
International Journal of Web Information Systems
Raising resilience of web service dependent repository systems
Tomasz Miksa Rudolf Mayer Andreas Rauber

Article information:
To cite this document:
Tomasz Miksa Rudolf Mayer Andreas Rauber , (2015),"Raising resilience of web service dependent
repository systems", International Journal of Web Information Systems, Vol. 11 Iss 3 pp. 327 - 346
Permanent link to this document:
http://dx.doi.org/10.1108/IJWIS-04-2015-0011

Downloaded on: 01 November 2016, At: 22:54 (PT)
References: this document contains references to 18 other documents.
To copy this document: permissions@emeraldinsight.com
The fulltext of this document has been downloaded 71 times since 2015*

Users who downloaded this article also downloaded:
(2015),"On maintaining semantic networks: challenges, algorithms, use cases", International Journal
of Web Information Systems, Vol. 11 Iss 3 pp. 291-326 http://dx.doi.org/10.1108/IJWIS-04-2015-0014
(2015),"Distributed mashups: a collaborative approach to data integration", International Journal of
Web Information Systems, Vol. 11 Iss 3 pp. 370-396 http://dx.doi.org/10.1108/IJWIS-04-2015-0018

Access to this document was granted through an Emerald subscription provided by emerald-
srm:563821 []

For Authors
If you would like to write for this, or any other Emerald publication, then please use our Emerald
for Authors service information about how to choose which publication to write for and submission
guidelines are available for all. Please visit www.emeraldinsight.com/authors for more information.

About Emerald www.emeraldinsight.com
Emerald is a global publisher linking research and practice to the benefit of society. The company
manages a portfolio of more than 290 journals and over 2,350 books and book series volumes, as
well as providing an extensive range of online products and additional customer resources and
services.

Emerald is both COUNTER 4 and TRANSFER compliant. The organization is a partner of the
Committee on Publication Ethics (COPE) and also works with Portico and the LOCKSS initiative for
digital archive preservation.

*Related content and download information correct at time of download.

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
2:

54
 0

1 
N

ov
em

be
r 

20
16

 (
PT

)

http://dx.doi.org/10.1108/IJWIS-04-2015-0011


Raising resilience of web service
dependent repository systems

Tomasz Miksa and Rudolf Mayer
SBA Research, Vienna, Austria, and

Andreas Rauber
Vienna University of Technology, Vienna, Austria, and

SBA Research, Vienna, Austria

Abstract
Purpose – This paper aims to address the issue of long-term stability of services and systems
depending on service-oriented architecture that has become a popular architecture in systems
development and is often implemented using Web services. However, the dependency, especially on
externally provided services, can impact the reliability of a system. This is often caused by the loose
coupling also implying a less stringent policy for change management and notifications. Therefore, the
authors characterise the types of changes that can happen in remote services and propose the concept
of resilient web services (RWSs) as an example on how to upgrade existing services to better support the
long-term stability of services and systems.
Design/methodology/approach – Having analysed several use cases where systems broke because
of external dependencies not correctly maintained, the authors derived requirements for RWSs.
Findings – By means of a prototype implementation and evaluation of this solution in a case study, the
feasibility of the approach was verified. Several scenarios of changes in WSs were simulated, correctly
identified and responded to.
Originality/value – The authors propose a set of extensions to existing standards such as Web
Services Description Language to improve the long-term availability of services in SOAs. A prototype
implementation was developed for service monitoring and RWSs.

Keywords Context model, Digital repositories, Resilient web services, Service-oriented architecture,
WS monitoring

Paper type Research paper

1. Introduction
Service-oriented architecture (SOA) is a popular mean to implement complex systems,
especially in, but not limited to, settings where some parts of the system are provided by
external parties. Web services (WSs) are a popular pattern to realise SOA. While SOA
allows for a rapid development cycle, especially when existing services are recombined
as mash-ups, there is also a threat of the reliability and long-term availability of these
services, and thus also for applications that build on top of them. These threats can
result in an unavailability of the service due to a change in its interface, and also due to
a change in functionality of the service, without interface change.

To alleviate these threats and uncertainties, the concept of resilient web services
(RWS) has been proposed lately (Miksa et al., 2015, 2014). RWS build on top of existing

This work has been co-funded by COMET K1, FFG - Austrian Research Promotion Agency and
by the EU-FP7 funded TIMBUS project (grant agreement no. 269940).

The current issue and full text archive of this journal is available on Emerald Insight at:
www.emeraldinsight.com/1744-0084.htm

Web service
dependent
repository

systems

327

Received 5 April 2015
Revised 21 April 2015

Accepted 21 April 2015

International Journal of Web
Information Systems

Vol. 11 No. 3, 2015
pp. 327-346

© Emerald Group Publishing Limited
1744-0084

DOI 10.1108/IJWIS-04-2015-0011

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
2:

54
 0

1 
N

ov
em

be
r 

20
16

 (
PT

)

http://dx.doi.org/10.1108/IJWIS-04-2015-0011


WS standards, such as Web Services Description Language (WSDL), by adding a set of
methods available to the consumer that facilitate the management and use of the service
over time, when changes occur. RWS build on a versioning of WSs and provide a
messaging mechanism that informs the service consumers when a change has occurred
including information on the nature of the change. The consumers can then verify
whether their application is actually affected, and either opt to use an earlier version or
adapt their product.

In this paper, we apply the concept of RWS on a real-world scenario from the domain
of digital libraries and document repositories. Trust in the long-term availability and
reliability of the system is important for digital libraries, as external parties refer to the
facts provided by the documents in the system. The system we study in detail is
Phaidra, which is a system following SOA principles. It is deployed in several local
instances among the various academic partners of the development consortium. Some of
the service are, however, provided centrally by the lead partner, and are consumed by
others. We demonstrate how these services can be converted into RWS, mostly relying
on infrastructure and information that is already present. Further, we investigate the
required effort from the consumer point of view and evaluate whether the usage of RWS
improves the system’s reliability.

The paper is organised as follows. Related work is discussed in Section 2. Monitoring
of WSs is discussed in Section 3, before the concept of RWS is described in Section 4.
Aspects and reference implementations of RWS are discussed in Section 5. Section 6
then introduces the use case of the digital library system, and describes in detail how
RWS are provided and consumed in this setting. Finally, a discussion and future work
are provided in Sections 7 and 8.

2. Related work
In this section, we discuss what kinds of changes can happen in WSs. Then, we discuss
how these changes can be monitored and detected, as well as models that can be used to
persist and analyse these changes. We also discuss available extensions to WSs that aim
at mitigating the consequences of changes.

