
Aslib Journal of Information Management
Efficient watcher based web crawler design
Saed ALQARALEH Omar RAMADAN Muhammed SALAMAH

Article information:
To cite this document:
Saed ALQARALEH Omar RAMADAN Muhammed SALAMAH , (2015),"Efficient watcher based web
crawler design", Aslib Journal of Information Management, Vol. 67 Iss 6 pp. 663 - 686
Permanent link to this document:
http://dx.doi.org/10.1108/AJIM-02-2015-0019

Downloaded on: 07 November 2016, At: 21:36 (PT)
References: this document contains references to 39 other documents.
To copy this document: permissions@emeraldinsight.com
The fulltext of this document has been downloaded 205 times since 2015*

Users who downloaded this article also downloaded:
(2015),"The role of arXiv, RePEc, SSRN and PMC in formal scholarly communication", Aslib Journal
of Information Management, Vol. 67 Iss 6 pp. 614-635 http://dx.doi.org/10.1108/AJIM-03-2015-0049
(2015),"Two ' s company, but three ' s no crowd: Evaluating exploratory web search for
individuals and teams", Aslib Journal of Information Management, Vol. 67 Iss 6 pp. 636-662 http://
dx.doi.org/10.1108/AJIM-05-2015-0082

Access to this document was granted through an Emerald subscription provided by emerald-
srm:563821 []

For Authors
If you would like to write for this, or any other Emerald publication, then please use our Emerald
for Authors service information about how to choose which publication to write for and submission
guidelines are available for all. Please visit www.emeraldinsight.com/authors for more information.

About Emerald www.emeraldinsight.com
Emerald is a global publisher linking research and practice to the benefit of society. The company
manages a portfolio of more than 290 journals and over 2,350 books and book series volumes, as
well as providing an extensive range of online products and additional customer resources and
services.

Emerald is both COUNTER 4 and TRANSFER compliant. The organization is a partner of the
Committee on Publication Ethics (COPE) and also works with Portico and the LOCKSS initiative for
digital archive preservation.

*Related content and download information correct at time of download.

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
1:

36
 0

7 
N

ov
em

be
r 

20
16

 (
PT

)

http://dx.doi.org/10.1108/AJIM-02-2015-0019


Efficient watcher based web
crawler design

Saed Alqaraleh, Omar Ramadan and Muhammed Salamah
Eastern Mediterranean University, Famagusta, Turkey

Abstract
Purpose – The purpose of this paper is to design a watcher-based crawler (WBC) that has the
ability of crawling static and dynamic web sites, and can download only the updated and newly added
web pages.
Design/methodology/approach – In the proposed WBC crawler, a watcher file, which can be
uploaded to the web sites servers, prepares a report that contains the addresses of the updated and the
newly added web pages. In addition, the WBC is split into five units, where each unit is responsible for
performing a specific crawling process.
Findings – Several experiments have been conducted and it has been observed that the proposed
WBC increases the number of uniquely visited static and dynamic web sites as compared with
the existing crawling techniques. In addition, the proposed watcher file not only allows the crawlers
to visit the updated and newly web pages, but also solves the crawlers overlapping and
communication problems.
Originality/value – The proposed WBC performs all crawling processes in the sense that it detects
all updated and newly added pages automatically without any human explicit intervention or
downloading the entire web sites.
Keywords Information retrieval, Search engine, AJAX crawler, Crawler re-visiting policies,
Crawling algorithm, Static crawler
Paper type Research paper

1. Introduction
Nowadays, the search engine crawlers, which are used to collect information in a
routinely manner, have been considered to be one of the most important search engine
components. It is an automatic web object retrieval system that exploits the web’s link
structure. It has two primary goals: first, finding new web objects; and second,
observing changes in previously discovered web objects (Agarwal et al., 2012; Uzun
et al., 2013; Amolochitis et al., 2013). To achieve the first goal, the crawler has to visit as
many web sites as possible, and to achieve the second goal, the crawler has to maintain
the freshness of the previously visited web sites, which can be achieved by re-visiting
such web sites in a routinely manner. In the following, the most frequently used
re-visiting policies are summarized:

(1) Uniform policy: in this policy, the entire web sites are downloaded at each visit
(Bhute and Meshram, 2010; Pichler et al., 2011; Leng et al., 2011; Sharma et al.,
2012; Singh and Vikasn, 2014). Although this approach enriches the databases,
it requires a large processing time.

(2) Proportional policy: this policy is performed in many ways, such as:
• Downloading only the pages that have a rank more than a threshold

value specified by the crawler administrator (Bhute and Meshram, 2010; Aslib Journal of Information
Management

Vol. 67 No. 6, 2015
pp. 663-686

©Emerald Group Publishing Limited
2050-3806

DOI 10.1108/AJIM-02-2015-0019

Received 10 February 2015
Revised 11 September 2015
Accepted 23 September 2015

The current issue and full text archive of this journal is available on Emerald Insight at:
www.emeraldinsight.com/2050-3806.htm

The authors would like to thank Assistant Professor Dr Yıltan Bitirim (Eastern Mediterranean
University) for his valuable suggestions and comments that greatly improved the manuscript.

663

Efficient
watcher based
web crawler

design

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
1:

36
 0

7 
N

ov
em

be
r 

20
16

 (
PT

)



Pichler et al., 2011; Leng et al., 2011). The rank of a page is based on the
importance and the frequency of updating that page.

• Downloading the web pages allocated in the top N levels of each web site
(Pichler et al., 2011; Cho et al., 2012). In general, this type of proportional
policy which is based on breadth first algorithm, involves visiting the main
page (root) of the web site, and downloading only the pages that have URL
links or allocated in the top N levels. This helps the crawler to avoid
exploring too deeply into any visited web site (Olston and Najork, 2010).

It is important to note that the time required for re-visiting a web site for the proportional
policy is significantly less than the uniform policy. On the other hand, the proportional
policy may ignore visiting the new web pages, as their rank is initially low, and it may
also ignore the updated web pages which are not allocated on top N levels.

In recent years, rich internet applications (RIAs) (Bruno, 2006), that enhance and
support the accessibility of scripted and dynamic contents, become more and more
popular. AJAX, which is a group of interrelated techniques that can be used on the
client side to create asynchronous web applications, can be considered as the most
popular technique used in RIAs (Bruno, 2006).

From the above survey, it can be concluded that the web pages can be categorized
into the following two categorizes: static and dynamic web pages. In the static case,
web pages are allocated in the web site’s server and delivered to the user exactly as
stored on the server web site (Cui et al., 2013). In the dynamic case, the web pages use
the AJAX techniques. In addition, triggering AJAX events may dynamically introduce
new pages, known as states, and in most cases these pages are not allocated on the
server. It should be noted that the process of updating static pages can be done by
editing and changing the contents of the file offline. On the other hand, the content of
AJAX pages can be generated and updated dynamically (online) without reloading the
whole page or changing the URL.

