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Assessment of performance
using MPSS based DEA

Subhadip Sarkar
Department of Management Studies,

National Institute of Technology, Durgapur, India

Abstract
Purpose – Identification of the best school among other competitors is done using a new technique
called most productive scale size based data envelopment analysis (DEA). The paper aims to discuss
this issue.
Design/methodology/approach –A non-central principal component analysis is used here to create
a new plane according to the constant return to scale. This plane contains only ultimate performers.
Findings – The new method has a complete discord with the results of CCR DEA. However, after
incorporating the ultimate performers in the original data set this difference was eliminated.
Practical implications – The proposed frontier provides a way to identify those DMUs which follow
cost strategy proposed by Porter.
Originality/value – A case study of six schools is incorporated here to identify the superior school
and also to visualize gaps in their performances.
Keywords Benchmarking, Data envelopment analysis, Frontier function,
Principal component analysis
Paper type Research paper

1. Introduction
The journey of data envelopment analysis (DEA), as proposed by Charnes et al. (1978)
(the CCR model), commenced from the dissertation of Rhodes when the performance of
students from participating and not participating schools were compared using a non-linear
model and an equivalent data-oriented, linear programming-based, non-parametric
approach. A DMU is called an efficient performer if it uses fewer quantities of each input
to generate the same set of outputs or produces more outputs from the same set of input
resources than its rivals. Thus, it makes a place in a production possibility set. Later on,
the assumption of constant return on scale (CRS), was extended by Banker et al. (1984).
The renowned BCC model of these researchers was able to administer variable scaling
techniques. As a result, weak efficient and strong efficient DMUs, most productive scale
size (MPSS) and, scale efficiency became prevalent. To estimate the CRS frontier function,
the regression approach was modified by Winsten (1957) by using a corrected ordinary
regression technique. It enabled the detection of CRS efficient DMU instead of classifying
them into below average, average and above average units (Cooper and Seiford, 2011).
Later on, the DEA estimators were found statistically consistent (Banker and Maindiratta,
1992). The detailed methodology of the frontier function estimation was done by Greene
(1980) on a generalized form proposed by Aigner and Chu (1968). The exploration of
stochastic DEA has proven to be highly effective for adapting this approach to abrupt
changes. The experiment on “Program follow Through and Non-follow Through” school
sites (originally considered by Charnes et al., 1978) was revisited by Land et al. (1993) who,
instead of taking average values for inputs and outputs, suggested a deterministic
equivalent of the chance constrained model by assuming normally distributed output
variables which were conditional on inputs. In an efficiency evaluation of the research
activities in economic departments at Danish Universities, Olesen and Petersen (1995)
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developed a chance constrained programming model while distinguishing two reasons
(true inefficiency and random disturbance) to remain inefficient.

Nicole Adler and Boaz Golani (Seiford, 1989), adopted a principal component
analysis (PCA)-DEA model in a case study of municipal solid waste, in the Oulu district
of Finland, for curtailing the number of analyzed variables by grouping highly
correlated variables within a factor. In their second model PCA was applied separately
on the input and output variables for strengthening the power of DEA. Kard Yen and
Örkcu (2006) prepared a new data set for the application of PCA by dividing each input
by each output; this approach yielded an intuitive model that is capable of producing
highly correlated weighted scores with the DEA productivity indexes of the DMUs.

In this paper, a single MPSS-based CRS frontier function is constructed using PCA
(unlike corrected ordinary least squares (COLS) approach where CRS function is assumed
linear and all unknown coefficients are determined from regression analysis). This PCA
made function contains only those DMUs which are PCA efficient (technically efficient) in
case of all outputs (thus all slacks are zero). The expected level of any output is derived
using this function and the error of each DMU, due to inefficiency, is found from
subtracting the observed output from it. A special type of slack-based optimization model
(to maximize the minimum error) is used here to prepare a frontier made from a convex
combination of all predicted errors. This new frontier satisfies the MPSS condition
(Ray, 2004) and plays a major role to measure the performance of a DMU. A comparison
with the regular CCR model is also included here to unearth any critical issues regarding
the ranking of the DMUs.

