) analyzed the strengths and weaknesses of popular mashup
tools, i.e. Damia (Simmen et al., 2008), Yahoo! Pipes, Microsoft Popfly (Griffin, 2008),
Google Mashup Editor (Tony, 2008), Exhibit (Huynh et al., 2007), Apatar[16],
MashMaker (Ennals and Garofalakis, 2007), with respect to data integration. All of them
are server side applications, meaning that mashups and the data involved both are

389

Distributed
mashups

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
2:

54
 0

1 
N

ov
em

be
r 

20
16

 (
PT

)



Figure 9.
A widget search that
defines the input and
output semantic
models

IJWIS
11,3

390

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
2:

54
 0

1 
N

ov
em

be
r 

20
16

 (
PT

)

http://www.emeraldinsight.com/action/showImage?doi=10.1108/IJWIS-04-2015-0018&iName=master.img-008.jpg&w=164&h=511


hosted on the server of the application provider. This may result in problems due to
communication overload when a mashup creates too many requests to the servers. Most
importantly, the survey claims that each tool requires a considerable level of
programming effort by the user to build a mashup even though they are supposed to
target “non-expert” users.

Daniel et al. (2010) discuss the concept of process mashups by introducing three
dimensions, i.e. multi-user support, multi-page navigation and workflow support. From
that, they classify mashups into eight classes, based on different combinations of these
dimensions. They are:

(1) simple mashups, e.g. mashArt (Daniel et al., 2009), Yahoo! Pipes, MashMaker;
(2) multi-page mashups, e.g. EzWeb (Lizcano et al., 2008);
(3) guided mashups – no tool exists;
(4) page ow mashups, e.g. ServFace Builder (Nestler et al., 2010);
(5) shared page mashups – no tool exists;
(6) shared space mashups, e.g. IBM Mashup Center;
(7) cooperative mashups, e.g. Gravity[17]; and
(8) process mashups, e.g. MarcoFlow (Daniel et al.,2010).

According to their classification, the linked widgets platform is a process mashups tool.
Blichmann et al. (2013) present their vision of collaborative mashups by specifying

three challenges. They are:
(1) to develop a mechanism for unified handling of (non) collaborative components;
(2) to synchronize differently implemented components with identical functionality;

and
(3) to support fine-grained sharing of mashup composition parts.

They then present their preliminary solutions with their CRUISe platform.
PEUDOM (Picozzi, 2013) claims to be a platform for multiple devices and

collaborative mashups. It allows users to create components on top of REST services
and to combine these components to build mashups. Similar to the linked widgets
platform, it supports a live collaboration paradigm. However, a major difference is that
the data processing tasks in PEUDOM cannot be assigned to different devices. In fact,
these tasks are REST services that will be called in the corresponding components
implemented for different devices. PEUDOM hence can be seen as a service composition
platform for end users on different devices.

Salminen and Mikkonen (2013) focus on mashups for embedded devices. They
introduce two environments for users to compose mashups in a procedural and
declarative fashion. Both aim at context-aware mashups on embedded devices and can
use data of these devices as input data for mashups. This is impossible in PEUDEM.

Super Stream Collider (SSC) (Hoan et al., 2012), MashQL (Jarrar and Dikaiakos, 2008)
and DERI Pipes (Le-Phuoc et al., 2009) are three platforms aimed at semantic data
processing. Whereas SSC consumes live stream data only, MashQL allows users to
easily create a SPARQL query, using its custom query-by-diagram language. MashQL
cannot aggregate data from different sources and its output visualization only supports

391

Distributed
mashups

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
2:

54
 0

1 
N

ov
em

be
r 

20
16

 (
PT

)



text and table formats. DERI Pipes requires users to be familiar with semantic Web
technologies, SPARQL queries and programming to perform semantic data processing
tasks from different data sources. There are multiple other platforms which we only
want to point at, such as Vegemite (Lin et al., 2009), Paggr (Nowack, 2009) or Marmite
(Wong and Hong, 2007). They all follow a mashup-based approach to ease users’ access
to data sources, but unlike our approach, they do not make use of semantic models.