1.1 Crawlers challenging problems
In this section, the crawler challenging problems are summarized. First, most of
current crawler techniques cannot detect the updated pages online (Agarwal et al.,
2012; Uzun et al., 2013; Amolochitis et al., 2013), and this will require the crawler to
download all the web pages to detect the updated ones. Second, overlapping problem
occur when more than one crawler process the same web page. Third, up to our
knowledge, most of the crawling techniques require communication between the
running crawlers which increases the crawling processing time and requires
high-quality networks (Mukhopadhyay et al., 2006; Wu and Lai, 2010; Kumar and
Neelima, 2011; Agarwal et al., 2012; Amolochitis et al., 2013; Uzun et al., 2013). The
fourth crawling problem is that the conventional crawlers work is based on the URLs,
and download only the pages that are allocated on the web site server, and therefore,
they are inefficient when dealing with AJAX pages, as they cannot index the web
sites dynamic information (Mishra et al., 2010; Nath and Bal, 2011; Bhushan et al.,
2012). In addition to the above static crawling problems, AJAX crawling techniques
are still suffering from several challenging problems such as the following: first,
identifying web page’s states – in some cases, in order to identify the page states the
AJAX events need to be triggered, and this may lead to change the content of the
corresponding page without changing the page URL, and such page will be
recognized as one of the page’s states. Second, as AJAX technique contains many

664

AJIM
67,6

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
1:

36
 0

7 
N

ov
em

be
r 

20
16

 (
PT

)



events, triggering all page events will lead to a very large number of states and in
some cases, more than one event may lead to the same state, and this will be
considered as duplicated states. For example, by clicking the “next” tab in page (i−1)
and clicking the “previous” tab in page (i+1), both will lead to the same page (i),
i.e., the same state (Duda et al., 2009).

1.2 Related work
In the last decade, several developments in the web crawler field have been introduced.
Mukhopadhyay et al. (2006) introduced a dynamic parallel web crawler based on client-
server model, named as WEB-SAILOR. This approach eliminates the communication
between the running crawlers by introducing a seed-server which is responsible for the
crawling decisions. Wu and Lai (2010) studied a crawler based on the cluster
environment. In this approach, a new distributed controller pattern and dynamic
assignment structure were used. Kumar and Neelima (2011) implemented a new
crawler, named as DCrawler. In this crawler a new assignment function is used for
partitioning the domain between the crawlers. Amin et al. (2012) proposed a scalable
web crawling system, named as WEBTracker, to increase the number of visited pages
by making use of distributed environment. Topic specific crawlers, also known as
focussed crawlers have been developed in Mukhopadhyay and Sinha (2008) and Yang
et al. (2009). This type of crawlers downloads only web pages that are relevant to one or
more pre-defined topics.

Although the above approaches have improved the performance of web crawlers,
the number of web sites that can be processed by the crawlers is still limited compared
with the current huge number of published web sites. In addition, the conventional
crawler techniques require downloading all web site pages to find the updated ones,
and this will increase the internet traffic and the bandwidth consumption. It has been
found that approximately 40 percent of the current internet traffic, bandwidth
consumption and web requests are due to search engine crawlers (Mishra et al., 2010;
Nath and Bal, 2011). To solve this issue, mobile crawlers (Mishra et al., 2010; Nath and
Bal, 2011) and sitemaps-based crawlers (Schonfeld and Shivakumar, 2009; Bhushan
et al., 2012; Brawer et al., 2013) were introduced. The details of these two techniques are
explained below:

(1) Mobile crawlers: unlike the conventional crawlers, mobile crawlers go through
the servers of the URLs in its frontier to detect and store in its memory the
required data such as the updated pages. This mechanism reduces the amount
of data transferred over the network and therefore, decrease the network load
caused by the crawlers. However, mobile crawling techniques are not widely
used due to the following problems: first, mobile crawlers occupy large portions
of the visited web site resources such as memory, the network bandwidth and
CPU cycles, etc. (Nath and Bal, 2011). Second, due to security reasons, the
remote system in most cases will not allow the mobile crawlers to reside in its
memory, and may recognize it as viruses.

(2) Sitemaps-based crawlers: a sitemap file is an XML file that contains a list of the
URLs of web site pages with additional metadata such as: loc which is a required
field representing the URL of the web page; and lastmod, which is an optional
field representing the last time the web page of the URL was updated. Recently,
the web sites start providing sitemap(s) to the users for easier navigation.
Sitemaps-based crawlers use the sitemap(s) to find the updated and the new

665

Efficient
watcher based
web crawler

design

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
1:

36
 0

7 
N

ov
em

be
r 

20
16

 (
PT

)



web pages. However, this mechanism suffers from the following problems: first,
many web sites do not have sitemap, and therefore, the web crawler has to follow
the traditional way of crawling; second, recently, a group of web sites and
software have been developed to create the web site’s sitemaps automatically.
However, when any of the site’s pages is updated, the system administrator has
to update the page’s metadata such as lastmod manually (Mishra et al., 2010;
Bhushan et al., 2012). This makes the process of updating the sitemap, especially
for larger web sites, difficult and time consuming.

In addition to static web pages indexing crawlers, dynamic indexing crawlers
were also introduced. In Sharma et al. (2010), a new crawler, which extracts the
information in dynamic pages by analyzing javascript language, was introduced.
In Yao et al. (2012), an ontology-based web crawler that can download the information
in dynamic pages has been proposed. In Cui et al. (2013), an AJAX crawler that crawls
dynamic web pages has been developed. In Dincturk et al. (2014), a new crawling
methodology, named as model-based crawling, was introduced to design efficient
crawling strategies for RIAs. Although current AJAX-based crawlers can extract a
promising percentage of dynamic pages information, it is important to note that this
process still requires a large processing time and this will slow down the process of
extracting dynamic data (Sharma et al., 2010; Yao et al., 2012; Cui et al., 2013; Dincturk
et al., 2014).

In addition to the above crawling techniques, it is important to note that most of the
information about the commercial search engines crawlers such as Google and Bing are
kept hidden as business secrets, and there are very few documents about the
mechanisms of these crawlers.

The remainder of this paper is organized as follows: Section 2 presents
the developed watcher-based crawler (WBC) approach. The discussion of the
experimental study and results are presented in Section 3, and finally, conclusions are
given in Section 4.

2. WBC structure
The developed WBC consists of two main parts: the watcher file; and the WBC server.
The structure of these parts is shown in Figure 1, and their details are summarized below.

2.1 The watcher file
In the proposed WBC, the watcher file, which will be uploaded to the web sites servers,
prepares a report that contains only the updated and the newly added web pages. The
watcher file is small in size which does not require any specific requirement on the web
server and it will not affect its performance. The main advantage of the watcher file is
that it allows the crawlers to visit only the updated and the newly added pages. In
addition, it allows solving crawlers overlapping and communication problems by
introducing a flag in the watcher report, which will be set to 1 by the watcher file when
a crawler processes that web site. In this case, other copies of WBC will not visit any
web site whose flag is set. Hence, there will be no need for communication between the
running crawlers.