2. Definitions and theorems
2.1 DEA with CCR model
From an assumption of CRS, Charnes et al. (1978) found proportional changes in weighted
output that derive from the alterations in weighted inputs. The algebraic models of CRS
for c DMUs (each of which consumes v inputs given by the matrix R¼ [Rij] c,v to generate
m outputs given by a matrix Y¼ [ yij] c,m) are as follows.

Primal form Dual form
Max h0 ¼

Pm
j¼1 qj:yrj

� �
Min θ0

Subjected to: Subjected to:Pv
j¼1 vj:Rrj ¼ 1 Rrip

Pc
r¼1 lr :Rri; lr ⩾ 0Pv

i¼1 ui:Rri ⩾
Pm

j¼1 qj:yrj; For any jth input i¼ 1, 2, … , v
ui, qj⩾ 0 y0:yrj ⩾

Pc
r¼1 lr:yrj

For any DMU r for j¼ 1,2, … , m

2.2 Size of a DEA to remain effective
According to Dyson et al. (2001), to be effective, a multiple input-output (v, m) DEA
model must contain be at least 2mv cases.

2.3 A CCR-efficient unit
A DMU is called CCR-efficient if θ*¼1, and if there exists at least one optimal solution
(u*, q*), for which u*W0 and q*W0, otherwise, the DMU in question is considered
to be CCR-inefficient. A solution (u*, q*) from CCR-inefficient units (θ*o1), must
necessarily involve at least one DMU (known as a peer group) within the given set that
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manages to yield weighted outputs that are equivalent to its weighted inputs. The set
of peer groups is specified as follows:

E 0
0 ¼ r :

Xm

j¼1
qjyrj ¼

Xv

i¼1
uiRri

n o
2.4 Production possibility set
The set of all technically feasible combinations of inputs and outputs, representing the
technology of a firm. According to Cooper et al. (2002/2011), in case of a CCR model, any
production possibility set, is defined as follows.

(A1) If an activity (Rri, yrj) belongs to P, then the activity (tRri, tyrj) belongs to P for
any positive scalar t.

(A2) For an activity (Rri, yrj) in P, any semi-positive activity (Rki, ykj) with (Rki⩾Rrj)
and ( yki⩽ yri) is included in P. That is, any activity with input no less than in any
component and with output no greater than in any component is feasible.

A3 The non-negative combination of the DMUs in the set J as:

P ¼ R0; y0ð Þ9R0q
Xc
r¼1

lrRri; y0p
Xc
r¼1

ljyrj; lr ⩾ 0; for r ¼ 1; 2; . . . ; c

 !( )

2.5 COLS
With an initial assumption of similar structure of the production technology among
the central tendency and the best practice, Winsten (1957) suggested a two steps
estimation procedure to derive a production frontier which was able to lie on and above
the data. In the first step ordinary least squares (OLS) is used to obtain consistent and
unbiased estimates of the slope parameters and a consistent but biased estimate of
the intercept parameter. In the second step the biased OLS intercept ( β0) is shifted
up (“corrected”) to ensure that the estimated frontier bounds the data from above.
The COLS intercept is estimated consistently by:

bbn

0 ¼ bb0þmaxi bui� �
where the bui are the OLS residuals. The OLS residuals are corrected in the opposite
direction, and so:

�bun

i ¼ ui �maxi bui� �
The COLS residuals bun

i are non-negative, with at least one being zero, and can be used
to provide consistent estimates of the technical efficiency of each producer by means of
the expression:

TEi ¼ Exp �bui n� �
2.6 PCA
PCA can be defined as the orthogonal projection of the data onto a lower dimensional
linear space, known as the principal subspace, such that the variance of the projected
data is maximized in the subspace. According to Rencher (2002), PCA deals with a single
sample of n observation vectors y1, y2, … , yn that form an ellipsoidal swarm of points
in a p-dimensional space. If the variables y1, y2, … , yp in y are correlated, the natural
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axes of the swarm of points become identical to with the axes of the ellipsoid having an
origin at the mean vector ( y*) of y1, y2, … , yn. The resulting natural axes of the
ellipsoid, yield the new uncorrelated variables called ( principal components). These
resulting axes will be similar to the eigenvectors (Er) derived from the covariance matrix
[S] p×p (or the correlation matrix [R] p×p) of the observed variables which also minimizes
the mean squared distance between the data points and their projections (shown below):

S:Er ¼ gr:Er for r ¼ 1; 2; . . . ; p such that; g14g24 ; . . . ; 4gp

2.7 Specific consumption matrix T and specific covariance matrix S
Under the conditions ofm¼ 1 and voc in a primal-model of the DEA (CCR), there exist
a positive definite covariance matrix S derived from the origin (having with a non-zero
determinant) with dimensions of (v×v) that can be defined as follows:

Sr ¼ Tr
TTr ¼ sij

� �
v�vwhere sij40; and Tr ¼ tijr

� �
c�vwhere trij ¼ Rri

yrj

TT
r ¼ T1 T2 Tc

� 	
; where Ti ¼ tri1 tri2 triv

h iT (1)

sij ¼

XC
r¼1

Rri

yrj


 �2

. . . i ¼ j

XC
r¼1

Rri

yri


 �
Rrj

yrj


 �
. . . ia j

8>>>>><>>>>>:
(2)

where tij is known as the specific usage of the ith input of the rth DMU.

2.8 A non-central PCA and its application on specific covariance matrix Sv
To observe the mutually independent underlying characteristics of resource utilization,
the specific consumption matrix is projected on a unit vector so that the directions of
maximum variance (from the origin vector and not from their mean vector) can be
explored. This leads to the following optimization problem to be solved:

Max z ¼ cT :Tj
T :Tj :c ¼ cT :Sj :c; subjected to : cT c ¼ 1;

The optimal solution of this problem gives rise to eigenvectors of Svwhich are orthogonal
to each other.

2.9 Economic interpretation of principal components of the matrix Sv
Being a square matrix of size (v× v), Sv, has v number of eigenvectors (and eigenvalues).
These vectors carry significant information about the usage of all ingredients. Other
than the first vector none of the remaining ones assume all positive elements (shown
in the Appendix 1 and Appendix 2). The first eigenvector acknowledges the cost
consciousness of a firm as less projected value on this vector implies the lower combined
consumption of inputs. The reason of calling it “cost” or “combined spending” is that, the
firm in view of acquiring future benefits would like to concentrate on the current
collective expenditure. Remaining dimensions (which reflect unique capacity of a firm)
are indeed essential to gain various competitive advantages. Each of these vectors has its
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own priority level (equivalent to the corresponding eigen value) set by the industry.
Baring this, they contain one negative element which is indicative of the worth of a
particular resource over the rest for reducing the cost due to that dimension. Therefore,
the firm has to be more decisive in managing the cost and the right dimension to sustain
in the market. Therefore, the proposed model lies on the balance between reduction of
“cost” (which focusses on decreasing the utilization of resources) and reduction of cost
from the remaining dimensions (by manipulating proper resources).

2.10 Definition of inefficiency error
2.10.1 Inefficiency error in case of a single output. The predicted amount of any rth
output from any jth DMU, can be given by the dot product of the resource vector (Rj) of
the same DMU and the eigenvector (Er) of the first principal component of a specific
consumption matrix Sr which is derived from any rth output:

yPrerj ¼ 1
pimin

Er:Rj;

where prmin ¼ min Er:T1ð Þ; Er :T2ð Þ; . . . ; Er:Tcð Þ½ �
Thus, error (Perj) on any rth output made by any jth DMU can be determined by

subtracting the observed output yObsrj

� �
from the predicted output given by yPrerj :

