The current issue and full text archive of this journal is available on Emerald Insight at:
www.emeraldinsight.com/2059-5816.htm

DLP
32,3

130

Received 4 May 2016
Accepted 4 May 2016

©

Emerald

Digital Library Perspectives

Vol. 32 No. 3, 2016

pp. 130-136

© Emerald Group Publishing Limited
2059-5816

DOI 10.1108/DLP-05-2016-0012

DIGITAL LIBRARIES: THE SYSTEMS
ANALYSIS PERSPECTIVE

Organized chaos

Robert Fox
University of Notre Dame, Notre Dame, Indiana, USA

Abstract

Purpose — There are valuable lessons that can be learned from the software industry regarding
process improvement. The modern library is now so closely wedded to technology that the way in which
services are implemented mirrors that of software development.

Design/methodology/approach — Several methodologies are explored and compared to processes
that involve the implementation of digital services in libraries.

Findings — Libraries have reconsidered how they might adopt various business practices to improve
service delivery.

Originality/value — This column advocates a study of software development methodologies that
have been adopted across the industry with the hope that lessons learned in the corporate world and also
in manufacturing could be of value to the digital library.

Keywords Process improvement, Software development, Agile methodology,

Iterative development, Software development methodology, Spiral development

Paper type Conceptual paper

It has become almost an obsession in modern culture to perseverate on method. There
are many synonyms for this obsession: process improvement, process maturity,
continuous improvement, business performance improvement, total productive
maintenance, quality management, etc. A contemporaneous bevy of seminars and
programs designed to help management teams to enable process improvement has also
been spawned that enables this obsession. Examples include the six sigma program and
the “Lean” programs that offer certifications or the ability to earn “belts” which are
analogous to the levels of advancement common to the martial arts. As an industry,
software development processes are also constantly under a certain level of scrutiny to
derive the highest levels of efficiency concerning time and effort.

Different types of currencies can be used to quantify various types of work. Currency
in this sense is used broadly to indicate a medium of exchange to achieve the optimal
outcome. Within the industry, aspects of production such as material usage, hourly
wages, overhead and time are examples of the currency used to measure the cost of
operations. Libraries have traditionally had a mix of operational work that takes
place on a daily basis, most of which involve somewhat complex processes that have for
the most part remained static for a long time. Certain operative activities, such as the
acquisition on materials, the handling of license agreements, the cataloging and storage
of large quantities of bibliographic materials, and the consequent circulation of physical
media are all process-based. Although most of these processes will continue into the

http://dx.doi.org/10.1108/DLP-05-2016-0012

foreseeable future, it is also clear that the modus operandi of libraries has shifted in some
cases en masse to the digital realm.

Examples of the shift are quite obvious. For instance, the means for consuming
academic articles has now almost exclusively become digital, whereas even 10 years
ago, this was hardly the case. However, what is not so obvious are the ways in which this
shift has transformed much of the daily operational work in libraries. Recent studies
have shown recognition of these changes and also a gap between what LIS educational
programs teach and what is desired or needed on the job. One interesting 2013 study
produced word clouds that visually indicate terms that represent areas where recent LIS
graduates either acknowledged an information gap or areas they felt would be critical to
library operations within the following five years (Emanuel, 2013). Some of the more
prevalent terms in the word clouds were: scripting, programming, XML, databases,
cloud, mobile, Web 2.0 and e-books. This indicates that although most librarians will
probably do a variety of tasks while on the job, there is a significant trend toward the
need to do work that has been relatively isolated to jobs that are characteristically
categorized as “information technology”. This trend is not isolated just to library
specialties such as systems work but broadly for all areas of library work.

As library science becomes wedded to information technology, methodologies in the
field need to evolve in an analogous manner. Leigh Estabrook notes presciently in his
2005 article “Crying Wolf: A Response” that:

Librarianship without a strong linkage to technology (and it’s capacity to extend our work)
will become a mastodon. Technology without reference to the core library principles of
information organization and access is deracinated (Leigh, 2005).

There are signs that the information science field is adopting certain business practices
that will be as advantageous for librarianship as they have been for other professions.
For example, the discipline of project management is becoming more of a mainstream
practice for larger library projects requiring extensive resources, time and effort (Avilés
et al., 2015). The need for coordination to meet changing needs is increasing as external
forces driving that change accelerate. Because the integration between library science
and information technology has become close-knit, this is an opportune time to take a
look at strategies that have been adopted by the broader IT community and have been
beneficial to that unique workflow.