To sum up, the most apparent differences between the linked widget platform and
similar approaches are as follows:

• We present a high-level and problem-oriented data processing platform. Users do
not have to be familiar with special technological and programming concepts, e.g.
conditional statements or loops, to perform data integration tasks. They first
define a goal, e.g. search for POIs near a place, then can discover appropriate
widgets and, finally, arrange them in a mashup. To ease this process, we organize
widgets in domain-specific collections. Additionally, we provide keyword and
semantic search features based on the widget model.

• We allow and encourage developers to contribute their widgets to the platform to
extend the number of data sources it can process.

• We use semantic Web technologies to model widgets and facilitate automatic data
exploration and data integration via widgets. This imposes the semantic format
on widget output and helps the platform to deal with the issue of data
heterogeneity.

• We provide an environment for interactive collaborative mashup creation and
analysis.

• We introduce the concept of distributed mashups.

8. Conclusion and future work
In this paper, we present a collaborative mashup platform for dynamic integration of
heterogeneous data sources. The platform is designed based on the principle of
openness; it is a hub that connects developers, data publishers, data integrators and end
users.

To foster reusability and creativity, we modularize functionality into linked widgets
that users can recombine to create new applications. We illustrate the value of this
approach by means of sample use cases that integrate data from various sources. We
also design an architecture that allows a group of people to collaboratively build such ad
hoc applications. We make use of both client and server computing resources to create a
powerful, extensible and scalable data integration platform. With server-linked widgets,
data processing tasks can be run persistently and be distributed among various devices.
This is particularly useful for data streaming or data monitoring use cases. Semantic
annotation of linked widgets and the utilization of their metadata allows users to explore
widgets and locate relevant data sources. It is also possible to automatically suggest all
possible widget combinations based on a list of available widgets.

A prototype Web-based mashup editor[18] is already available online. Even though
users can use this editor on a mobile browser to combine widgets, we plan to implement
a separate editor that is designed especially for mobile devices. Together with server
widgets, the mobile mashup editor completes our mobile mashup environment.

IJWIS
11,3

392

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
2:

54
 0

1 
N

ov
em

be
r 

20
16

 (
PT

)



Linked widgets lift data in arbitrary formats to semantic data. Because distributed
mashups can run persistently, we can access their semantic output data at any time.
Publishing a distributed mashup thereby means publishing a data source which can
again be consumed by other entities. To foster automatic data integration, we plan to
transform output data into linked data. To this end, the platform assigns each resource
of the output data a dereferencable URI that can be looked up by people and user agents.

Future research will also aim to improve our automatic mashup composition
algorithm. Furthermore, we aim to enable developers (who can already) access widget
annotations as linked open data to implement custom composition algorithms for
particular data domains and integrate them into the platform as plugins.

Notes
1. www.w3.org/TR/widgets/ (accessed 10 April 2015).

2. www.w3.org/TR/json-ld/ (accessed 10 April 2015).

3. http://linkedwidgets.org/widgets/WidgetHub.js (accessed 10 April 2015).

4. www.w3.org/Submission/OWL-S/ (accessed 10 April 2015).

5. www.w3.org/Submission/WSMO/ (accessed 10 April 2015).

6. www.w3.org/Submission/SWRL/ (accessed 10 April 2015).

7. www.geonames.org/ (accessed 10 April 2015).

8. https://open.wien.gv.at/site/open-data/ (accessed 10 April 2015).

9. www.wunderground.com/ (accessed 10 April 2015).

10. www.airqualitynow.eu/index.php (accessed 10 April 2015).

11. www.w3.org/TR/vocab-data-cube/ (accessed 10 April 2015).

12. http://wamp.ws/ (accessed 10 April 2015).

13. http://ogd.ifs.tuwien.ac.at/sparql (accessed 10 April 2015).

14. http://pic.dhe.ibm.com/infocenter/mashhelp/v3/index.jsp (accessed 10 April 2015).

15. http://mdc.jackbe.com/enterprise-mashup (accessed 10 April 2015).

16. www.apatar.com/ (accessed 10 April 2015).