2.1.1 Mechanism of building the watcher’s report. The mechanism of building the
watcher report is performed using the following monitoring and ranking functions:

(1) Monitoring function: this function keeps track of the web site directories and
detects the updated and the newly added pages. In the case of updating static

666

AJIM
67,6

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
1:

36
 0

7 
N

ov
em

be
r 

20
16

 (
PT

)



W
at

ch
er

W
at

ch
er

W
at

ch
er

re
po

rt

C

D

Li
nk

E
xt

ra
ct

or
La

st
 D

ow
nl

oa
de

d
P

ag
es

 D
ire

ct
or

y

La
st

 D
ow

nl
oa

de
d

A
JA

X
 P

ag
es

 D
ire

ct
or

y

A
JA

X
U

ni
t

D
at

ab
as

e

C
ra

w
le

r 
U

ni
t

E
xt

ra
ct

ed
 U

R
Ls

Q
ue

ue

M
ai

n 
U

R
Ls

 F
ro

nt
ie

r

C
ra

w
le

r
Fr

on
tie

rB

internet

W
at

ch
er

re
po

rt

E

Li
nk

S
or

te
r

C
on

tr
ol

le
r

U
ni

t

W
B

C
 W

at
ch

er
W

B
C

 S
er

ve
r

A

Figure 1.
WBC structure

667

Efficient
watcher based
web crawler

design

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
1:

36
 0

7 
N

ov
em

be
r 

20
16

 (
PT

)



pages, the ranking function will be called to rank and add the pages URLs in the
appropriate position in the report. In the case of dynamic pages, the monitoring
function detects and adds the AJAX events including its triggering path into the
watcher report as shown in Figure 2. The format of adding the dynamic page
information is:

Dynamic page URL; Event sð Þ; Source element sð Þ; Target element; Value|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Triggering path

where Event(s) is the javascript event that will be triggered, Source
element(s) represents the corresponding HTML object, Target element is the
object whose information will be updated, and Value is the new value that
will be assigned to the target or the name of the function that will be called.
For instance, a dynamic page event can be represented in the report
as follows:

www:test:com=main:asp; onclick; div id ¼ ''next''; text:innerHTML; UpdateinfoðÞ
m m m m m

Dynamic page URL Event Source Target Value

As mentioned before, one AJAX crawling problems is that the same state may be
retrieved multiple times. The following two scenarios illustrate this problem: first, in
some cases, more than one HTML object in an AJAX page may contain exactly the
same event and its triggering path. For instance, by triggering the following two
reported events, the same state will be produced:

www:test:com=main:asp; onclick; div id ¼ ''next''; text:innerHTML; UpdateinfoðÞ
m m m m m

Dynamic page URL Event Source Target Value

www:test:com=main:asp; onclick; div id ¼ ''previous''; text:innerHTML; UpdateinfoðÞ
m m m m m

Dynamic page URL Event Source Target Value

Second, multiple events may have the same triggering path that produces the same
state. For instance, the following events produce the same state:

www:test:com=main:asp; onclick; div id ¼ ''next''; text:innerHTML; UpdateinfoðÞ
m m m m m

Dynamic page URL Event Source Target Value

www:test:com=main:asp; onload; div id ¼ ''next''; text:innerHTML; UpdateinfoðÞ
m m m m m

Dynamic page URL Event Source Target Value

To overcome this problem, the monitoring function has the ability of detecting and
combining the information of all similar events in one field. This allows the WBC to

668

AJIM
67,6

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
1:

36
 0

7 
N

ov
em

be
r 

20
16

 (
PT

)



YES

NO

YES

NONO

Yes YES

YES

NO

NO

Last Dynamic
page on the

server?

End

Last Event in the
web page (i)?

Add web page (i) URL,
event and triggering path

to the report

Is this event
reported?

Contain Onload Event?

Get Next Event in page (i)

Add web page (i) URL, Onload and triggering
path (s) to the report

YES

Start

Get Dynamic web page (i)

Get the event triggering path

Any event has the
same triggering

path?

Is the triggering
path same?

Update and add the new
triggering path to the event

info

Update and add the
new event to the
triggering path

NO

YES

Contain onclick, ondblclick
and onmouseover Events?

YES

NO

Figure 2.
Flowchart of the

developed watcher
file for adding the
triggering paths of

onload, onclick,
ondblclick and

onmouseover events
to the report

669

Efficient
watcher based
web crawler

design

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
1:

36
 0

7 
N

ov
em

be
r 

20
16

 (
PT

)



trigger only one of the similar events. For instance, a group of combined similar events
is represented in the report as follows:

www:test:com=main:asp; onclick; onloadf g; button id¼ ''move'';div id¼ ''next''f g;
text:innerHTML; UpdateinfoðÞ

It is worth mentioning the followings: first, the watcher file will consider only the most
important JavaScript events – onload, onclick, ondblclick and onmouseover (Duda et al.,
2009). Second, the WBC ignores the pages that require some database queries, which
necessitates the user intervention to fill some forms, such as login pages. It is believed
that this type of information is private and should not be indexed by crawlers.

(2) Ranking function: based on Figure 3, this function is responsible for ranking
and adding the URLs of the updated and the new pages into the appropriate
position of the watcher report. This allows the crawler to visit and download the
most important pages first. In this paper, the rank of the web site pages is
calculated according to the frequency of updating the page, and its closeness to
the main page. An equal weight of 0.5 has been assigned to each of these
factors. The calculation details of these factors are summarized below:
• Frequency of updating the pages: initially, the frequency value of all pages is

set to 0. Whenever a page is updated, its frequency is incremented. Then, the
frequency values will be normalized to be within the range {0, 0.5}. The
normalized frequency of page i (Fni) is computed as:

Fni ¼
1
2

Fi�Fmin

Fmax�Fmin

� �
(1)

where Fi is the frequency of updating the ith page, Fmin and Fmax are,
respectively, the smallest and the largest assigned frequency value.

• Closeness of the page to the root (main page): the main page and the pages
that are linked to it get the highest level value, i.e., 0.5. All other pages are
categorized and get a discrete level value of 0.1, 0.2, 0.3 or 0.4, depending on
their closeness to the main page. The number of categories is specified by
applying the rule of thumb (Chen et al., 2012) on the length of the web site
tree, i.e. no. of categories¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
length�1ð Þ=2

p
.

Finally, the rank of each page is calculated by adding its frequency and level values.
It is worth mentioning that the watcher file saves and updates the frequency, the level
and the rank values of each page in the report.

2.1.2 Watcher file setups. To run the watcher file on the web server, the
administrator has to upload it to the main directory. Initially, the flag is reset to zero,
and this allows the WBC to visit the web site. Then, if the web site is processed by the
WBC, its flag will be set to one. This prevents other WBC copies to visit such web site.
In the developed WBC, two strategies that reset the web site flag have been
implemented. Furthermore, the search engine administrator has the ability to select one
of these reset strategies. The details of these strategies are described below:

(1) Event-based-reset strategy: in this strategy, the watcher file reset the flag
automatically when any of the web site pages is updated. This increases the chance

670

AJIM
67,6

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
1:

36
 0

7 
N

ov
em

be
r 

20
16

 (
PT

)



of re-visiting this web site. On the other hand, visiting the same web site many
times may lead to decreasing the chance of visiting other lower ranked web sites.

(2) Time-based-reset strategy: in this strategy, the watcher file reset the flag after a
period of time which is assigned by the search engine administrator. The main
advantage of this strategy is that all processed web sites will be visited once in a
pre-defined period of time.

2.2 WBC-server design
To improve the performance of the developed WBC, the following schemes are used:
first, multiple crawlers are run concurrently, where each crawler can run multiple

Ranking function

NO

YES

Monitor the web site directories

Start

Detect update
process

YES

NO

Update frequency (page (i))

Calculate Rank (page (i))

Get level values (page (i))

Add URL of web page (i) to the
appropriate position in the report

Get name and URL (updated page (i))

Last Updated page i++
Figure 3.