Perj ¼ yPrerj � yObsrj

� �
2.10.2 Inefficiency error in case of a multiple outputs. The joint representation of an error
is derived from the linear convex combination of all errors due to individual outputs:

Ej ¼
Xm
i¼1

ai:Perj ¼
Xm
i¼1

ai: yrj
Pre � yrj

Obs� � ¼ Z j
Pre � Z j

Obs; where
Xm
r¼1

ar ¼ 1

Here, ZPre
j ¼Pm

r¼1 ar: yrj
Pre

� �� �
and ZObs

j ¼Pm
r¼1 ar : yObsrj

� �n o
, are the indicators of

the performance expected and actual performance from the jth DMU, respectively.
The unknown value of ai is determined by using the following LPP:

Maximize S;

subjected to :
Xm
i¼1

ai:Perj ⩾ S 1½ �T

Xm
r¼1

ar ¼ 1 where ; 1½ �T ¼ 1 1; . . . ; 1
� 	T

2.11 Technical efficiency or performance index
The performance index of any jth DMU is given by the ratio of actual performance and
expected performance as follows:

PFj ¼
Z j

Obs

Z j
pre
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2.12 PCA measure of efficiency for DMUs
If T¼ [tij], for{tij (W0)}, is the specific consumption matrix consisting of elements tij,
which represent the specific consumption of the ith type of input (for i¼ 1, 2, … ,v) by
the rth DMU (for r¼ 1, 2, … ,c) then the PCA measure of efficiency for any DMU r is
given by [min (T.U )/(TJ.U )], where U is the eigenvector that directs the major axis of
the embedded PCA and TJ is the specific consumption vector of the rth DMU. This
Eigenvector describes the direction of maximum variation in case of a specific
consumption under a particular type of output. The magnitude of projection taken in
this direction represents the keenness toward the production of the same output.
A DMU is considered as keen to toward an output if the value of the projection is less.

2.13 Axiomatic definition of the MPSS frontier
(1) According to Starrett (Ray, 2004), any MPSS-based transformation function can

be represented as K(R,Y)¼ 0 which has a a
b

� �
ratio of 1. With an assumption of

an explicit form of this function, z¼F(Y)¼P(R) is used here instead. The
differential form of this model is displayed as follows:

z:
@z
z
¼
Xm
j¼1

@F
@yj


 �
yj
� �

:
@yj
yj


 �
¼
Xv
i¼1

@P
@Ri


 �
Ri:

@Ri

Ri


 �

as; b ¼ @yj
yj


 �
¼ @z

z
; for j ¼ 1; 2; . . . ; m and a ¼ @Ri

Ri


 �
for

i ¼ 1; 2; . . . ; v; and a ¼ b; thus;

z ¼
Xm
j¼1

@F
@yj


 �
yj
� � ¼Xv

i¼1

@P
@Ri


 �
Ri

The later relationship of b ¼ @z=z can be made if z¼F(Y ) becomes a linear
function of all individual outputs, yj, for j¼ 1,2, … ,m. This proposition is also
valid due to the following equivalence and for a convex combination:

@z=z ¼Pu
i¼1 ai@yi=

Pu
i¼1 aiyi ¼ @yi=yi for all values of i where

Pu
i¼1 ai ¼ 1:

(2) The ultimate performer: the MPSS frontier contains those DMUs which remain PCA
efficient (and thus strongly efficient) in each arena of output (efficient in all outputs).

(3) Basic elements within the set: if (Rp, Yp) is an element in this pseudo production
possibility set, then, the pairs of (R′p, Yp) and (Rp, Y′p) will also be contained by
the same set for the conditions of (R′p⩾Rp) and (Yp⩾Y′p).

(4) Members on the frontier: if (Rp,Yp) is an efficient combination according to the PCA,
then, for any non-negative value t, the pair of (tRp, tYp) will be on the same plane.