17. www.sdn.sap.com/irj/scn/weblogs?blog�/pub/wlg/17826 (accessed 10 April 2015).

18. http://linkedwidgets.org (accessed 10 April 2015).

References
Aghaee, S. and Pautasso, C. (2012), “End-user programming for web mashups: open research

challenges”, ICWE ‘11 Proceedings of the 11th International Conference on Current Trends
in Web Engineering, Springer Berlin Heidelberg, pp. 347-351, available at: http://dx.doi.org/
10.1007/978-3-642-27997-3_38

Aghaee, S. and Pautasso, C. (2012), “An evaluation of mashup tools based on support for
heterogeneous mashup components”, ICWE ‘11 Proceedings of the 11th International
Conference on Current Trends in Web Engineering, Springer Berlin Heidelberg, pp. 1-12,
available at: http://dx.doi.org/10.1007/978-3-642-27997-3_1

Bizer, C., Heath, T. and Berners-Lee, T. (2009), “Linked data the story so far”, International Journal
on Semantic Web, Vol. 5 No. 3, pp. 1-22.

393

Distributed
mashups

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
2:

54
 0

1 
N

ov
em

be
r 

20
16

 (
PT

)

http://www.w3.org/TR/widgets/
http://www.w3.org/TR/json-ld/
http://linkedwidgets.org/widgets/WidgetHub.js
http://www.w3.org/Submission/OWL-S/
http://www.w3.org/Submission/WSMO/
http://www.w3.org/Submission/SWRL/
http://www.geonames.org/
https://open.wien.gv.at/site/open-data/
http://www.wunderground.com/
http://www.airqualitynow.eu/index.php
http://www.w3.org/TR/vocab-data-cube/
http://wamp.ws/
http://ogd.ifs.tuwien.ac.at/sparql
http://pic.dhe.ibm.com/infocenter/mashhelp/v3/index.jsp
http://mdc.jackbe.com/enterprise-mashup
http://www.apatar.com/
http://www.sdn.sap.com/irj/scn/weblogs?blog=/pub/wlg/17826
http://linkedwidgets.org
http://dx.doi.org/10.1007/978-3-642-27997-3_38
http://dx.doi.org/10.1007/978-3-642-27997-3_38
http://dx.doi.org/10.1007/978-3-642-27997-3_1
http://www.emeraldinsight.com/action/showLinks?crossref=10.1007%2F978-3-642-27997-3_1
http://www.emeraldinsight.com/action/showLinks?crossref=10.1007%2F978-3-642-27997-3_1
http://www.emeraldinsight.com/action/showLinks?crossref=10.1007%2F978-3-642-27997-3_38
http://www.emeraldinsight.com/action/showLinks?crossref=10.1007%2F978-3-642-27997-3_38
http://www.emeraldinsight.com/action/showLinks?crossref=10.4018%2Fjswis.2009081901&isi=000270369900001
http://www.emeraldinsight.com/action/showLinks?crossref=10.4018%2Fjswis.2009081901&isi=000270369900001


Blichmann, G., Radeck, C. and Mei\s sner, K. (2013), “Enabling end users to build situational
collaborative Mashups at runtime”, ICIW The Eighth International Conference on Internet
and Web Applications and Services, pp. 120-123, available at: www.thinkmind.org/index.
php?view�article&articleid�iciw_2013_5_40_20132

Bourke, T. and Server Load Balancing (2001), “Help for network administrators”, O’Reilly Media,
Incorporated, available at: http://books.google.at/books?id�l9uD3smAC

Daniel, F., Casati, F., Benatallah, B. and Shan, M.C. (2009), “Hosted universal composition: models,
languages and infrastructure in mashart”, Conceptual Modeling- ER, Springer, pp. 428-443,
available at: http://link.springer.com/chapter/10.1007/978-3-642-04840-1_32

Daniel, F., Koschmider, A., Nestler, T., Roy, M. and Namoun, A. (2010), “Toward process mashups:
key ingredients and open research challenges”, Proceedings of the 3rd and 4th International
Workshop on Web APIs and Services Mashups, ACM, p. 9, available at: http://dl.acm.org/
citation.cfm?id�1945008