2.1 Changes in WSs
In Miksa et al. (2015), we divided the information and communications technology (ICT)
changes into two categories: internal and external. Internal changes are all alterations
that are under control of the process owner. The effects of any software or hardware
modifications, for example, installation of updates, can be traced, and the impact on the
correctness of process execution can be evaluated. Furthermore, the point in time when
internal changes are caused can often be planned in advance, and mitigation actions can
be provisioned. External changes are modifications that are beyond direct control of the
process owner. For example, when a service is hosted by a third party, it may happen
that the administrator modifies the software or hardware environment, or the system
automatically allocates different resources than usually. As a consequence, the
customer’s process is affected.

In addition to the internal/external distinction, changes can further be broken down
into four categories that describe the nature of the WS change, as listed in Table I.

IJWIS
11,3

328

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
2:

54
 0

1 
N

ov
em

be
r 

20
16

 (
PT

)



2.2 Monitoring
The goal of business activity monitoring (BAM) is to provide real-time information
about the status and results of various tasks and processes, thus enabling the
management to make better business decisions and quickly address detected problems
and opportunities (McCoy, 2002). However, the scope of BAM tools is on monitoring and
analysing the processes from a business view, and not on the underlying ICT
infrastructure.

The framework presented by Cao et al. (2010) automatically generates and executes
tests for conformance testing of a composite of WSs described in Business Process
Execution Language (BPEL). This approach was combined with passive testing, which
verifies time traces with respect to a set of constraints (Cao et al., 2011). Both solutions
are limited to WSs that are implemented according to the BPEL specification.
Verification of behavioural conformance of services during the run time is presented in
the study by Dranidis et al. (2009). Stream X-machines are applied to check the control
flow of a WS and the generated responses. The traffic is intercepted from a live system,
and continuous monitoring for changes is performed. The stream X-machine needs to be
developed manually, and requires access to the WS implementation, which limits
the application of this method. The authors also provide a classification of WSs. Three
major criteria are distinguished: conversational/non-conversational, private
state/shared state and transient state/persistent state. In our work, we consider these
criteria as sub-criteria of the stateful/stateless criterion.

Table I.
Summary of changes

in WSs

Change type Description

Unavailability Likely stops the execution of the process. The reasons can range from
temporary technical problems to bankruptcy of the service provider. It
can be easily detected, for example, by using time-outs which would alert
to unavailability of the WS

Interface change Such situation may also be easily detected. It may require short pauses in
the process execution until the changes will be adopted into the process.
Of course, in case of significant changes in the communication interface
(e.g. switch from REST to WSDL), time needed for reconnecting the WS
into the process may require more effort

Functionality change Outputs of the WS change, while the interface stays the same. This threat
is hard to detect, as the process may not break, but instead deliver
outputs which are not correct. These could be, for example, changes at
the semantic level, e.g. switching the unit of measurement from inches to
centimetre due to a server configuration change. Other possibilities are
bug fixes in the underlying algorithm (which may introduce other bugs
as well), or intentional changes in the functionality, e.g. faster but less
accurate computational algorithms

Behavioural change It may not always refrain the process from correct execution but can
occur temporally and, therefore, be hard to notice. The examples of such
cases could be different timing characteristics or delays, effects of
buffering, etc.

Source: Miksa et al. (2015)

329

Web service
dependent
repository

systems

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
2:

54
 0

1 
N

ov
em

be
r 

20
16

 (
PT

)



The WS-TAXI framework (Bartolini et al., 2009) combines the coverage of WS
operations with data-driven test generation. It is able to deliver a suite of test messages
ready for execution, generated using a WSDL specification. WS-TAXI generates and
uses purely synthetic data which may be quite different from the data exchanged in a
process. It is thus more suited for WS development and testing, rather than monitoring
of the already deployed SOA solutions.

Monitoring whether service-level agreements (SLAs) conditions are fulfilled by WSs
is a problem related to monitoring WSs for changes. In the study by Goel and
Shyamasundar (2010), a run-time monitoring framework which allows accessing
exchanged messages and comparison against designed scenarios is presented. The
focus is on quality of service (QoS) aspects, for example, of a time-out mechanism
detecting unavailability of the service. In the study by Goel et al. (2011), emphasise is put
on detection of violations at the functional level. SLAs are described formally using
temporal logic and are used to verify the behaviour of WSs at runtime, for example,
maximum response time.

The shortcoming with the above-mentioned solutions lies in the fact that they
demand specific knowledge on the kind and the nature of the WS. Also, the kind of
change that will be monitored is required to deploy the proper solution. In many
scenarios, however, only the URL and interface of the service are known, but no
information on whether the WS is conversational, stateful, deterministic, etc.

The WS monitoring framework (WSMF) presented by Miksa et al. (2015) is thus designed
to allow investigation of any kind of WS, and to facilitate reasoning about the nature of a
service. If the WS is deterministic, the monitoring process can be launched and all four types
of changes (Table I) can be detected. Otherwise, the monitoring framework is not able to
detect any functional changes, but the other three types of change can still be monitored.
Details on the monitoring framework are described in Section 3.

2.3 WS extensions
Apart from monitoring the technical level of services, several improvements to the
specification of WSs, which should lead to a higher sustainability of processes, and
reduction of the need for continuous monitoring have been proposed.

The Universal Description Discovery and Integration (UDDI) is a registry which
holds information on registered WSs. However, the registry does not contain sufficient
additional information on the service that would allow the user to obtain information on
the nature, behaviour or QoS. Several proposals aim at enriching the purely functional
description of WSs (bindings, ports, etc.) with QoS aspects, for example, timing aspects,
availability, reputation (Comuzzi and Pernici, 2009) and pricing (Liu et al., 2004). W3C
Working Group (2003) specifies requirements for QoS for WSs. It lists 13 points which
should be fulfilled, but none of them concerns guaranteeing continuity or
non-modifiability.

Another approach is to facilitate versioning of WSs. Yet, in this case, approaches do
not aim at specifying a way to interweave versioning into WS specification, but present
workarounds to deal with the currently underspecified WS standards (Kaminski et al.,
2006). One of the exceptions is the study by Kalali et al. (2003), which provides functional
requirements for a registry which notifies clients when a version of an interface changes.
Kaminski et al. (2006) is a good example of the current common view on versioning:
versioning is understood as a change of interface. Changes in functionality while the

IJWIS
11,3

330

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
2:

54
 0

1 
N

ov
em

be
r 

20
16

 (
PT

)



interface stays the same are not considered. In Miksa et al. (2015), we thus introduced a
concept of RWS, which aims at extending specification of WSs, addressing the challenge
of functional changes. They are discussed in detail in Section 4.