Flowchart of the
developed watcher
file for adding the

updated static pages
to the report

671

Efficient
watcher based
web crawler

design

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
1:

36
 0

7 
N

ov
em

be
r 

20
16

 (
PT

)



threads. Second, the WBC work has been divided into five units: controller unit; crawler
unit; link extractor unit; AJAX unit; and link sorter unit, as shown in Figure 1. The
functions of each unit are described below:

(1) Controller unit: this unit is responsible for the following:
• Specify the number of working crawlers, and the associated threads.
• Cache the DNS tables: in the case of connecting a crawler to a web site, it will

contact with the DNS server to translate the web site domain name into IP
address (Olston and Najork, 2010). As the DNS requests may require a large
period of time, the controller unit of the proposed WBC is responsible for
preparing and maintaining the WBC DNS caches. Hence, WBC crawler’s
URLs frontiers contain the IPs instead of the domain names, and this will
speed up the crawling performance.

• Distributing the URLs in the main frontier(s) between the running crawlers.
In addition, the controller has the ability of updating the working crawler’s
frontiers.

(2) Crawler unit: multiple copies of this unit can run concurrently, where each copy
is responsible for visiting the IPs in its frontier, reads the watcher report and
downloads the updated pages in a directory named as “LastDownloadedPages.”
To avoid degrading the performance of any visited server, the developed WBC
is designed such that it allows only one copy of the crawler unit to visit the
server at the same time. This crawler unit has the ability of processing static
and dynamic web pages as described below:
• Processing static pages: the flowchart of the developed crawler unit for

processing static web pages is shown in Figure 4. In the case of static pages,
this crawler unit gets the URLs of the updated and the newly added pages
from the report. Then, it will check the Robot.txt file, which includes
downloading permissions and specifies the files to be excluded by the
crawler (Kausar et al., 2013). In the case that the crawler unit does not find
the Robot.txt file, it will visit all updated and newly added web site pages.

• Processing dynamic pages: the process of indexing all dynamic pages requires
a large period of time as the AJAX crawlers have to visit all web pages and
search and trigger AJAX events to reach the dynamic information. In this
paper, as explained in Section 2.1.1, the developed watcher file has been
designed to detect and add the AJAX events including its triggering path to
the watcher report. Hence, when the crawler visits the web site, it downloads
the dynamic pages and its report to be processed by the AJAX unit. This way
decreases the processing time which improves the crawling efficiency.

(3) Link extractor unit: this unit is responsible for getting the pages from the
“LastDownLoadedPages” directory, extracts and saves the pages URLs in a
queue named as “ExtractedURLsQueue.” In this unit, the following are executed:

• Remove the processed pages from the “LastDownLoadedPages” directory
and save the static pages in the database. In addition, it moves the dynamic
pages to a directory named as “LastDownloadedAJAX Pages” to be
processed by the AJAX unit.

672

AJIM
67,6

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
1:

36
 0

7 
N

ov
em

be
r 

20
16

 (
PT

)



• In order to obey the webmaster restriction, the link extractor discards all
URLs whose attribute “rel” set to “nofollow.”

• Add the URL of the web site main page only to the “ExtractedURLsQueue.”
This is because the watcher report provides the crawler the URLs of the
updated pages. This is done by abstracting the main web site URL for each of
the extracted URLs. For example, all “cmpe.emu.edu.tr” web site pages such
as cmpe.emu.edu.tr/FacultyMemberList.aspx are abstracted to cmpe.emu.

NO

YES

YES

NO

NO

YES

NO

YES

End

Last IP in the
frontier?

Last page in the
report?

Have permissions to
download page (j)?

Download page (j)

Set the flag (The web site is visited)=1

Get page (j) address from report

Start

Get IP (web site (i)) from the

Read web site (i) report

flag (The web site
is visited)=1?

j++

i++

Set j

Visit (web site (i))

Figure 4.
Flowchart of the

developed crawler
unit for processing
static web pages

673

Efficient
watcher based
web crawler

design

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
1:

36
 0

7 
N

ov
em

be
r 

20
16

 (
PT

)



edu.tr. It is worth mentioning that most of the current crawler approaches
extract all the URLs of the visited pages, and these URLs are visited and
processed as well. This process may consume the system resources such as
the memory and CPU cycles, etc. In addition, the crawler has to request a
connection to a web server whenever it has a URL of a page hosted on it.

• This unit removes the duplicated URLs as well.

(4) AJAX unit: this unit is responsible for getting the dynamic pages from the “Last
DownloadedAJAXPages” directory and triggering the events that
have been reported by the watcher file instead of triggering all pages events.
Figure 5 shows the flowchart for processing the dynamic pages by the
AJAX unit. To detect new states, the DOM of the generated state is compared with
the DOMs of the previously founded states. This is done by applying Algorithm 1.

Algorithm 1: detecting the AJAX pages distinct states
1: Reset flag¼ false; // The variable flag is set to true if the generated

state is new.
// NGD refers to the new generated DOM.

2: Remove the information of useless and irrelevant tags form the NGD
3: For i ¼ 1 to N do // N: Number of the previously founded states.
4: For j ¼ 1 toM do // M: Number of elements (tags) in the generated state.
5: If (EJ

DOM ðiÞ.Contents !¼ EJ
NGD.Contents) then // E is an element (tag) in

DOM(I) and NGD
6: flag ¼ true;
7: Break;
8: ELSE
9: flag ¼ false;
10: End If
11: End For
12: If (flag ¼¼ false) then //The NGD and DOM (i) are identical
13: Exit;
14: End If
15: End For
16: If (flag¼¼ true) then
17: Set NGD as one of the page state
18: Save the html of NGD in the database
19: End If

It is worth mentioned that, webpages may contain useless and irrelevant
information for crawling, such as advertisements, timestamps and counters,
which are changed very frequently (Choudhary et al., 2012) and to insure that
such information will not mislead the comparison process, the AJAX unit deletes
these tags from the generated state, as mentioned in Algorithm 1, Step 2. Finally,
in order to obtain the dynamic content, the JavaScript engine V8 (2014), and the
embedded web browser Chromium (2014), are used by this unit to parse the
JavaScript code in a web page, trigger its reported events and constricting the
new DOMs.

(5) Link sorter unit: this unit is responsible for getting the URLs from the
“ExtractedURLsQueue” and adds those URLs to the appropriate position in the
main URLs frontier(s) based on the sorting process. In this paper, the back link

674

AJIM
67,6

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
1:

36
 0

7 
N

ov
em

be
r 

20
16

 (
PT

)



count algorithm has been adopted to sort the URLs (Ward and French, 2013;
Kelly and Nixon, 2013). Moreover, the link sorter unit has the ability of using a
group of main frontier. In such case, each frontier has a rank depending on the
importance and the rank of its URLs. Hence, the URLs of most important frontier
(s) are visited faster and more frequently than the URLs of the lower ranked
frontier(s).

Set j

YES

NO

NO

Get the reported Event (j) in page (i)

NO

Construct DOM page (i)

Start

Get web page (i)

YES

End

Last web page on the
AJAX directory?

Last reported
Event in page (i)?