Daniel, F., Soi, S., Tranquillini, S., Casati, F., Heng, C. and Yan, L. (2010), “From People to services
to UI: distributed orchestration of user interfaces”, in Hull, R., Mendling, J. and Tai, S. (Eds),
Business Process Management, Lecture Notes in Computer Science, Springer Berlin
Heidelberg, Vol. 6336, pp. 310-326, available at: http://dx.doi.org/10.1007/978-3-642-15618-
2_22

Di Lorenzo, G., Hacid, H., Paik, H.Y. and Benatallah, B. (2009), “Data integration in mashups”,
SIGMOD Record, Vol. 38 No. 1, pp. 59-66, available at: http://doi.acm.org/10.1145/1558334.
1558343

Engard, NC. (2009), “Library mashups: exploring new ways to deliver library data”, Information
Today, Medford.

Ennals, R.J. and Garofalakis, M.N. (2007), “Mashmaker: mashups for the masses”, SIGMOD ‘07
Proceedings of the 2007 ACM SIGMOD International Conference on Management of Data,
ACM, New York, NY, pp. 1116-1118, available at: http://doi.acm.org/10.1145/1247480.
1247626

Euzenat, J. and Shvaiko, P. (2013), “Ontology matching”, 2nd ed., Springer-Verlag Berlin
Heidelberg, Heidelberg.

Grammel, L. and Storey, M.A. (2010), “A survey of mashup development environments”, in
Chignell, M., Cordy, J., Ng, J. and Yesha, Y. (Eds), The Smart Internet, Lecture Notes in
Computer Science, Springer Berlin Heidelberg, Vol. 6400, pp. 137-151, available at: http://
dx.doi.org/10.1007/978-3-642-16599-3_10

Griffin, E. (2008), “Foundations of Popfly: rapid mashup development”, Books for
Professionals by Professionals, Apress, available at: https://books.google.at/books?id�
3Hd5htUzY9gC

Hoan, N.M.Q., Martin Serrano, D.L.P. and Hauswirth, M. (2012), “Super stream collider-linked
stream mashups for everyone”, Proceedings of the Semantic Web Challenge co-located with
ISWC, Boston, MA.

Huynh, D.F., Karger, D.R. and Miller, R.C. (2007), “Exhibit: lightweight structured data
publishing”, WWW ‘07 Proceedings of the 16th International Conference on World Wide
Web, ACM, New York, NY, pp. 737-746, available at: http://doi. acm.org/10.1145/1242572.
1242672

Jarrar, M. and Dikaiakos, M.D. (2008), “Mashql: a query-by-diagram topping sparql”, ONISW ‘08
Proceedings of the 2nd International Workshop on Ontologies and Information Systems for
the Semantic Web, ACM, New York, NY, pp. 89-96, available at: http://doi.acm.org/10.
1145/1458484.1458499

IJWIS
11,3

394

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
2:

54
 0

1 
N

ov
em

be
r 

20
16

 (
PT

)