2.4 Analysis of changes
For implementation of the on-site monitoring, described in Section 6.2, we use the
context model, a model that allows for a structured storage and analysis of the
descriptive meta-data and documentation of the system (Mayer et al., 2015, 2014). This
model allows to store information of a complete business process, from the sequence of
steps executed to the technical infrastructure (software and hardware) that supports it.
It defines a set of concepts that can be used to describe the process. The concepts can
easily be extended, if a specific use case requires so. The model architecture is depicted
in Figure 1. The model allows for reasoning on the information, thus being able to
identify which steps in a process depend on an external service, or which specific
hardware and software is providing the functionality for another step. This allows for a
detailed analysis of which parts of a system are affected by various changes.

3. WS monitoring framework
The WSMF, introduced in Miksa et al. (2015), can be employed to monitor services and
subsequently detect changes. It consists of the following four steps:

(1) Capture: The communication to and from the service is intercepted and stored.
(2) Transform: Requests and responses are grouped and enriched with additional

meta-data.
(3) Reason: Data are analysed, and a type of the WS is determined.
(4) Monitor: Requests collected in the capture step are replayed, and the responses

obtained are compared against those captured in the first step.

The following situations can occur during the Monitor step. If no responses are received,
this may mean that the WS is not available: a change in availability occurred or a change
in the interface caused the unavailability. If only some of the messages are missing, then
we can assume that the service is available but only a part of the interface has changed.
When the service is deterministic and responses do not match the ground truth, then it
indicates a change in functionality. If the service is non-deterministic, changes in
functionality cannot be detected easily. If timestamps of recorded messages are stored

Figure 1.
An overview on the

process context
model: core ontology

and extensions

331

Web service
dependent
repository

systems

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
2:

54
 0

1 
N

ov
em

be
r 

20
16

 (
PT

)

http://www.emeraldinsight.com/action/showImage?doi=10.1108/IJWIS-04-2015-0011&iName=master.img-000.jpg&w=145&h=114


and time intervals between request and response are calculated, then a change in
response timing behaviour can be detected regardless of determinism. The time period
required to detect changes is mainly driven by the interval of checks defined in the
monitoring schedule.

A crucial requirement for using the approach described above is that the WS it is
applied to does not cause any changes on the world outside the system observed. In
situations where this is not the case, e.g. credit card payment transaction systems, such
replaying of messages for monitoring purposes cannot be employed. Thus, while not
universally applicable, the approach is still useful for a majority of situations,
specifically in e-science settings, where WSs are deployed primarily for information
transformation, collection or computational services.

If the communication can not be directly intercepted at the service consumer or
provider side, an alternative implementation is to use a proxy mode. In this case, the
communication between the consumer and the provider is temporarily redirected
through a proxy server, which captures the requests and forwards them to the actual
server; subsequently, the server responses are relayed to the consumer. Thus, the
exchange of real requests and responses can be intercepted. Figure 2 depicts the
communication paths between the involved parties in the proxy mode. Figure 3 shows
the proof of concept tool that implements the WSMF. The figure depicts a situation in
which three requests are tested against the originally recorded results, and their
response validity is evaluated. The implementation also includes the proxy mode.

4. Resilient web services
In this section, we discuss RWS as an extension to the WSDL WS specification. We
describe methods that are required to transform a regular WS into an RWS.

The main aim of the resilient methods is to help the WS consumer to react to changes
within the service. The long-term sustainability and usage of WSs would positively
impact the longevity of business processes depending on them.

In Miksa et al. (2014), we defined principles of RWS design and elaborated a list of
methods that constitute RWS. For the sake of the paper’s completeness, we provide
below the description of RWS methods and also examples of responses obtained from
these methods.

Figure 2.
Communication
between parties
involved using the
WSMF framework in
a proxy mode

IJWIS
11,3

332

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
2:

54
 0

1 
N

ov
em

be
r 

20
16

 (
PT

)

http://www.emeraldinsight.com/action/showImage?doi=10.1108/IJWIS-04-2015-0011&iName=master.img-001.jpg&w=121&h=135


Figure 3.
Software support for

the WSMF, including
a proxy mode

333

Web service
dependent
repository

systems

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
2:

54
 0

1 
N

ov
em

be
r 

20
16

 (
PT

)

http://www.emeraldinsight.com/action/showImage?doi=10.1108/IJWIS-04-2015-0011&iName=master.img-002.jpg&w=220&h=479


4.1 minAvailabilityDate()
This method has no input parameters, and its output provides the guaranteed minimum
availability date of the WS. In other words, it provides the deadline till which the given
WS is going to perform in an unchanged way.

4.2 identifyYourself()
This method has no input parameters. The output consists of multiple information as
follows:

• Version: Number indicating release version of the WS – the version number is
updated every time the WS owner modifies intentionally the WS.

• Description: Textual description of the latest release of the WS – it should contain
information on differences towards the previous version.

• Methods and their types: A list of all methods offered by the WS and
information on its type – there are four available types:
StatelessDeterministic, StatlessNonDeterministic, StatfulDeterministic and
StatefulNonDeterministic.

• First release data: Date since when the WS is available;
• Total number of changes: Integer indicating how many changes to the WS

have been detected since its beginning – it includes both expected (new
versions) and unexpected changes.

• Availability percentage: Availability of the WS expressed in percentage.

4.3 getSystemEnv()
This method has no input parameters. The output is an ontology describing software
and hardware components which are crucial for functioning of the WS. To describe the
system environment in a structured way, we employ a meta-model that is well-known
and widely used in the domain of digital preservation, namely, the PREMIS Data
Dictionary (PREMIS Editorial Committee, 2008). PREMIS allows to describe various
aspects of computing infrastructure, including hardware and software of systems,
which is of particular interest for our purpose. The data dictionary defines five types of
entities: Intellectual, Object, Event, Agent and Rights. It then defines 45 concepts
belonging to these types, as well as relations between the concepts and properties of the
concepts. For describing the system environment, we use the OWL ontology
representation of PREMIS[1]. Specifically, the concepts of hardware can be described by
name, type and additional free-text descriptive information, whereas the concept of
software also has a property to specify the software version. A piece of software might
require another software to be installed to properly function, which can be described by
using the relation hasSoftwareDependency between two specific software instances.
With these concepts, we can sufficiently describe the current hardware and software
setup of a specific system. This detailed description is only available to certain actors,
namely, a WS owner who is providing the service on serviced infrastructure.