Trigger Event (j)

Generate New DOM

New DOM≠DOMs (states
(web page (i)))a

Save state (z) as html in the database

YES

i++

j++

Note: aThis process is done according to Algorithm 1

Figure 5.
Flowchart for
processing the

dynamic pages by
the AJAX unit

675

Efficient
watcher based
web crawler

design

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
1:

36
 0

7 
N

ov
em

be
r 

20
16

 (
PT

)



2.3 WBC properties
The developed WBC has the following properties:

(1) Platform independence: the watcher file can be added to and work under any
platform.

(2) Low cost and high performance: the watcher file increases the number of visited
web sites at almost no cost. The web site administrator can get the watcher for
free. In addition, an open source demo will be available for research purposes.

(3) Parallel independent crawlers: many independent crawlers can work in parallel
with multiple threads.

(4) The watcher file has the ability to perform its duties on the hosting servers, i.e.,
one copy of the watcher file can monitor a group of web sites that are hosted on
the same server.

(5) The running crawlers can only read the watcher report and have no permission
to control or contact the watcher file itself. This feature protects the web sites
servers and its data from any possibility of violation or attacked by spams
softwares through using the watcher file.

(6) Failure recovery: in the case that the controller unit did not receive information
from any working crawler, the controller will consider that crawler as a dead
one and the IPs in its frontier will be assigned to a new crawler.

(7) Dynamicity of the assignment function: the controller unit has the ability to
analyze previous work of the crawler and build statistic reports that helps in
estimating the number of required crawlers and balancing the distribution of
URLs. In addition, if any frontier contains a large number of IPs, the controller
can run new crawlers and re-divides the IPs. Hence, the time required to visit all
IPs is decreased.

(8) By making use of the watcher report that provides the crawler the URLs
of the updated pages, the “ExtractedURLsQueue” will contain only the
main web sites URL. This process decreases the number of URLs in
the “ExtractedURLsQueue” and in the main frontier(s). This not only save the
system resources but also significantly decreases the number of connection
requests to each web server.

(9) Flexibility of the assignment function: by making use of the flag, that has been
introduced for solving the overlapping problem, the proposed WBC can work
with any assignment function.

(10) To avoid degrading the performance of the WBC server, if any of the directory
or queue of the server units is found to be empty, the corresponding unit will be
set to inactive mode, and will be re-activated when new data are added to its
corresponding path.

(11) The watcher file has the ability to set the services of the ranking function to
inactive mode during the server rush times, and later re-activate these services.
This feature avoids degrading the performance of the web site server.

(12) Unlike, sitemap crawler, the proposed WBC perform all crawling processes
in the sense that it detects all updated and newly added pages automatically
without any human explicit intervention or downloading the entire web sites.

676

AJIM
67,6

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
1:

36
 0

7 
N

ov
em

be
r 

20
16

 (
PT

)



3. Experimental study
In the following experiments, the number of days and the number of samples used in
this study have been selected to achieve a 95 percent confidence level. In addition,
all of the experiments were conducted using the time-based-flag reset mechanism.
The server PC used in this study has the following characteristics: Intel Core i7 CPU;
2.4 GHz clock frequency; 8 GB RAM; 1 TB hard drive; and the operating system
was Windows 7.

The performance of the conventional crawler, and the proposed WBC for static and
dynamic web sites was studied in seven experiments. In the first experiment, the
number of updated web pages in a group of web sites was investigated. The crawlers
overlapping and communication problems were studied in the second experiment.
In the third experiment, the effects of the watcher file on the web sites server have
been investigated. The number of downloaded distinct web pages using the WBC and
crawlers of Mukhopadhyay et al. (2006), Apache Nutch (2015) and Scrapy (2015)
was examined in the fourth experiment. In the fifth experiment, the performance of
the re-visiting policies was investigated. Finally, the WBC performance for processing
AJAX web sites and AJAX real data set were studied in experiments six and
seven, respectively.

3.1 Experiment 1: percentage of updated web pages in a group of web sites
In this experiment, the watcher file has been used to monitor a group of web sites that
belong to different categories, such as education, sport, banks and news, for one week
and the number of updated pages in each web site was recorded and shown in Table I.
The average percentage of the updated and the newly added pages was calculated
using the following equation:

Average % ¼ 1
7

X7
D¼1

N Dð Þ
M

� 100% (2)

where N represents the number of updated and newly added web pages in a
specific day, M represents total number of web pages. This experiment was
performed by downloading a copy of the monitored web sites pages. Then, a copy of
the watcher file was run for each web site to detect the updated and the
newly added pages. The following can be seen from Table I: first, less than 12 percent

Number of updated and newly added web
pages (n)

Web
site no. Web site URL

Total number of
web pages (M) Day1 Day2 Day3 Day4 Day5 Day6 Day7

Average
%

1 cmpe.emu.edu.tr ≈591 74 70 60 77 65 63 62 ≈11.5
2 ahu.edu.jo/colleges/

engineering ≈402 43 44 40 50 35 39 34 ≈10
3 global.nytimes.com ≈15,090 1,346 1,403 1,321 1,297 1,273 1,432 1,357 ≈9
4 garanti.com.tr/en ≈153 10 8 11 10 7 9 8 ≈6
5 picosoftengineering.

com ≈35 2 1 2 2 4 3 2 ≈5
6 Sarayanews.com ≈3,377 80 110 89 120 81 94 85 ≈3
7 Kooora.com ≈9,320 200 150 170 220 190 175 195 ≈2

Table I.
The number of
updated pages

for different web
sites recorded in

seven days

677

Efficient
watcher based
web crawler

design

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
1:

36
 0

7 
N

ov
em

be
r 

20
16

 (
PT

)



of the web pages are updated. This means that the conventional crawling techniques
are spending most of their working time in visiting the un-updated pages.
Second, the percentage of the updated web pages in web sites four to seven was
very small. This is due to the fact that such web sites have to keep the old
information available to the users, and the update process is done by adding new
web pages.

3.2 Experiment 2: crawler overlapping and communication problems study
In this experiment, the crawler overlapping and communication problems were
studied for the developed WBC and for the following popular three crawling
scenarios, which we have re-implemented: first, independent crawlers, which means
that the working crawlers have no communication between each other and more
than one crawler may visit the same web site. Second, dependent crawlers, which
means that the crawlers have to communicate with each other before visiting a new
web page. Third, seed-server crawler: this scenario eliminates the communication
between the running crawlers by introducing a seed-server which is responsible for
crawler’s decisions such as allowing a crawler to visit a specific web site
(Mukhopadhyay et al., 2006).

The experiment was conducted by running 50 parallel copies for each scenario for
three days. In addition, the crawlers were allowed to crawl all web sites under the
domain of “emu.edu.tr” and the extracted outer links (if any). Table II shows
the number of times that randomly selected web pages were downloaded for the four
scenarios, and Figure 6 shows the number of downloaded web pages. From
Table II and Figure 6, the followings can be derived:

(1) In the independent scenario, more than 40 out of 50 crawlers have visited the
same web pages. This means that the percentage of the overlapping problem
was above 80 percent, and this decreases the performance of the crawlers. On
the other hand, these crawlers were able to download on the average 688,120
web pages.

(2) Although the dependent scenario has reduced the overlapping problem
(less than seven out of 50 crawlers have visited the same web pages),
the average of total number of distinct downloaded web pages was less than
240 thousands.