Prism of methodologies

Since the 1960s, the IT industry has endeavored to perfect the overall process of
software development. The reasons for this are not that dissimilar from the reasons that
the manufacturing industry has taken a deep look into process improvement over the
past 50-60 years. One of the primary goals has been to try and eliminate waste and
churn, which can be significant depending on the manufacturing product. The same is
true for software implementation cycles. Although manufacturing and software
development seem very dissimilar, the need for process improvement is very much the
same, and the principles that can be applied are completely analogous.

A paper was published in 1970 by a software engineer from the Lockheed Software
Technology Center in Texas, which describes a more typical approach for I'T projects.
The engineer’s name was Winston Royce, and his article was entitled “Managing the
Development of Large Software Systems” (Winston, 1970). Royce had been involved

Organized
chaos

131

DLP
32,3

132

both as a project manager and a researcher in large and complex software projects for
the aerospace industry and wanted to share his insights about managing software
projects at that scale. The method he described, which was adopted widely by the
software industry, was coined the “waterfall” method based on the diagrams that
Royce used in his paper wherein the project phases were positioned to look like a
staircase proceeding from top to bottom. There are certain phases that are necessary to
any software project, whether that involves direct development or even implementation
that must be present for the project to be a success. As Royce pointed out, these phases
include requirements gathering, analysis, design, coding, testing and, finally,
operations. The process outlined by Royce is decidedly linear, which he admitted in the
context of the paper. In fact, he outlined one of the major problems with this method that
is manifested at the testing phase. By the time a product reaches testing, the
development team including designers and programmers has invested a significant
amount of effort toward the completion of the project. From their point of view, the
portion of work that has reached testing is feature complete and written according to
specifications. Testing can reveal two fundamental problems with a product at that
point, either the product is written according to specifications but is faulty in the
execution and, thus, requires refinement (e.g. bugs) or the product fails to address
the original requirements sufficiently and requires a new design. If the problems fall into
the latter category, then to a certain degree, the team will need to answer for waste: time
and energy that were expended on a product that must be abandoned. Royce states that
“In effect the development process has returned to the origin and one can expect up to a
100-per cent overrun in schedule and/or costs”. It is easy to imagine what those costs
could amount to in the aerospace industry.

Modern librarianship does not suffer from the pressure of cost overruns in the same
way that the engineering disciplines do. However, financial costs and time are real
commodities that have to be considered regarding new technical ventures that might be
undertaken. For example, the implementation of new systems that assist with the
acquisitions or cataloging (inventory) process can be costly and requires a tremendous
amount of time, for example, time required by budgetary and metadata specialists.
These needs have been addressed in the recent past by integrated library systems (ILSs)
that handle the majority of automation tasks necessary for library operations. The
transition to new systems, or less integrated systems, carries with it substantial
migration costs. The phases that Royce outlined still apply. Requirements need to be
carefully gathered, the design of the system must be studied, customizations may be
applied, bugs will be fixed and library operations are ultimately wed to the new system.
The process for engaging in this sort of transition usually simulates a waterfall method
and carries with it the same risks.

When the systems that Royce worked with were being developed, there were
substantial differences between the methods for automation then and what we can
accomplish now. Many similarities exist currently, particularly when complex
mechanical, chemical or electrical systems need to be integrated. But, we need to
consider the overhead that engineers would have dealt with in the aerospace industry to
fully understand Royce’s point of view. For example, we know that software systems
were used in missiles and aircraft (and still are to an even larger degree). However, the
software required to manage those complex pieces of machinery needs to be heavily
integrated with physical systems that are of an almost unimaginable level of

complexity. To even determine what can or should be automated, software engineers
need to work closely with scientists and other engineers who need to consider all
physical factors involved in developing those machines. The inputs and outputs for
those systems need to be considered very carefully and should be designed with
maximum precision. So, the initial requirements, analysis and design phases have an
elongated scope because of the intricacy of the subject. Using the waterfall method
described in Royce’s paper may, therefore, be appropriate for certain development
environments where a high degree of integration or complexity is involved.