4.4 getChangesSince(DateTime)
There is one input parameter to the method which is the exact date and time since which
all potential changes are listed in the output. This date could be the date of the last
request sent to the RWS by the WS consumer. If no changes were detected since that

IJWIS
11,3

334

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
2:

54
 0

1 
N

ov
em

be
r 

20
16

 (
PT

)



time, then the result is empty. Otherwise, a list of all changes is returned. Each change is
described with the following information:

• Change date and time: Exact date and time of the change.
• Change type: Type of change as defined in Table I.
• Change description: Textual description of the change – it is optional and to be

used in cases when the change notification is done manually.
• Change list: Ontology listing hardware and software components that were

modified.

Changes in the system environment can also be described using PREMIS. To this
end, the event concept can be utilised. For example, we can indicate a replacement of
a software component as an event of type migration, with an associated description
using the EventOutcome concepts. The old and new components are related to the
event via source and outcome relations. Figure 4 provides an excerpt from an
example response.

Figure 5 presents an excerpt of the XML Schema Definition (XSD) schema defining
the format of the response sent by this method. The types of changes are encoded as

Figure 4.
Fragments of an

XSD schema defining
format of the
response for

getChangesSince
method

Figure 5.
Description detailing
the changes made to

the system by
replacing Oracle Java

version 1.6 with 1.7

335

Web service
dependent
repository

systems

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
2:

54
 0

1 
N

ov
em

be
r 

20
16

 (
PT

)

http://www.emeraldinsight.com/action/showImage?doi=10.1108/IJWIS-04-2015-0011&iName=master.img-003.jpg&w=343&h=159
http://www.emeraldinsight.com/action/showImage?doi=10.1108/IJWIS-04-2015-0011&iName=master.img-004.jpg&w=343&h=129


enumerations, and the ontology with a list of changes is provided as a string directly in
the body of the response.

4.5 getContact()
This method has no input parameters. The output provides contact details using entities
from the UDDI schema. The following information is returned:

• Organisation: Name of the organisation owning the WS.
• Person name: Name of the person to be contacted, it is not necessarily identical

with the WS owner.
• Message: Optional message from the contact person.
• Phone: Optional phone number.
• Email: Email address used for contacting.
• Address: Optional address.

5. Implementation
Industry uptake of a new standard can be a slow process. Thus, we propose two
approaches to make our proposed RWS easier and quicker to be deployed. The first
approach is by providing an external registry that monitors the service and its
behaviour, and thus can provide some of the resilient methods without any need for
modification of the original service. This will be described in detail in Section 5.1. The
second approach is in providing tools to the service owner to quickly transform an
existing service to a resilient service, by deploying it on top of a framework that already
implements most resilient methods; we show this in Section 5.2 with a prototype
implemented in Java.

5.1 External registry
To allow resilient methods to be provided on top of an existing service, without
requiring any changes in the service or its deployment, we propose the concept of an
external registry, which sends notifications to the service consumer. The main task of
the registry is the decoration (design pattern) of existing WSs with resilient methods.
The registry is a service provided by a third party. Such an approach should
substantially increase the acceptance of RWS among service operators and, thus,
considerably decrease the adoption time. In this section, we, therefore, discuss how such
a registry works, what actions are required from the parties involved and in what way
it can be implemented.

Figure 6 illustrates the process of converting a WS into an RWS using the registry.
There are three actors involved: the WS provider, the WS consumer and the registry
operator. When using traditional WSs, the WS provider publishes a WSDL specification
of the WS, and the consumer uses it to establish a connection to the WS. In the approach
utilising the registry, the communication is still realised directly between the provider
and the consumer, but the consumer obtains information about the port bindings from a
different WSDL definition that is provided by the registry operator. The WSDL that is
obtained from the registry consists of two logical parts. The first one is generated using
the original WSDL file of a given WS, by verbatim copying information about the WS
methods. The second one provides bindings to the resilient methods provided by the
registry. Thus, no changes at the side of WS provider are required. Furthermore, the

IJWIS
11,3

336

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
2:

54
 0

1 
N

ov
em

be
r 

20
16

 (
PT

)



communication between the provider and consumer remains unaltered, and therefore,
no unnecessary complexity is added.

The data provided by the resilient methods consist of two types of information: static
and dynamic. The static information is provided once when a given WS is registered at
the registry. This is only possible when the registration is made by the WS provider
because they have the necessary knowledge about the WS. An example of such a static
information that can only be provided by the WS owner is the expiration date. The
active information comes from the monitoring of the registered WS. This functionality
is provided regardless of who registered the WS. Both provider and consumer can
register the WS; however, it is recommended that the registration is made by the WS
owner because more resilient methods can be used.

The active information provided by resilient methods of the registry come from
monitoring that can be implemented using the WSMF described in Section 3. However,
the implementation described in Miksa et al. (2015), which uses network packet
capturing to collect data used for monitoring, cannot be applied in case of the registry.
This is because the registry is provided by a third party and, therefore, does not have a
direct access to the network interface of the service consumer. For this reason, two
alternative approaches can be used. Either a set of synthetically generated requests can
be used, as described in the study by Bartolini et al. (2009), to query the original WS and
collect responses, or the proxy mechanisms described in Section 3 can be applied.

We implemented the proposed registry in Java and made use of the aforementioned
monitoring tool using the proxy mode.

We simulated changes on a number of WSs for which we had access to the source
code, to detect all types listed in Table I.

5.2 On-site monitoring
In a second approach towards implementing RWS, we deploy certain components
directly on site of the WS provider. Compared to the purely register-based approach, this
setup allows us to detect potential causes for service changes directly in the
environment, for example, changes in the hardware or software setup that might
influence the functionality of the WS. Thus, we can trigger in a more informed way when
we have to run our monitoring again, and if changes occurred, the likely source can be
specified (Table II).

Most of the resilient methods introduced in Section 4 do not require an
implementation specific to a given WS. As such, the hardware or software setup of the

Figure 6.
Business process

model, depicting the
transformation of a

WS into an RWS

337

Web service
dependent
repository

systems

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
2:

54
 0

1 
N

ov
em

be
r 

20
16

 (
PT

)

http://www.emeraldinsight.com/action/showImage?doi=10.1108/IJWIS-04-2015-0011&iName=master.img-005.jpg&w=289&h=119


machine can be determined via methods that are generic, regardless of the actual
implementation of the WS, but can be determined in the same or similar fashion for all
WSs using, for example, the same type of operating system. Some methods may depend
on the specific programming language used for implementing a WS, e.g. the type of
libraries that can be utilised, and the way they are declared as dependencies, but again,
these aspects can be generalised for WSs using the same type of development platform.
Therefore, we can provide an implementation of many of the resilient methods tailored
for a specific platform or programming language. These implementations can then be
used by the service provider to augment the service to become an RWS.