(3) The seed-server strategy has successfully solved the overlapping problem. On
the other hand, this approach was able to download only around 350,816
distinct web pages.

Frequency
Independent Dependent Seed-server WBC

Web page no. Day1 Day2 Day3 Day1 Day2 Day3 Day1 Day2 Day3 Day1 Day2 Day3

Web page (1) 43 44 47 5 7 4 2 1 1 1 0 0
Web page (2) 44 41 43 4 3 2 1 2 2 1 1 1
Web page (3) 42 42 45 7 5 4 2 1 2 1 1 1
Web page (4) 47 45 43 1 7 3 1 2 1 1 0 0
Web page (5) 44 43 40 7 5 4 1 2 3 1 0 0

Table II.
The frequency of
downloading specific
web pages in three
days by running 50
parallel crawlers

678

AJIM
67,6

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
1:

36
 0

7 
N

ov
em

be
r 

20
16

 (
PT

)



(4) Finally, by making use of the flag in the developed WBC there is no
communication between the running crawlers, and only one crawler can
process a specific page. In addition, the WBC was able to download
approximately one million distinct web pages, which is almost double the
number of the downloaded pages as compared with the independent
strategy, which was found to be the second best scenario. Furthermore, the
WBC has downloaded the five pages in the first day, as shown in Table II, and
then downloads only the updated pages in the second and third day. Finally, it
must be mentioned that the WBC was the only approach which is capable of
downloading the updated pages only, while the other scenarios may download
updated and un-updated pages.

3.3 Experiment 3: watcher file effects on the site servers
To investigate the effects of the watcher file on the web sites server, the following
experiment has been conducted. In this experiment, the size of the allocated memory
and the percentage of CPU usage for the watcher file, when it is uploaded and run on a
server that contains 10,000; 100,000; and 1,000,000 web pages have been recorded and
shown in Table III.

It is clear from Table III that the watcher file does not require large CPU and
memory resources. For instance, only 3.45 percent of CPU usage and around 197 KB of
the memory were used for 1,000,000 web pages.

Number of web pages Size of allocated memory (KB) % of CPU usage

10,000 62.351 0.84
100,000 155.857 2.37
1,000,000 197.140 3.45

Table III.
The watcher file

requirements

D
ow

nl
oa

de
d 

pa
ge

s 
no

. ×
 1

03

200

400

600

800

1,000

1,200

0
Day1 Day2 Day3

Dependant Seed-Server Independent WBC

Figure 6.
The total number

of downloaded
web pages using
dependent, seed-

server, independent
strategies, and the
developed WBC in

three days

679

Efficient
watcher based
web crawler

design

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
1:

36
 0

7 
N

ov
em

be
r 

20
16

 (
PT

)



3.4 Experiment 4: number of distinct downloaded web pages study
In the first part of this experiment, the performance of the proposed WBC and the
WEB-SAILOR crawler (Mukhopadhyay et al., 2006), was studied. We have
re-implemented the same scenario of Mukhopadhyay et al. (2006). As the SAILOR
crawler requires a seed-server, three machines were used for this approach while two
machines were used for the proposed WBC. Two machines were used as crawler
clients for both scenarios: one for .com domain; and the other for downloading the
pages of .edu, .net and .org. In addition, due to the huge number of published .com
web sites compared with other domains, the number of threads for the crawler clients
has been specified to be 25 for .com, and 10 for .edu, .net and .org (Mukhopadhyay
et al., 2006; Netcraft, 2014). Finally, both crawlers were allowed to crawl a group
of randomly selected URLs, and then visit all extracted URLs. The number of
distinct web pages that the two approaches were able to download was recorded
in Table IV. It can be seen from Table IV that the proposed WBC increases the
number of visited web sites by approximately a factor of three as compared with
the SAILOR crawler.

The performance of the proposed WBC was also compared with the most popular
open source crawlers: Apache Nutch (2015); and Scrapy (2015). This experiment was
repeated for seven days where one copy of Apache Nutch, Scrapy and WBC was run
on a separate machine, and each crawler can run at most 50 threads. The crawlers
were allowed to crawl all web sites under the domain of “emu.edu.tr” and the
extracted outer links (if any). The number of web pages that have been processed by
these crawlers were recorded in Table V. It is clear from Table V that the proposed
WBC outperforms both the Apache Nutch, and Scrapy crawlers by a factor of
approximately 1.6, and 1.4, respectively.

Number of downloaded web pages
Day WBC Apache Nutch Scrapy

Day 1 113,854 71,154 82,140
Day 2 114,978 70,447 80,261
Day 3 114,864 71,601 81,126
Day 4 115,912 72,008 82,307
Day 5 114,991 70,397 81,151
Day 6 114,784 71,029 81,353
Day 7 115,005 72,042 82,046

Table V.
Number of
downloaded web
pages using the
proposed WBC,
Apache Nutch,
and Scrapy

Number of downloaded web pages
Day WBC WEB-SAILOR

Day 1 381,007 126,981
Day 2 390,074 131,045
Day 3 383,941 126,987

Table IV.
Number of
downloaded distinct
web pages using the
proposed WBC and
WEB-SAILOR

680

AJIM
67,6

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
1:

36
 0

7 
N

ov
em

be
r 

20
16

 (
PT

)



3.5 Experiment 5: the performance of the re-visiting policies
In this experiment, the re-visiting performance has been investigated for the
WBC and the following three re-visiting policies: the uniform (Pichler et al., 2011;
Bhute and Meshram, 2010; Leng et al., 2011; Sharma et al., 2012; Singh and Vikasn,
2014); the proportional by rank (Pichler et al., 2011; Bhute and Meshram, 2010;
Leng et al., 2011); and the proportional by top N levels (Pichler et al., 2011; Cho et al.,
2012). This experiment was repeated for seven days where one crawler with five
threads was used for each policy. In addition, the crawlers were responsible to visit
and process news web site: www.hkjtoday.com. The performance of the re-visiting
policies was studied according to the following factors: first, the time required for
re-visiting and downloading a web site pages; and second, the percentage of the
updated pages that the crawler was able to download at the time of visiting. In the
proportional policies, the number of levels (N) and the threshold values were selected
based on experimental values that provide the best result. The required time for
processing the web site and the percentage of downloading the updated and newly
added pages are shown in Figures 7 and 8, respectively.

It can be seen from Figure 7 that the proposed WBC decreases the web site
processing time by a factor of 2.5 as compared with the second best scheme,
which is found to be the proportional by ranking. In addition, the processing
time for the uniform policy is approximately ten times that of the WBC. This is
because the uniform policy has to visits and downloads the entire web site.
Furthermore, it can be seen from Figure 8 that the WBC and the uniform policy
were able to download all the updated pages in most cases, whereas the proportional
policies were able to download at most 82 percent of the updated pages. Based on
this study, it is clear that the WBC outperform the performance of the other
re-visiting policies.