Complexity of the subject matter is one factor that can be used to determine the
optimal methodology for IT projects, but it is one among many. Several other issues
have necessitated other approaches that vary in flexibility and commitment. These have
evolved over time to address new situations that have arisen in the software industry to
achieve a more complete level of compatibility between the needs of software
developers, consumers and product owners. As noted earlier, the problems that software
is trying to address may bring with them a very high level of complexity. However, as
software has become more mature, the inherent complexity of software itself has grown
in a commensurate manner. That inherent complexity drives the need to think of larger
software projects according to their components as opposed to the application as a
whole. This is also true for the more involved implementation projects such as the ILS
migration project mentioned earlier.

When larger projects are broken up into smaller components, it affords the team the
ability to treat those smaller components separately and proceed with micro-development
cycles that are concerned with just those components. Several methodologies have grown
out of this notion and are labeled in various ways, including prototyping, incremental
development and iterative development. The core idea with these methodologies is having
the micro-cycles running concurrently where design, coding and testing are done in rapid
succession. The feedback cycle allows the team to perfect one aspect of the overall
application without interfering in the work of the other aspects. This method also allows the
developers or operational staff to interact with users and product owners on a regular basis.
The positive effect of this is that the team can presumably avoid the situation described by
Royce as involving cost overruns because the corrective measures can be incorporated
during development instead of at the conclusion.

A close cousin of the iterative method is the spiral development method. This also
involves tight cycles of planning, development, testing and requirements gathering, but
the differentiating factor is risk assessment as each iteration takes place. Each cycle
brings with it several key indicators: the cumulative cost, prototypes for testing and user
engagement and further planning and review. At any point, the risk level may indicate
a varying course of action depending on the situation with the ultimate goal being final
implementation and release.

The latest evolution of iterative development came at the dawn of the twenty-first
century with the advent of agile software development. The primary driving factor of
the agile method is change. It embraces the need for iterative cycles and close
communication with product stakeholders and anticipates change by building in
flexibility. Prototypes are a key aspect of the agile method, but components are broken
down even further into features. The cycles of the phases outlined earlier are also
shortened, usually to a small window of time. Each team determines what that window
of time will be, and, by team, the agile method is referring to the product owners (or

Organized
chaos

133

DLP
32,3

134

sponsors), the developers, QA analysts, usability experts and the users themselves. All
stakeholders are included in the review phase, and the extremely short cycles are
designed to provide maximum mitigation against risk. Course corrections can be made
very quickly.

As previously stated, the agile method breaks applications, components and larger
aspects of the application down into feature sets. Flexibility is built into the cycles
through the focus on a minimum viable product for any given feature. Once the
minimum functionality is achieved, the team can proceed with feature enhancement.
This evolutionary way of writing software while building in feedback is almost
completely opposed to the waterfall method that was first described. In the waterfall
method, the end product is meticulously defined, and the outcomes and expectations are
set in stone as it were. The deliverables cannot be modified over time using waterfall
because it would undermine the previous phases in the process. This is effective when
nothing changes, including the environment, further research, the user base and other
factors. The assumption of the agile method is that this is never the case. If the opposite
1s assumed, then waste is practically guaranteed.

The Agile Manifesto[1] was written in 2001 by 17 software developers of high caliber
who had extensive experience working in the corporate sector as software engineers and
who also were proponents of lightweight methods for producing better software
products. The Manifesto is really a set of specific principles such as “The most efficient
and effective method of conveying information to and within a development team is
face-to-face conversation” and “Simplicity — the art of maximizing the amount of work
not done — is essential”. Keep in mind that these platitudes were born out of years of
experience and lessons learned. The true heart of agile thinking, though, is the focus on
the consumer of software. This is stated in a nutshell via the manifesto itself:

Individuals and interactions over processes and tools.
Working software over comprehensive documentation.
Customer collaboration over contract negotiation.
Responding to change over following a plan.

That is, while there is value in the items on the right, we value the items on the left more.

The agile mindset has been adopted by organizations with varying levels of success.
The original authors would probably agree wholeheartedly that the principles outlined
in the manifesto are more important than dogmatic adherence to a particular way of
doing business. Any method needs to be adapted to an environment to make it work. In
fact, this is one of the core principles of the agile mindset.