(5) Unlike CCR model the proposed model assumes that any member in the
production possibility set should abide by the following relation:

E0
0 ¼ r :

Pv
i¼1 uiRri ¼

Pm
j¼1 qj y

Pre
rj

n o
where ui; qj ⩾ 0 for all values of i and j;
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yPrerj is the maximum amount of any jth output for any rth DMU using the proposed
model. The set is comprised with those DMUs which are PCA efficient in each output.
If such ultimate performer is not present in the data set then E0

0 will become a null set.
In that case, it will not contain any technically feasible combinations of inputs and
outputs.

The predicted value of any output from all possible inputs is determined from a
PCA-based linear function. This production function satisfies the following postulates.

(P1) g(R) is monotonic in R. Since, zr¼ f(Ypre,r)¼AYpre,r¼ g(Rrj)¼BRrj, then, for
R1j⩾R2j, and Rij⩾ 0, the inequality of g(R1j)⩾ g(R2j) has to be true.

(P2) g(R) is concave. Hence, if, R1, R2∈R, and R′¼ αRr1+(1−α)Rr2; such that
0oαo1, then g(R′)¼ αg(Rr1)+(1−α)g(Rr2).

This property is also followed by the above proposed function (shown below):

gðR0Þ ¼ ag Rr1ð Þ þ 1 � að Þg Rr2ð Þ ¼ aBRr1þ 1 � að ÞBRr2 ¼ BR0

(P3) For each observation, (Rrj, Yrj), g(Rrj)⩾AYrj; for j¼ 1, 2, … , m. Owing to the
relationship of YPre,j⩾Yrj the stated relationship can be proved. g(Rj)¼AYpre,j⩾AYrj.

3. The proposed model
The whole process has been subdivided into three sections such as conversion of DEA
(Section 3.1), which is essential for making a resemblance between DEA and embedded
PCA, construction of CRS frontier using embedded PCA (Section 3.2) while measuring
the PCA efficiencies and lastly, derivation of the MPSS-based frontier function (Section
3.3) with multiple output using the CRS frontier function.

3.1 Conversion of DEA
The converted form of the DEA can be provided with one additional constraint, as
shown below.

The remodeling of the constraints of the CCR DEA:

Tr
1jU 1þTr

2jU 2þ ; � � � ; þTr
vjUv ⩾

1
f

for r ¼ 1; 2; ::: ; v and f40

where Tij
r ¼ Rri=yrj and Ui ¼ ui=fd

R1jU 1þR2jU 2þ ; � � � ; þRvjUv ¼ 1
fd

where U 1
2þU 2

2þ ; . . . ; þUv
2 ¼ 1

Tr ¼ Tr
1j ; Tr

2j::: Tr
vj

h iT
for r ¼ 1; 2; ::: ; c

The matrix form of the above new set can be produced as follows:

TTU ⩾ 1½ �U 1
f


 �
; UT TTT

� �
U ¼ UT Sð ÞU ⩾ 1

f2


 �
1½ �T 1½ � ¼ c

f2

where 1½ � ¼ 1 1 : :: 1
h iT

and S ¼ TrT
T
r
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Therefore the objective function can be reiterated in the following form:

minimization of
1
d:yj

¼ f: T1j
rU 1þT2j

rU 2þ ; . . . ; þTvj
rUv

� � ¼ fTjU (4)

The inequality constraint, UT Sð ÞU ⩾ c=f2, has an impact from the perspective of the
embedded PCA, to verify that whether U remains same as the direction vector of
the covariance matrix S or not. Due to the non-negativity property of the decision
variables in DEA, U as a direction vector must possess entirely positive or
semi-positive elements. Because of the property of a unit vector in addition to non-negativity
property (UW [0] and Uo[1]), the constraint, [1]TUWUT U¼ 1 will be true:

Theorem 3.1.1. Only the major principal direction vector of the embedded PCA can
have entirely non-negative elements (see the Appendix).

3.2 Construction of CRS frontier using embedded PCA
This section addresses the basic reason of a PCA efficient DMU to behave like a DEA
efficient DMU (under CRS) while this is not true (the reverse is not true) for others who
are inefficient. Moreover, it also clarifies why an embedded PCA is able to produce a
CRS frontier:

Theorem 3.2.1. A PCA efficient DMU under any jth output is efficient under
multiple output-oriented DEA.