3.6 Experiment 6: WBC performance for processing AJAX web sites
In this experiment, the performance of the proposed WBC and the crawler developed
in Cui et al. (2013) for processing AJAX web sites were studied. The same scenario
performed in Cui et al. (2013) has been repeated by using the WBC with 1, 2, 3, and 4

0

10

20

30

40

50

60

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7

T
im

e 
(M

in
)

WBC Proportional Policy By Rank

Proportional Policy By N levels

Uniform policy

Figure 7.
The required time

for re-visiting “www.
hkjtoday.com” web

site using the
crawlers of WBC,

uniform, and
proportional by rank
and by top N level

681

Efficient
watcher based
web crawler

design

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
1:

36
 0

7 
N

ov
em

be
r 

20
16

 (
PT

)

www.hkjtoday.com
www.hkjtoday.com
www.hkjtoday.com


crawlers, where each of the working crawlers can run up to four threads. The number
of processed dynamic pages in ten minutes was recorded and shown in Figure 9.
It can be seen from Figure 9 that the proposed WBC increases the number of the
processed dynamic pages by approximately 20 percent as compared with the
approach of Cui et al. (2013).

3.7 Experiment 7: WBC performance for real AJAX data set
In this experiment, the performance of the proposed WBC for processing a real
AJAX data set was studied. This experiment was performed on YouTube videos
data set (Cheng et al., 2008; available at: http://netsg.cs.sfu.ca/youtubedata/). The
main aim of this experiment is to investigate the ability of the WBC to access and
download the related comment pages written by the video viewer. The number
of the video comments reported by Cheng et al. (2008), and the number of
comments that the WBC was able to obtain by triggering the related AJAX events
are recorded in Table VI. It can be seen from Table VI that the proposed WBC was able
to download more than 98 percent of the reported AJAX comment pages.

4. Conclusions
In this paper, a WBC has been presented to improve the overall performance of
search engines. The developed WBC visits only the updated and the newly added
pages in each web site. The proposed WBC has the ability of crawling dynamic as
well as static pages. In addition, it allows solving the crawlers overlapping problem
and eliminates the need of communication between running crawlers. Several
experiments have been conducted and it has been observed that the proposed
WBC significantly increases the number of visited web sites, and decreases the web
sites re-visiting time as compared with other popular approaches. Moreover, the
proposed WBC increases the number of processed dynamic pages by approximately
20 percent as compared with the approach of Cui et al. (2013). Finally, the WBC can
be extended by integrating other RIAs techniques such as VBScript and JavaFX, and
can be used for improving the performance of topic specific crawlers which is left as a
future work.

0

10

20

30

40

50

60

70

80

90

100

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7

P
er

ce
nt

ag
e

WBC Uniform policy Proportional Policy By Rank
Proportional Policy By N levels

Figure 8.
The percentage of
downloading
updated pages in
“www.hkjtoday.com”
web site using the
crawlers of WBC,
uniform, and
proportional by rank
and by top N levels

682

AJIM
67,6

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
1:

36
 0

7 
N

ov
em

be
r 

20
16

 (
PT

)

http://netsg.cs.sfu.ca/youtubedata/
www.hkjtoday.com


N
o.

 o
f t

hr
ea

ds

W
B

C
(C

ui
 e

t a
l.,

 2
01

3)

2,
50

0

No. of Processed Pages

2,
00

0

1,
50

0

1,
00

0

50
0 0

2,
50

0

2,
00

0

1,
50

0

1,
00

0

50
0 0

2,
50

0

2,
00

0

1,
50

0

1,
00

0

50
0 0

2,
50

0

2,
00

0

1,
50

0

1,
00

0

50
0 0

1
2

3
4

1
2

3
4

1
2

3
4

1
2

3
4

(a
)

(b
)

(c
)

(d
)

Figure 9.
Number of dynamic
pages processed in

ten minutes for
(a) one crawler,

(b) two crawlers,
(c) three crawlers,

and (d) four crawlers

683

Efficient
watcher based
web crawler

design

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
1:

36
 0

7 
N

ov
em

be
r 

20
16

 (
PT

)

http://www.emeraldinsight.com/action/showImage?doi=10.1108/AJIM-02-2015-0019&iName=master.img-013.jpg&w=67&h=97
http://www.emeraldinsight.com/action/showImage?doi=10.1108/AJIM-02-2015-0019&iName=master.img-014.jpg&w=67&h=97
http://www.emeraldinsight.com/action/showImage?doi=10.1108/AJIM-02-2015-0019&iName=master.img-015.jpg&w=67&h=97
http://www.emeraldinsight.com/action/showImage?doi=10.1108/AJIM-02-2015-0019&iName=master.img-016.jpg&w=67&h=97


References

Agarwal, A., Singh, D., Pandey, A.K.A. and Goel, V. (2012), “Design of a parallel migrating web
crawler”, International Journal of Advanced Research in Computer Science and Software
Engineering, Vol. 2 No. 4, pp. 147-153.

Amin, M.R., Prince, M.A. and Hussain, M.A. (2012), “WEBTracker: a web crawler for maximizing
bandwidth utilization”, Journal of Science and Technology, Vol. 16 No. 2, pp. 32-40.

Amolochitis, E., Christou, I.T., Tan, Z.H. and Prasad, R. (2013), “A heuristic hierarchical scheme
for academic search and retrieval”, Information Processing & Management, Vol. 49 No. 6,
pp. 1326-1343.

Apache Nutch (2015), “Nutch 2.3”, available at: www.nutch.apache.org/ (accessed May
20, 2015).

Bhushan, B., Gupta, M. and Gupta, G. (2012), “Increasing the efficiency of crawler using customized
sitemap”, International Journal of Computing and Business Research, Vol. 3 No. 2.

Bhute, A.N. and Meshram, B.B. (2010), “Intelligent web agent for search engines”, International
Conference on Trends and Advances in Computational Engineering (TRACE – 2010),
Barkatullah University, Bhopal, pp. 211-218.

Brawer, S.B., Ibel, M., Keller, R.M. and Shivakumar, N. (2013), “Web crawler scheduler that
utilizes sitemaps from websites”, US Patent Application No. 13/858,872, available at: www.
google.com/patents/US7769742/ (accessed September 9, 2015).

Bruno, E.J. (2006), “Ajax: asynchronous JavaScript and XML”, Dr Dobbs Journal, Vol. 31 No. 2,
pp. 32-35.

Chen, Y., Sanghavi, S. and Xu, H. (2012), “Clustering sparse graphs”, Advances in Neural
Information Processing Systems 25 (NIPS 2012), Neural Information Processing Systems,
pp. 2204-2212.

Cheng, X., Dale, C. and Liu, J. (2008), “Statistics and social network of YouTube videos”,
IEEE, 16th International Workshop on Quality of Service, University of Twente,
pp. 229-238.

Cho, J., Garcia-Molina, H. and Page, L. (2012), “Reprint of: efficient crawling through URL
ordering”, Computer Networks, Vol. 56 No. 18, pp. 3849-3858.

Number of comments

Video name
Reported in Cheng

et al. (2008)
Downloaded by

the WBC
% of the downloaded

comments

New Numa – The Return of Gary
Brolsma! 17,657 17,589 99.61
CRAZED NUMA FAN !!!! 3,010 3,010 100
Influence 3,866 3,862 99.90
My United States of […]
WHATEVA !!! 4,447 4,440 99.84
Heather Martin – When Are You
Coming Home 6,045 6,044 99.98
The COMMENT Video!! 976 960 98.36
iBlinds – New generation iPod
accessory 3,606 3,606 100
Smosh Short 1: Dolls 7,919 7,875 99.44

Table VI.
Number of
comments for
specific YouTube
videos reported by
Cheng et al. (2008)
and downloaded
using the
proposed WBC

684

AJIM
67,6

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
1:

36
 0

7 
N

ov
em

be
r 

20
16

 (
PT

)

www.nutch.apache.org/
www.google.com/patents/US7769742/
www.google.com/patents/US7769742/


Choudhary, S., Dincturk, M.E., Mirtaheri, S.M., Moosavi, A., von Bochmann, G., Jourdan, G.V. and
Onut, I.V. (2012), “Crawling rich internet applications: the state of the art”, Conference of the
Center for Advanced Studies on Collaborative Research (CASCON 2012), IBM Corp,
pp. 146-160.