http://www.thinkmind.org/index.php?view=article&articleid=iciw_%202013_5_40_20132
http://www.thinkmind.org/index.php?view=article&articleid=iciw_%202013_5_40_20132
http://books.google.at/books?id=l9uD3smAC
http://link.springer.com/chapter/10.1007/978-3-642-04840-1_32
http://dl.acm.org/citation.cfm?id=1945008
http://dl.acm.org/citation.cfm?id=1945008
http://dx.doi.org/10.1007/978-3-642-15618-2_22
http://dx.doi.org/10.1007/978-3-642-15618-2_22
http://doi.acm.org/10.1145/1558334.1558343
http://doi.acm.org/10.1145/1558334.1558343
http://doi.acm.org/10.1145/1247480.1247626
http://doi.acm.org/10.1145/1247480.1247626
http://dx.doi.org/10.1007/978-3-642-16599-3_10
http://dx.doi.org/10.1007/978-3-642-16599-3_10
https://books.google.at/books?id=3Hd5htUzY9gC
https://books.google.at/books?id=3Hd5htUzY9gC
http://doi.%20acm.org/10.1145/1242572.1242672
http://doi.%20acm.org/10.1145/1242572.1242672
http://doi.acm.org/10.1145/1458484.1458499
http://doi.acm.org/10.1145/1458484.1458499
http://www.emeraldinsight.com/action/showLinks?crossref=10.1145%2F1944999.1945008
http://www.emeraldinsight.com/action/showLinks?crossref=10.1145%2F1944999.1945008
http://www.emeraldinsight.com/action/showLinks?crossref=10.1145%2F1247480.1247626
http://www.emeraldinsight.com/action/showLinks?crossref=10.1145%2F1247480.1247626
http://www.emeraldinsight.com/action/showLinks?crossref=10.1145%2F1247480.1247626
http://www.emeraldinsight.com/action/showLinks?crossref=10.1145%2F1558334.1558343&isi=000268485200005
http://www.emeraldinsight.com/action/showLinks?crossref=10.1007%2F978-3-642-16599-3_10
http://www.emeraldinsight.com/action/showLinks?crossref=10.1007%2F978-3-642-04840-1_32
http://www.emeraldinsight.com/action/showLinks?crossref=10.1145%2F1458484.1458499
http://www.emeraldinsight.com/action/showLinks?crossref=10.1145%2F1458484.1458499
http://www.emeraldinsight.com/action/showLinks?crossref=10.1145%2F1458484.1458499
http://www.emeraldinsight.com/action/showLinks?crossref=10.1007%2F978-3-642-15618-2_22
http://www.emeraldinsight.com/action/showLinks?crossref=10.1007%2F978-3-642-38721-0
http://www.emeraldinsight.com/action/showLinks?crossref=10.1145%2F1242572.1242672
http://www.emeraldinsight.com/action/showLinks?crossref=10.1145%2F1242572.1242672


Kopecky, J., Vitvar, T., Bournez, C. and Farrell, J. (2007), “Sawsdl: semantic annotations for WSDL
and XML schema”, Internet Computing, IEEE, Vol. 11 No. 6, pp. 60-67, available at: http://
dx.doi.org/10.1109/MIC.2007.134

Le-Phuoc, D., Polleres, A., Hauswirth, M., Tummarello, G. and Morbidoni, C. (2009), “Rapid
prototyping of semantic mashups through semantic web pipes”, WWW ‘09 Proceedings of
the 18th International Conference on World Wide Web, ACM, New York, NY, pp. 581-590,
available at: http://doi.acm.org/10.1145/1526709.1526788

Lin, J., Wong, J., Nichols, J., Cypher, A. and Lau, T.A. (2009), “End-user programming of mashups
with vegemite”, IUI ‘09 Proceedings of the 14th International Conference on Intelligent
User Interfaces, ACM, New York, NY, pp. 97-106, available at: http://doi.acm.org/10.1145/
1502650.1502667

Lizcano, D., Soriano, J., Reyes, M. and Hierro, J. (2008), “EzWeb/FAST: reporting on a Successful
mashup-based solution for developing and deploying composite applications in the
upcoming, ‘Ubiquitous SOA’”, Mobile Ubiquitous Computing, Systems, Services and
Technologies, The Second International Conference on UBICOMM ‘08, Valencia,
pp. 488-495.

Nardi, B.A. (1993), A Small Matter of Programming: Perspectives on End User Computing, MIT
Press, Cambridge, MA.

Nestler, T., Feldmann, M., Hbsch, G., Preuner, A. and Jugel, U. (2010), “The servface builder - a
wysiwyg approach for building service-based applications”, in Benatallah, B., Casati, F.,
Kappel, G. and Rossi, G. (Eds), Web Engineering, Lecture Notes in Computer Science,
Springer Berlin Heidelberg, Vol. 6189, pp. 498-501, available at: http://dx.doi.org/10.1007/
978-3-642-13911-6_37

Nestler, T., Feldmann, M., Hübsch, G., Preu�ner, A. and Jugel, U. (2010), “The servface builder - a
wysiwyg approach for building service-based applications”, ICWE ‘10 Proceedings of the
10th International Conference on Web Engineering, Springer-Verlag, Heidelberg,
pp. 498-501, available at: http://dl.acm.org/citation.cfm?id�1884110.1884155

Nowack, B. (2009), “Paggr: linked data widgets and dashboards”, Web Semant, Vol. 7 No. 4,
pp. 272-277, available at: http://dx.doi.org/10.1016/j.websem.2009.09.005

Picozzi, M. (2013), “End user development of multidevice and collaborative mashups”, CHItaly
(Doctoral Consortium), Citeseer, pp. 55-65.