In Miksa et al. (2014), we provided an example of such a resilient Application
Programming Interface (API) for the Java programming language using publicly
available frameworks like platform-independent SIGAR framework[2], or utilities such
as LHW[3] for Linux. In Section 6.2, we demonstrate another way in which on-site
monitoring can be implemented.

5.3 Client side implementation
Once the WS has been upgraded into an RWS, the service consumer needs to implement
support for resilient methods. This implementation can, for example, be similar to the
exception handling mechanisms used in programming languages.

Because of the fact that the WS communication is asymmetrical, i.e. the provider
cannot provide any information without any prior request, the WS consumer must
implement a method that regularly polls the resilient method getChangesSince() that
provides information whether there was a change to the WS, and if so what kind of a
change it was. Depending on the kind of change detected, a corresponding scenario can
be performed; for example, the execution of the processes using this WS can be stopped,
or the WS can be substituted with another. Additional information provided by other
resilient methods may also be useful in selecting appropriate recovery solution. An
overhead resulting from the necessity of these improvements should be acceptable by
the WS consumers because they are the main beneficiaries of the RWS. An alternative
implementation may use push-style notifications to propagate information on changes,
for example, email. The advantage of such an implementation is the fact that no polling
for changes is required. On the other hand, the client needs to support additional
communication protocols (not only Simple Object Access Protocol).

Table II.
Support of resilient
methods in different
deployment
scenarios

Method External registry On-site monitoring

identifyYourself() Y Y
getContact() Y Y
minAvailabilityDate() Y Y
getSystemEnv() N Y

getChangesSince() � Y
change type N Y
change description N Y
environment changes list N Y

IJWIS
11,3

338

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
2:

54
 0

1 
N

ov
em

be
r 

20
16

 (
PT

)



6. Use case-specific implementation
In this section, we describe application of RWS on-site monitoring on a Phaidra
repository system. We chose this use case because it is a representative of other
repository systems that are also built following SOA. The domain of digital
preservation, in which repositories operate, puts special attention to maintaining the
high level of trust that the accessed objects are faithfully presented and, therefore,
can be interpreted correctly.

In Section 6.1, we describe the architecture, role of WSs and the organisational setting
of the use case. In Section 6.2, we describe how we introduced the RWS and the WSMF
into the existing system, while minimising the additional effort by reusing as much as
possible already existing system components and models.

6.1 Phaidra repository system
The repository system described here is a university-wide digital asset management
system with long-term archiving functions. Students, researchers and co-operators with
the proper authorisation can upload and link the objects which, among others, can be
text, image and audio files in multiple formats.

6.1.1 Architecture. The system consists of two main components, the backend and
the frontend. The backend is realised with the use of Fedora Commons[4], which is
an open-source system that allows for storing, managing and accessing digital
objects. The web frontend is responsible for the presentation of contents or editing
of metadata. The frontend was developed at the university. The frontend interacts
with the Fedora repository through the Fedora API, as seen in Figure 7. The backend
may also interact with other systems to obtain the content stored on different
servers (distributed content) or may use WSs to get additional information about the
contents or to perform data transformation (e.g. format conversion, video
streaming). These services are of particular interest because they may change in
different ways and, therefore, alter the information and the content delivered to the
end users of the repository system. For example, a scientific paper can be stored in
the Fedora repository in three formats – HTML, PDF and TEX – and all of them will
be grouped under one digital object. No disseminators (services performing
operations on content) will be used to transform the content because the content will
be provided at the moment of creation of the digital object. However, the same final

Figure 7.
Backend (Fedora) as

a mediator for
services and content

339

Web service
dependent
repository

systems

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
2:

54
 0

1 
N

ov
em

be
r 

20
16

 (
PT

)

http://www.emeraldinsight.com/action/showImage?doi=10.1108/IJWIS-04-2015-0011&iName=master.img-006.jpg&w=311&h=142


(visible to the end user) result could be obtained with the use of disseminators. It
would be possible to store, for example, only the TEX file and use WSs to generate
on demand a PDF or HTML version of the document. The second solution introduces
dependency on the services (disseminators). Such dependencies are unavoidable in
case of interactive contents, like interactive art, games and computer programmes,
which need a special environment to render these artefacts, or when the original file
format becomes obsolete and must be transformed into the one that user can work
with.

One of the services in use is the image converter that is used every time users access
a web page with a summary about a digital document. For example, if the user browses
through a collection of PDFs and opens one of them, then they are presented with a
preview of the first page of the paper which is a PNG file generated from the first page
of the original file. This is achieved with the use of ImageMagick[5] and the
corresponding Perl module which needs to be installed in the operating system
underlying the repository system. If a different version of ImageMagick is used, it may
happen that the conversion may result in a different output. Other examples of services
are the video streaming service and the book viewer service.

6.1.2 Organisational context. Phaidra can be used by any institution on the condition
that this institution joins the community of Phaidra users. The community is a forum to
share experiences and work jointly on improving the system. Phaidra is a common
product for all of the stakeholders, but each of them runs their own installation. Each of
them may have different requirements and, therefore, may develop different features
(services) independently, but is always obliged to share these new functionalities with
other members. Therefore, it is possible that some of the WSs hosted at one of the
instances of the system are used by one of the other partners. The consortium agreement
does not specify any formal agreements considering SLA of shared services. To ensure
that any changes that may occur in the service hosted by other consortium member do
not affect the given Phaidra installation, a mechanism that monitors the service is
needed. Therefore, we proposed to use the RWS and WSMF.

6.2 RWS on-site monitoring
In this section, we describe how we implemented the on-site monitoring for an existing
WS, thus converting it into an RWS. We present actions not only taken on the side of the
service provider but also describe in what way the service consumer can automatically
process the information provided by the RWS methods. For this experiment, we used
two virtualised instances of Phaidra: one for the service provider and one for the service
consumer. Thus, we have two independent instances having one common service, which
is image converter service.

6.2.1 Available auxiliary resources. We start by describing already existing resources
that will be used during the implementation of RWS mechanisms, namely, an instance of
the TIMBUS context model and unit tests.

The structure of Phaidra is represented using the context model. It provides a
comprehensive view of the system, taking into account the high-level business layer,
which depicts the typical usage scenarios of the system, and also the infrastructure
layer, which describes particular software and hardware needed to perform these steps.
Thanks to such a binding, one can see which resources are needed to perform particular
steps. For example, one can identify when the image converter service is used and what

IJWIS
11,3

340

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
2:

54
 0

1 
N

ov
em

be
r 

20
16

 (
PT

)



libraries and software are involved to operate the service. The business-level
components of the model were modelled once at the beginning when the model was
created, the infrastructure-level components are provided by software extractors that
analyse the system and encapsulate the information about current configuration into
dedicated ontologies that are later linked to the initially created model. The model is
updated always when any change takes place, and hence, it corresponds to the current
state of the system. Owing to the fact that the context model already existed, we decided
to use it for implementation of RWS to minimise the effort.