Proof. The mathematical model of an output-oriented CCR DEA is given as follows:

maximize θ;

RTmpRT
PCAj;where R ¼

R11 R12 R1m

^ & ^

Rc1 . . . Rcm

264
375

YTm ⩾ yYT
PCAj;where Y ¼

y11 y12 y1v
^ & ^

yc1 . . . ycv

264
375 and m ¼ m1 m2. . . mc

h iT
If the kth member in the list of DMUs is a PCA efficient DMU under any jth output,
then dividing the first set of input equations by ykj the following equation set can
be found:

StTj mpST
PCAj where StTj ¼ 1

ykj
RT and StTPCAj ¼

1
ykj
RT
PCAj

Due to the properties of a first principal eigenvector ET
j the scalar product will be same

as given below:

ET
j :St

T
j mpET

j :St
T
PCAj

PT
j mpPPCAj; where P

T
j is the projection in the direction of ET

j given by ET
j St

T
j :

Since, the kth DMU is PCA efficient, so, its projection in the direction of ET
j should be

minimum. This condition can only be satisfied if the vector μ possesses 1 in the kth
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place and contains 0s in the other places. The second set of constraints is rearranged
as follows:

MTm ⩾ y 1½ �T ; where M ¼

y11
yk1

� �
y12
yk2

� �
. . . y1i

yki

� �
. . . y1v

ykv

� �
^

1

&

1

. . .

1
. . .

^

1

yc1
yk1

� �
. . . yci

yki

� �
. . . ycv

ykv

� �

266666664

377777775
Putting the value of μ in the above equation the following relationship can be established:

½1�T ⩾ y½1�T

This expression clearly indicates the maximum value of θ as 1. ■

Theorem 3.2.2. The embedded PCA-defined CRS frontier function is given by a
plane, orthogonal to the first principal eigenvector, passing through
an embedded PCA efficient DMU (which is also a CCR DEA efficient
DMU).

Proof. Let, the eigenvector of the major axis is E1 ¼ e1 e2 ::: ev
h iT

where ei40,

then, the plane orthogonal to it will be same as x1e1+ x2e2, …, + xvev¼ p.

In order to find the unknown value of p it is assumed that the frontier will pass

through the PCA efficient DMU. Therefore, replacing the values of xi with the

corresponding element in TMIN or X 1 ¼ x1 x2 ::: xv
h iT

¼ TMIN,
the value of p is given as:

p ¼ TMIN1e1þTMIN2e2; ::: ; þTMINvev40; as TMINi40 (4)

This equation has positive intercept for each useful resource and can be reiterated in
terms of any actual output level, y produced at the expense of actual inputs:

ET
1 :R ¼ R1e1þR2e2; ::: ; þRvev ¼ py ¼ FðRÞ where Ri ¼ y:TMINi for i ¼ 1; 2; ::: ; v (5)

According to Starrett (Ray, 2004), any MPSS, in case of a multiple input and multiple
output problem, has a ða=bÞ ratio 1. Thus, for any transformation function K(R,y)¼ 0
or y¼P(R), passing through all efficient pairs (specifically through the point ((R)*,y*)
where MPSS holds), the relationship shown below will be true:

yU
@y
y


 �
y¼yn

¼
Xn

i¼1

@P
@Ri


 �
Rn

Rið Þn: @Ri

Rið Þn

 �

(6)

Applying the condition given by Starrett, ða=bÞ ¼ 1 or @Ri= Rið Þn� � ¼ @P=y
� �

y¼yn
for i ¼ 1; 2; :::; the following equality can be shown:

yð Þy¼yn ¼
Xn

i¼1

@P
@Ri


 �
Rn

Rið Þn ¼ GRAD Pð ÞRn

� �
: Rð Þn (7)
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Rearranging the equation, ET
1 :R ¼ py, as ðET