Chromium (2014), “Chromium 1.0.154.65”, available at: www.chromium.org/Home/ (accessed
April 7, 2014).

Cui, L.J., He, H. and Xuan, H.W. (2013), “Analysis and implementation of an Ajax-enabled web
crawler”, International Journal of Future Generation Communication and Networking,
Vol. 6 No. 2, pp. 139-146.

Cui, L.J., He, H., Xuan, H.W. and Li, J.G. (2013), “Design and development of an Ajax web crawler”,
The Tenth International Conference on Computability and Complexity in Analysis, CCA Net,
pp. 6-10.

Dincturk, M.E., Jourdan, G.V., Bochmann, G.V. and Onut, I.V. (2014), “A model-based approach
for crawling rich internet applications”, ACM Transactions on the Web (TWEB), Vol. 8
No. 3, pp. 1-19.

Duda, C., Frey, G., Kossmann, D., Matter, R. and Zhou, C. (2009), “Ajax crawl: making
Ajax applications searchable”, 25th IEEE International Conference on Data Engineering,
pp. 78-89.

Kausar, M.A., Dhaka, V.S. and Singh, S.K. (2013), “Web crawler – a review”, International Journal
of Computer Applications, Vol. 63 No. 2, pp. 31-36.

Kelly, B. and Nixon, W. (2013), “SEO analysis of institutional repositories: what’s the back
story?”, Open Repositories 2013, 2013-07-08-2013-07-12, Charlestown.

Kumar, M.S. and Neelima, P. (2011), “Design and implementation of scalable, fully distributed
web crawler for a web search engine”, International Journal of Computer Applications,
Vol. 15 No. 7, pp. 8-13.

Leng, A.G.K., Ravi, K.P., Singh, A.K. and Dash, R.K. (2011), “PyBot: an algorithm for web
crawling”, International Conference on Nanoscience Technology and Societal Implications
(NSTSI -2011), IEEE, CV Raman College of Engineering, pp. 1-6.

Mishra, S., Jain, A. and Sachan, A.K. (2010), “Smart approach to reduce the web crawling traffic of
existing system using HTML based update file at web server”, International Journal of
Computer Applications, Vol. 11 No. 7, pp. 34-38.

Mukhopadhyay, D. and Sinha, S. (2008), “A new approach to design graph based search engine
for multiple domains using different ontologies”, International Conference on Information
Technology (ICIT ‘08), IEEE, Bhubaneswar, pp. 267 -272.

Mukhopadhyay, D., Mukherjee, S., Ghosh, S., Kar, S. and Kim, Y.C. (2006), “Architecture of a
scalable dynamic parallel WebCrawler with high speed downloadable capability for a web
search engine”, The 6th International Workshop MSPT 2006 Proceedings, Youngil
Publication, pp. 103-108.

Nath, R. and Bal, S. (2011), “A novel mobile crawler system based on filtering off non-modified
pages for reducing load on the network”, The International Arab Journal of Information
Technology, Vol. 8 No. 3, pp. 272-279.

Netcraft (2014), “Web server survey”, available at: http://news.netcraft.com/archives/2014/01/03/
january-2014-web-server-survey.html/ (accessed July 4, 2014).

Olston, C. and Najork, M. (2010), “Web crawling”, Foundations and Trends in Information
Retrieval, Vol. 4 No. 3, pp. 175-246.

Pichler, C., Holzmann, T. and Wright, B. (2011), “Information search and retrieval”, Crawler
Approaches and Technology, available at: www.iicm.tugraz.at/0x811bc82b_0x0011b4d6/
(accessed September 9, 2015).

685

Efficient
watcher based
web crawler

design

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
1:

36
 0

7 
N

ov
em

be
r 

20
16

 (
PT

)

www.chromium.org/Home/
http://news.netcraft.com/archives/2014/01/03/january-2014-web-server-survey.html/
http://news.netcraft.com/archives/2014/01/03/january-2014-web-server-survey.html/
www.iicm.tugraz.at/0x811bc82b_0x0011b4d6/


Schonfeld, U. and Shivakumar, N. (2009), “Sitemaps: above and beyond the crawl of duty”,
18th International Conference on World Wide Web, ACM, pp. 991-1000.

Scrapy (2015), “Scrapy 1.0”, available at: www.scrapy.org (accessed May 20, 2015).
Sharma, A.K., Gupta, J.P. and Agarwal, D.P. (2010), “Parcahyd: an architecture of a parallel

crawler based on augmented hypertext documents”, International Journal of
Advancements in Technology, Vol. 1 No. 2, pp. 270-283.

Sharma, V., Kumar, M. and Vig, R. (2012), “A hybrid revisit policy for web search”, Journal of
Advances in Information Technology, Vol. 3 No. 1, pp. 36-47.

Singh, A.V. and Vikas, A.M. (2014), “A review of web crawler algorithms”, International Journal
of Computer Science & Information Technologies, Vol. 5 No. 5, pp. 6689-6691.

Uzun, E., Agun, H.V. and Yerlikaya, T. (2013), “A hybrid approach for extracting informative
content from webpages”, Information Processing & Management, Vol. 49 No. 4, pp. 928-944.

V8 (2014), “V8 3.31.1”, available at: https://developers.google.com/v8/ (accessed April 7, 2014).
Ward, E. and French, G. (2013), Ultimate Guide to Link Building: How to Build Backlinks.

Authority and Credibility for Your Website, and Increase Click Traffic and Search Ranking,
Entrepreneur Press, CA.

Wu, M. and Lai, J. (2010), “The research and implementation of parallel web crawler in cluster”,
International Conference on Computational and Information Sciences (ICCIS), IEEE,
Chengdu, pp. 704-708.

Yang, Y., Du, Y., Hai, Y. and Gao, Z. (2009), “A topic-specific web crawler with web page
hierarchy based on HTML dom-tree”, Asia-Pacific Conference on Information Processing
(APCIP 2009), IEEE, Shenzhen, pp. 420-423.

Yao, Z., Daling, W., Shi, F., Yifei, Z. and Fangling, L. (2012), “An approach for crawling dynamic
webpages based on script language analysis”, Ninth Web Information Systems and
Applications Conference (WISA), IEEE, Haikou, pp. 35-38.

Corresponding author
Dr Saed Alqaraleh can be contacted at: saed.alqaraleh@emu.edu.tr

For instructions on how to order reprints of this article, please visit our website:
www.emeraldgrouppublishing.com/licensing/reprints.htm
Or contact us for further details: permissions@emeraldinsight.com

686

AJIM
67,6

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 2
1:

36
 0

7 
N

ov
em

be
r 

20
16

 (
PT

)

www.scrapy.org
https://developers.google.com/v8/
mailto:saed.alqaraleh@emu.edu.tr