Pruett, M. (2007), Yahoo! Pipes, 1st edn., O’Reilly Media.
Salminen, A. and Mikkonen, T. (2013), “Towards pervasive mashups in embedded devices:

comparing procedural and declarative approach”, IJCNDS, Vol. 10 No. 3, pp. 195-215,
available at: http://dx.doi.org/10.1504/IJCNDS.2013.053077

Simmen, D.E., Altinel, M., Markl, V., Padmanabhan, S. and Singh, A. (2008), “Damia: data
mashups for intranet applications”, SIGMOD ‘08 Proceedings of the 2008 ACM SIG-MOD
International Conference on Management of Data, ACM, New York, NY, pp. 1171-1182,
available at: http://doi.acm.org/10.1145/1376616.1376734

Taheriyan, M., Knoblock, C.A., Szekely, P. and Ambite, J.L. (2012), “Rapidly integrating services
into the linked data cloud”, Proceedings of the 11th International Conference on The
Semantic Web - Volume Part I, Lecture Notes in Computer Science, Springer Berlin
Heidelberg, pp. 559-574.

Taheriyan, M., Knoblock, C., Szekely, P. and Ambite, J. (2013), “A graph-based approach to learn
semantic descriptions of data sources”, The Semantic Web ISWC, Lecture Notes in
Computer Science, Springer Berlin Heidelberg, Vol. 8218, pp. 607-623.

Tony, L. (2008), “Creating Google Mashups with the Google Mashup Editor”, Lotontech Limited,
available at: https://books.google.at/books?id�6z_BLopvZ70C

395

Distributed
mashups

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
2:

54
 0

1 
N

ov
em

be
r 

20
16

 (
PT

)

http://dx.doi.org/10.1109/MIC.2007.134
http://dx.doi.org/10.1109/MIC.2007.134
http://doi.acm.org/10.1145/1526709.1526788
http://doi.acm.org/10.1145/1502650.1502667
http://doi.acm.org/10.1145/1502650.1502667
http://dx.doi.org/10.1007/978-3-642-13911-6_37
http://dx.doi.org/10.1007/978-3-642-13911-6_37
http://dl.acm.org/citation.cfm?id=1884110.1884155
http://dx.doi.org/10.1016/j.websem.2009.09.005
http://dx.doi.org/10.1504/IJCNDS.2013.053077
http://doi.acm.org/10.1145/1376616.1376734
https://books.google.at/books?id=6z_BLopvZ70C
http://www.emeraldinsight.com/action/showLinks?crossref=10.1109%2FUBICOMM.2008.61
http://www.emeraldinsight.com/action/showLinks?crossref=10.1504%2FIJCNDS.2013.053077
http://www.emeraldinsight.com/action/showLinks?crossref=10.1007%2F978-3-642-13911-6_37
http://www.emeraldinsight.com/action/showLinks?crossref=10.1016%2Fj.websem.2009.09.005
http://www.emeraldinsight.com/action/showLinks?crossref=10.1007%2F978-3-642-35176-1_35
http://www.emeraldinsight.com/action/showLinks?crossref=10.1007%2F978-3-642-35176-1_35
http://www.emeraldinsight.com/action/showLinks?crossref=10.1145%2F1376616.1376734
http://www.emeraldinsight.com/action/showLinks?crossref=10.1145%2F1376616.1376734
http://www.emeraldinsight.com/action/showLinks?crossref=10.1145%2F1526709.1526788
http://www.emeraldinsight.com/action/showLinks?crossref=10.1145%2F1526709.1526788
http://www.emeraldinsight.com/action/showLinks?crossref=10.1007%2F978-3-642-13911-6_37
http://www.emeraldinsight.com/action/showLinks?crossref=10.1007%2F978-3-642-13911-6_37
http://www.emeraldinsight.com/action/showLinks?crossref=10.1007%2F978-3-642-41335-3_38