For the reason that the major part of the system (frontend) was developed by one of
the consortium members, we were also provided with unit tests that are used to verify
the systems functionality and validate the correctness of returned results. The tests are
implemented using JUnit[6], a Java framework for test automation, and using
Selenium[7], which is a framework for automation of interaction with the web browser,
but also capable of validating website contents, taking screenshots, etc. The tests
scenarios overlap to a great extent with the typical usage scenarios that were modelled
in the context model business layer. Later in this section, we describe how we use these
tests on the consumer side of the RWS.

6.2.2 RWS deployment. We started the transformation of the image converter service
into an RWS, by converting it from the REST WS into a WSDL WS. This required the
creation of a WSDL file and minor changes in the system setup, so that a different
type of WS can be used. At this step, we already included the RWS methods in the
service WSDL file. All these changes were reflected in the Phaidra’s context model.

In the next step, we deployed the WSMF on the Phaidra server. The WSMF was
configured to capture live traffic from the network interface and to collect the evidence
for the analysed WS. Thus, we created the ground truth data that are later needed for the
evaluation of the impact of changes on the WS performance. The results of this
assessment are used by the getChangesSince RWS method to provide information about
changes. We used the context model of the system to provide information about its
environment through the getSystemEnv method. Obviously, we did not expose all of the
information from the context model because this would not only be very insecure but
would also simply overload the consumers with details potentially not important to
them. Instead, we used Apache Jena[8] and a set of pre-defined SPARQL[9] queries that
filter the information about core components of the system and their versions.
Furthermore, only these resources that have impact on the functioning of the service are
provided. Thus, information relevant only for the given WS is provided. We use the fact
that the context model ontology has mapping to the PREMIS ontology, and therefore, we
can easily convert the results of queries into corresponding format.

On the consumer side, we adapted the system to use the WSDL WSs (by copying the
related modified components from the provider instance) and added implementation
making use of RWS methods of the provider. We introduced systematic polling for
changes by calling getChangesSince method. When the returned result states that there
was a change, but the performance of the RWS is unchanged, then no actions are
triggered. This could be the case, when the system is modified, but the change of
components has no impact on the RWS. In cases when, the change was detected, the
method triggers execution of JUnit test cases that check whether this alteration has
impact on the final experience of the user. For example, the change resulted in slower
execution of the service, but the threshold defined in the unit tests has not been reached,

341

Web service
dependent
repository

systems

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
2:

54
 0

1 
N

ov
em

be
r 

20
16

 (
PT

)



and therefore, the alteration is acceptable. Finally, in case when there was a change
detected and the unit tests fail, then a notification is sent to the consumer instance
operator, including the change description and list of changes of the RWS.

6.2.3 Experiment. To test the proposed set up, we performed an experiment by
updating all Debian packages of the operating system underlying the image converter
RWS. Being logged in as root user, we performed the aptitude update command and then
aptitude safe-upgrade. As a result, we updated 148 packages. We ran Debian packages
extractor to identify these changes. There is no need to run other extractors because the
other parts of the system, for example, Phaidra’s code, itself were not modified.
However, in settings when we cannot determine to what extent the environment can
differ, all extractors have to be run again. The output of the Debian packages extractor
provides an ontology describing all installed packages (including their cross-
dependencies) in the system.

To identify which packages that have been modified could have an effect on the
RWS, we run a tool for comparison of ontologies. We compared the ontology describing
installed packages before and after updating system. The tool produced two output files,
first one with individuals added to the original ontology and the second one with the
individuals removed from the original ontology. For each individual representing a
package that was added to the system, we checked in the updated context model,
whether the individual was a dependency to the RWS, if so, then it was added to the list
of changes that would be provided through RWS methods if a change was detected. In
the next step, the WSMF execution was triggered, the requests collected in the ground
truth data were re-sent and the obtained responses were compared with the ground truth
data responses. The whole process starting from running the extractor through making
an ontology comparison and identifying packages that may affect the RWS was scripted
and performed automatically.

During our experiment, we identified a perlmagick8-6.7.7.10-5�deb7u2 package
that could have an impact on the image converter service, but the WSMF did not detect
any changes. Therefore, the RWS methods classified this as a change with no effect. On
the consumer side, the active polling detected the change, but triggered no actions
because the change is not affecting the performance of the system.

The experiment has shown that there are many ways in which the RWS can be
implemented. We demonstrated that the reuse of already existing tests and system
models can significantly ease and facilitate RWS implementation. In other systems and
other applications, potentially different set of auxiliary resources is available that can be
used to implement the RWS.

7. Discussion
There are several different usage scenarios for the deployment of RWS, with
different actors and roles involved. On the one hand, there is a potential
differentiation on who is registering a service at an external registry. In the ideal
case, the service owner is performing this task, but there might also be cases where
the service owner is not registering the service himself. In such a case, a service
consumer might be allowed to register the service. Such a situation will also imply
limited functionality of resilient methods – basically only the getChangesSince
method is available, as all the meta-data that the service owner would be providing
(availability, contact, etc.) is missing.

IJWIS
11,3

342

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
2:

54
 0

1 
N

ov
em

be
r 

20
16

 (
PT

)



Another distinction might be if the WS provider is hosting the service using
services from a third party, e.g. Infrastructure as a Service (IaaS) or Platform as a
Service (PaaS). In such a scenario, the IaaS or PaaS provider is the only one to
provide certain information needed for the on-site monitoring and the getSystemEnv
method, and thus, the WS provider would become a consumer of this information
from the hosting provider.

WSs are sometimes used to create mash-ups combining functionality of various
WSs, thus providing a new service. If the RWS are used to create such a mash-up,
then it is possible to forward information on changes from the RWSs used to create
it to the mash-up. Hence, the mash-up is also an RWS. In this scenario, the mash-up
owner uses the getChangesSince() method to receive notifications on changes from
the dependent RWSs. Such an RWS chaining is possible regardless of the
implementation of the RWS. The mash-up owner needs to design mechanisms to
handle notifications from dependent RWSs and add the resilient methods to the
interface of his mash-up. The mash-up owner does not have to use the registry nor
the on-site tools suite, as long as he does not provide any new in-house developed
methods that do not depend on RWSs.

Another important aspect, especially in the getSystemEnv method, is security.
Exposing the exact hardware and software setup to anyone on the Internet might
introduce security risks, as potential attack vectors based on vulnerabilities in the
hardware, operating system or other software components are easier to identify. Thus,
in many scenarios, it might be useful to restrict the information provided by, or the
access to, the getSystemEnv method.