Focused and flexible

Although the principles outlined above have grown out of the general I'T workflow, it is
clear that they can also have a huge impact on the digital library. Any aspect of library
operations can benefit from process improvement, though the environment for large and
small libraries has changed. The gap between the customer or patron and the work of
service to those customers has diminished rapidly because of technology. Recalling
what was said earlier about the various necessary phases of software development, we

can see clear analogs in information science. There is both a symbolic and actual parallel
between service delivery; content delivery and access; and product development. From
a symbolic perspective, the services provided by a modern academic library are the core
deliverables we provide to patrons. From the concrete perspective, technology and
software applications are the typical means by which those services are made
accessible.

A recurring aspect of the methodologies outlined previously is that of iteration. This
is not a reference simply to practicing repetition until, almost by accident, the outcome
1s positive. The recursive nature of rapid prototyping, spiral development and agile
methodologies is very intentional regarding the focus on continuous communication
and feedback. Assumptions have been made that vendors, or software developers, or
even user experience analysts always have the right answer when it comes to breaking
down barriers between patrons and information provided by the library. This is a
wrong-headed assumption on several levels. First, every environment and institution is
unique. The values and the needs of those doing research are not monolithic and vary
according to institutional focus. Second, external parties are not in regular contact with
the true customer of library services, namely, the patrons. A vendor will view the
librarian as the customer. A software engineer will do the same under many
circumstances and in isolation. The proven methods of implementing digital services
and software products do not adhere to rigid processes or misplaced trust. Those
processes that truly work involve collaboration, and they must be able to adapt to
changing circumstances.

As with the agile manifesto, librarianship in the digital realm has a set of core
principles that cannot be abandoned. However, the means by which those principles are
embodied in products and services need to be flexible to remain relevant and effective. A
key aspect of being flexible is the adoption of techniques for software implementation
and development that encourage a tight feedback loop that can be acted upon. One of the
complaints of the manifesto authors was that dogged adherence to process got in
the way of communication. The same can be true in the library environment when the
patron is not consulted during important instances of decision-making. The feedback
loop has a tendency to be limited to the library and the software vendor, or the library,
and the software engineer or a combination thereof. This simulates the artificial barriers
constructed in the corporate setting where the project plan, initial requirements (or
worse, assumed requirements) and a timeline is doggedly adhered to without reference
to changing needs. It is always important to keep focused on well-intentioned goals, but
itis equally important to remain flexible and responsive vis-a-vis the ultimate consumers
of digital library services.

Note
1. See http://agilemanifesto.org/

References

Avilés, R.A., Marco-Cuenca, G., Serrano, S.C. and Simén, L.F.R. (2015), “Project management in
library and information science: an application in university library context”

Msdseigiiay, Pp. 405-1006.

Organized
chaos

135

http://agilemanifesto.org/
http://www.emeraldinsight.com/action/showLinks?crossref=10.4018%2F978-1-4666-7536-0.ch021
http://www.emeraldinsight.com/action/showLinks?crossref=10.4018%2F978-1-4666-7536-0.ch021
http://www.emeraldinsight.com/action/showLinks?crossref=10.4018%2F978-1-4666-7536-0.ch021

DLP
32,3

136

Emanuel, J. (2013), “Digital native librarians, technology skills, and their relationship with

technologv”, Digital Services & Reference Librarian, University of Illinois, Urbana,
IS ! 5 No. 5, pp. 203
Leigh, SE. (2005), “Crying Wolf: a response”, [[R

Sciguce, Vol. 46 No. 4, pp. 299-303.

Winston, W.R. (1970). “Managing the development of large software systems”, Technical Papers
of Western Electronic Show and Convention (WesCon), 25-28 August 1970, Los Angeles,
CA.

Corresponding author
Robert Fox can be contacted at: rfox2@nd.edu

For instructions on how to order reprints of this article, please visit our website:
www.emeraldgrouppublishing.com/licensing/reprints.htm
Or contact us for further details: permissions@emeraldinsight.com

mailto:rfox2@nd.edu
mailto:permissions@emeraldinsight.com
http://www.emeraldinsight.com/action/showLinks?crossref=10.6017%2Fital.v32i3.3811
http://www.emeraldinsight.com/action/showLinks?crossref=10.2307%2F40323909
http://www.emeraldinsight.com/action/showLinks?crossref=10.2307%2F40323909

	Organized chaos
	Prism of methodologies
	Focused and flexible
	References