Trinh, T.D., Wetz, P., Do, B.L., Anjomshoaa, A., Kiesling, E. and Tjoa, A.M. (2014), “A web-based
platform for dynamic integration of heterogeneous data”, Proceedings of the 16th
International Conference on Information Integration and Web-based Applications &
Services, Hanoi, 4-6 December, pp. 253-261, available at: http://doi.acm.org/10.1145/
2684200.2684291

Vanessa, W., Peter, M. and Frank, S. (2013), The Definitive Guide to HTML5 WebSocket, Apress,
New York, NY.

Verborgh, R., Steiner, T., Van Deursen, D., Van de Walle, R. and Gabarró Vallés, J. (2011),
“Efficient runtime service discovery and consumption with hyperlinked RESTdesc”,
Proceedings of the 7th International Conference on Next Generation Web Services Practices,
Salamanca, pp. 373-379.

Wong, J. and Hong, J.I. (2007), “Making mashups with marmite: Towards end-user programming
for the web”, CHI ‘07 Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, ACM, New York, NY, pp. 1435-1444, available at: http://doi.acm.org/
10.1145/1240624.1240842

Corresponding author
Tuan-Dat Trinh can be contacted at: tuan.trinh@tuwien.ac.at

For instructions on how to order reprints of this article, please visit our website:
www.emeraldgrouppublishing.com/licensing/reprints.htm
Or contact us for further details: permissions@emeraldinsight.com

IJWIS
11,3

396

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
2:

54
 0

1 
N

ov
em

be
r 

20
16

 (
PT

)

http://doi.acm.org/10.1145/2684200.2684291
http://doi.acm.org/10.1145/2684200.2684291
http://doi.acm.org/10.1145/1240624.1240842
http://doi.acm.org/10.1145/1240624.1240842
mailto:tuan.trinh@tuwien.ac.at
mailto:permissions@emeraldinsight.com
http://www.emeraldinsight.com/action/showLinks?crossref=10.1145%2F2684200.2684291
http://www.emeraldinsight.com/action/showLinks?crossref=10.1145%2F2684200.2684291
http://www.emeraldinsight.com/action/showLinks?crossref=10.1145%2F2684200.2684291
http://www.emeraldinsight.com/action/showLinks?crossref=10.1145%2F1240624.1240842
http://www.emeraldinsight.com/action/showLinks?crossref=10.1145%2F1240624.1240842


This article has been cited by:

1. Yuanping Xu, Guanxu Chen, Jiaoling Zheng. 2016. An integrated solution—KAGFM for mass
customization in customer-oriented product design under cloud manufacturing environment. The
International Journal of Advanced Manufacturing Technology 84:1-4, 85-101. [CrossRef]

2. A. Min Tjoa, Peter Wetz, Elmar Kiesling, Tuan-Dat Trinh, Ba-Lam Do. 2015. Integrating
Streaming Data into Semantic Mashups. Procedia Computer Science 72, 1-4. [CrossRef]

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
2:

54
 0

1 
N

ov
em

be
r 

20
16

 (
PT

)

http://dx.doi.org/10.1007/s00170-015-8074-2
http://dx.doi.org/10.1016/j.procs.2015.12.098

	Distributed mashups: a collaborative approach to data integration
	1. Introduction
	2. Architecture
	3. Linked widgets
	3.1 Client widgets
	3.2 Server widgets
	3.3 Lined widget model

	4. Mashup communication protocol
	4.1 Local protocol
	4.2 Remote protocol
	4.3 Hybrid protocol

	5. Sample data integration use cases
	5.1 Local mashups
	5.2 Hybrid mashups

	6. Prototype implementation
	6.1 Communication protocols
	6.2 Collaborative mashup editor
	6.3 Automatic data exploration and integration facilities
	6.4 Linked widget annotator
	6.5 Semantic widget search

	7. Related work
	8. Conclusion and future work
	References