Other security-related concerns are also of importance. For example, encryption
of the WS with one-time keys requires that the monitoring framework can still
understand the messages exchanged. Also, tokens or authentication mechanisms
that might prevent replaying of messages need to be considered. While these aspects
can be easily circumvented with the consent of the parties involved, their
commitment that this is desired and allowed needs to be explicit, and the monitoring
framework by default is not configured to perform such man-in-the-middle
approaches.

8. Conclusions
In this paper, we discussed issues of ensuring continuous and faithful execution of
processes in environments that use distributed services to perform tasks. We
focussed on WSs as one typical representative. We analysed potential changes
stemming from WSs that impact business continuity. Monitoring and testing of
WSs, as well as extension mechanisms enriching the WSs with additional
information on their behaviour and availability were investigated. Furthermore, a
use-case implementation for a digital repository system was presented.

Our work put special attention to the recently proposed extension of WSs, namely the
RWS. We provided a detailed specification of the resilient methods, ans described two
alternative implementations that should ease its uptake and make the deployment
easier. The first approach using an external RWS registry allows converting any WS
into an RWS without modification at the service provider site. For that purpose we
provided an enhanced implementation of the existing WSMF that uses proxy mode to
intercept communication. The second approach is an on-site monitoring tools suite that

343

Web service
dependent
repository

systems

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
2:

54
 0

1 
N

ov
em

be
r 

20
16

 (
PT

)



enables full utilisation of resilient methods including information automatically
collected from the underlying system.

We tested this solution by applying it in a use case of a digital repository system,
where that repository system uses WSs to perform some if its tasks. We monitored
the impact of the system libraries updates on the performance of the WS using the
monitoring framework to identify any changes that may affect the consumers using
the RWS. By using the Context Model of the system, we were able to provide
information on changes relevant to the specific consumers. Both of the solutions are
capable of providing notification on changes to the WS consumer and thus
contribute significantly to the minimisation of the impact of changes in the ICT
infrastructure on the business processes. Although the discussion in this paper
focussed on WSs, the solutions proposed here can also be applied in other
implementations of distributed computing environments.

Currently, we are working on a catalogue of policies that express requirements for the
WS owners who are willing to convert their services into RWS. Thus, we want to ensure
that all of the independent implementations of RWS conform to its definition and
provide reliable information to its consumers.

Notes
1. http://id.loc.gov/ontologies/premis.html#

2. www.hyperic.com/products/sigar;

3. http://ezix.org/project/wiki/HardwareLiSter

4. www.fedora-commons.org

5. www.imagemagick.org

6. JUnit: http://junit.org

7. SeleniumHQ: www.seleniumhq.org

8. Apache Jena: https://jena.apache.org

9. SPARQL: www.w3.org/TR/rdf-sparql-query/; July 1, 2015.

References
Bartolini, C., Bertolino, A., Marchetti, E. and Polini, A. (2009), “WS-Taxi: a WSDL-based testing

tool for web services”, ICST 09 International Conference on Software Testing Verification
and Validation, Denver, CO, pp. 326-335.

Cao, T.D., Castanet, R., Felix, P. and Morales, G. (2011), “Testing of web services: tools and
experiments”, Services Computing Conference (APSCC), 2011 IEEE Asia-Pacific,
Washington, DC, pp. 78-85.

Cao, T.D., Felix, P., Castanet, R. and Berrada, I. (2010), “Online testing framework for web
services”, Third International Conference on Software Testing, Verification and
Validation (ICST), Paris, pp. 363-372.

Comuzzi, M. and Pernici, B. (2009), “A framework for QoS-based web service contracting”, ACM
Transactions on the Web, Vol. 3 No. 3, pp. 1-52, available at: http://doi.acm.org/10.1145/15
41822.1541825

IJWIS
11,3

344

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
2:

54
 0

1 
N

ov
em

be
r 

20
16

 (
PT

)

http://id.loc.gov/ontologies/premis.html%23
http://www.hyperic.com/products/sigar
http://ezix.org/project/wiki/HardwareLiSter
http://www.fedora-commons.org
http://www.imagemagick.org
http://junit.org
http://www.seleniumhq.org
https://jena.apache.org
http://www.w3.org/TR/rdf-sparql-query/
http://doi.acm.org/10.1145/1541822.1541825
http://doi.acm.org/10.1145/1541822.1541825
http://www.emeraldinsight.com/action/showLinks?crossref=10.1109%2FICST.2010.11
http://www.emeraldinsight.com/action/showLinks?crossref=10.1109%2FICST.2010.11
http://www.emeraldinsight.com/action/showLinks?crossref=10.1145%2F1541822.1541825
http://www.emeraldinsight.com/action/showLinks?crossref=10.1109%2FICST.2009.28
http://www.emeraldinsight.com/action/showLinks?crossref=10.1145%2F1541822.1541825
http://www.emeraldinsight.com/action/showLinks?crossref=10.1109%2FICST.2009.28
http://www.emeraldinsight.com/action/showLinks?crossref=10.1109%2FAPSCC.2011.23


Dranidis, D., Ramollari, E. and Kourtesis, D. (2009), “Run-time verification of behavioural
conformance for conversational web services”, 7th IEEE European Conference on Web
Services (ECOWS), Eindhoven, pp. 139-147.

Fedora Commons Community (2007), “Fedora commons tutorial 2: getting started: creating fedora
objects using the content model architecture”, Technical Report, available at: http://fedora-
commons.org/documentation/3.0b1/userdocs/tutorials/tutorial2.pdf

Goel, N., Kumar, N.N. and Shyamasundar, R. (2011), “SLA monitor: a system for dynamic
monitoring of adaptive web services”, 9th IEEE European Conference on Web Services
(ECOWS), Lugano, pp. 109-116.

Goel, N. and Shyamasundar, R. (2010), “Automatic monitoring of SLAs of web services”, Services
Computing Conference (APSCC), 2010 IEEE Asia-Pacific, Tokyo, pp. 99-106.

Kalali, B., Alencar, P. and Cowan, D. (2003), “A service-oriented monitoring registry”,
Conference of the Centre for Advanced Studies on Collaborative Research (CASCON),
Toronto, Ontario, IBM Press, pp. 107-121, available at: http://dl.acm.org/citation.cfm?
id�961322.961340

Kaminski, P., Müller, H. and Litoiu, M. (2006), “A design for adaptive web service evolution”,
Proceedings of the 2006 International Workshop on Self-Adaptation and Self-Managing
Systems, SEAMS ’06, ACM, New York, NY, Shanghai, pp. 86-92, available: http://doi.acm.
org/10.1145/1137677.1137694

Liu, Y., Ngu, A.H. and Zeng, L.Z. (2004), “QoS computation and policing in dynamic web service
selection”, 13th International World Wide Web Conference, New York, NY, ACM, New
York, NY, pp. 66-73, available at: http://doi.acm.org/10.1145/1013367.1013379

McCoy, D.W. (2002), Business Activity Monitoring: Calm Before the Storm, Gartner Research,
Vol. LE-15-9727 (1 April 2002).

Mayer, R., Miksa, T. and Rauber, A. (2014), “Ontologies for describing the context of scientific
experiment processes”, Proceedings of the 10th International Conference on e-Science,
Guarujá, SP.

Mayer, R., Antunes, G., Caetano, A., Bakhshandeh, M., Rauber, A. and Borbinha, J. (2015), “Using
ontologies to capture the semantics of a (business) process for digital preservation”,
International Journal of Digital Libraries (IJDL), Vol. 15, pp. 129-152, available at: www.
springer.com/-/7/7e9c68c9a6ac468aaacd08a7827e82bf

Miksa, T., Mayer, R. and Rauber, A. (2015), “Ensuring sustainability of web services dependent
processes”, International Journal of Computational Science and Engineering (IJCSE),
Vol. 10 Nos 1/2, pp. 70-81.

Miksa, T., Mayer, R., Unterberger, M. and Rauber, A. (2014), “Resilient web services for timeless
business processes”, Proceedings of the 16th International Conference on Information
Integration and Web-based Applications & Services (iiWAS2014), Hanoi, pp. 243-252.

PREMIS Editorial Committee (2008), “Premis data dictionary for preservation metadata”,
Technical report, PREMIS Editorial Committee.

W3C Working Group (2003), “QoS for web services: requirements and possible approaches”,
available at: www.w3c.or.kr/kr-office/TR/2003/ws-qos/ (accessed 30 July 2014).

About the authors
Tomasz Miksa is Researcher at SBA Research. Currently, he is involved in the preservation of
business processes in the European Union-funded FP7 project TIMBUS. He is also a student of the
Vienna PhD School of Informatics, where he is conducting his research on e-science, digital

345

Web service
dependent
repository

systems

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
2:

54
 0

1 
N

ov
em

be
r 

20
16

 (
PT

)

http://fedora-commons.org/documentation/3.0b1/userdocs/tutorials/tutorial2.pdf
http://fedora-commons.org/documentation/3.0b1/userdocs/tutorials/tutorial2.pdf
http://dl.acm.org/citation.cfm?id=961322.961340
http://dl.acm.org/citation.cfm?id=961322.961340
http://doi.acm.org/10.1145/1137677.1137694
http://doi.acm.org/10.1145/1137677.1137694
http://doi.acm.org/10.1145/1013367.1013379
http://www.springer.com/-/7/7e9c68c9a6ac468aaacd08a7827e82bf
http://www.springer.com/-/7/7e9c68c9a6ac468aaacd08a7827e82bf
http://www.w3c.or.kr/kr-office/TR/2003/ws-qos/
http://www.emeraldinsight.com/action/showLinks?crossref=10.1145%2F1137677.1137694
http://www.emeraldinsight.com/action/showLinks?crossref=10.1007%2Fs00799-015-0141-7
http://www.emeraldinsight.com/action/showLinks?crossref=10.1145%2F1013367.1013379
http://www.emeraldinsight.com/action/showLinks?crossref=10.1109%2FECOWS.2011.22
http://www.emeraldinsight.com/action/showLinks?crossref=10.1109%2FECOWS.2011.22
http://www.emeraldinsight.com/action/showLinks?crossref=10.1504%2FIJCSE.2015.067058
http://www.emeraldinsight.com/action/showLinks?crossref=10.1109%2FAPSCC.2010.58
http://www.emeraldinsight.com/action/showLinks?crossref=10.1109%2FECOWS.2009.19
http://www.emeraldinsight.com/action/showLinks?crossref=10.1109%2FAPSCC.2010.58
http://www.emeraldinsight.com/action/showLinks?crossref=10.1109%2FECOWS.2009.19
http://www.emeraldinsight.com/action/showLinks?crossref=10.1145%2F2684200.2684281
http://www.emeraldinsight.com/action/showLinks?crossref=10.1145%2F2684200.2684281
http://www.emeraldinsight.com/action/showLinks?crossref=10.1109%2FeScience.2014.47
http://www.emeraldinsight.com/action/showLinks?crossref=10.1109%2FeScience.2014.47
http://www.emeraldinsight.com/action/showLinks?crossref=10.1145%2F1137677.1137694


preservation and research infrastructures. Tomasz Miksa is the corresponding author and can be
contacted at: miksa@ifs.tuwien.ac.at

Rudolf Mayer is Senior Researcher at SBA Research. Previously, he has worked at the Vienna
University of Technology, where he has been involved in numerous national and international
research projects on information retrieval, machine learning and digital preservation, including
DELOS, MUSCLE or PLANETS. His current research focus lies on the preservation of processes
in the European Union-funded FP7 projects TIMBUS and APARSEN.

Andreas Rauber is Associate Professor at the Department of Software Technology and
Interactive Systems at the Vienna University of Technology. His research interests cover the
broad scope of digital libraries and information spaces, including specifically text and music
information retrieval and organisation, information visualisation, as well as data analysis, neural
computation and digital preservation.

For instructions on how to order reprints of this article, please visit our website:
www.emeraldgrouppublishing.com/licensing/reprints.htm
Or contact us for further details: permissions@emeraldinsight.com

IJWIS
11,3

346

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
2:

54
 0

1 
N

ov
em

be
r 

20
16

 (
PT

)

mailto:miksa@ifs.tuwien.ac.at
mailto:permissions@emeraldinsight.com

	Raising resilience of web service dependent repository systems
	1. Introduction
	2. Related work
	2.1 Changes in WSs
	2.2 Monitoring
	2.3 WS extensions
	2.4 Analysis of changes

	3. WS monitoring framework
	4. Resilient web services
	4.1 minAvailabilityDate()
	4.2 identifyYourself()
	4.3 getSystemEnv()
	4.4 getChangesSince(DateTime)
	4.5 getContact()

	5. Implementation
	5.1 External registry
	5.2 On-site monitoring
	5.3 Client side implementation

	6. Use case-specific implementation
	6.1 Phaidra repository system
	6.1.1 Architecture
	6.1.2 Organisational context

	6.2 RWS on-site monitoring
	6.2.1 Available auxiliary resources
	6.2.2 RWS deployment
	6.2.3 Experiment


	7. Discussion
	8. Conclusions
	References