1 =pÞ:R ¼ y, and making a comparison
with the above equation, it can be seen that at R¼ (R)*, y¼P(R) must need a gradient
(which is non-negative) to be equal with ðE1

T=pÞ; 40ð Þ. Banker (Ray, 2004) has earlier
proved that, a MPSS can only occur at a CCR DEA efficient DMU (which is an
embedded PCA efficient as well). So, the relation R¼ (R)* must be true here and for a
function, y¼P(R), which satisfies GRAD Pð ÞRn

� � ¼ ðET
1 =pÞ, the condition stated by

Starrett is fulfilled absolutely. Hence, it is proved that with such function which
satisfies these conditions, can obey the rule of MPSS and can become a CRS frontier
function. ■

Theorem 3.2.3. Any linear combination of outputs produced from embedded PCA-
defined CRS frontier function, obeys Starrett defined MPSS condition.

Proof. Considering the presence of more than one output, the performance
measurement of a DMU can be judged through the definition 2.10.2. If zPre

comprises the collection of all outputs then it can be expressed as follows:

zPre ¼
Xm
i¼1

aiyi
Pre ¼

Xm
i¼1

ai
pimin


 �
EiRð Þ ¼

Xm
i¼1

Xv
j¼1

ai
pimin


 �
eijRj
� �

or; zPre:
@zPre

zPre


 �
y¼yn

¼
Xm
i¼1

Xv
j¼1

ai
pimin


 �
eijRj
� � @Rj

Rj


 �

or; zPre
� �

y¼yn ¼
Xm
i¼1

Xv
j¼1

ai
pimin


 �
eijRj
� �

(8)

since;
@zPre

zPre
¼ @Rj

Rj


 �
; for all j from the condition of MPSSð Þ

but;
@zPre

zPre
¼
Pm

i¼1 ai@y
Pre
iPm

i¼1 aiy
Pre
i

¼ @yPrei

yPrei

for all values of i (9)

Thus, a convex linear combination of predicted outputs obeys the MPSS condition. ■

4. A mathematical example
To rank according to the proposed model six schools are considered in Table I. The
quality of a school is judged based on the average writing score per student (O1) and
science score per student (O2). Two inputs, spending per student (I1) and the financial
condition of a student represented in terms of percent not from low income (I2), are also
recorded here.

A school is recognized as a quality producer if it is capable of producing output
scores by spending lower amount per pupil and also giving opportunities to the poorer
sections. In this context, two DEA models like CCR DEA and DEA for checking super
efficiency are applied here. Tables II and III contain the outputs of CCR DEA. Scores
shown in Table II clearly discriminates the inefficient schools B-D from the efficient
schools A, E and F.
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The weight vector defined by (u*, q*) for each school is displayed in Table III.
The weight vector for any school is represented as W (name of the school,
input/output).

Although, efficient schools like A, E and F have weight vectors along with few
zeroes, but the reduced cost in each cases remain absolutely zeroes (which is a must be
condition for becoming efficient). Table IV also explains the ranking among efficient
ones. F is super-efficient followed by A and E.

The weight vector of schools, given in Table V, shows that the school A remains
super-efficient due to the second input and both type of outputs. On the other hand, E
and F are in the same category due to the good use of different set of inputs and
outputs.

The specific consumption patterns, in Table VI, show that A assumes minimum
value in input 2 under both outputs. Thus, it can be counted under the list of efficient
DMUs.

Schools Input 1 (I1) Input 2 (I2) Output 1 (O1) Output 2 (O2)

A 8,939 64.3 25.2 223
B 8,625 99 28.2 287
C 10,813 99.6 29.4 317
D 10,638 96 26.4 291
E 6,240 96.2 27.2 295
F 4,719 79.9 25.5 222

Table I.
Data

Productivity Value Productivity Value Productivity Value

Score (A) 1 Score (C) 0.9635 Score (E) 1
Score (B) 0.9096 Score (D) 0.9143 Score (F) 1

Table II.
CCR DEA output

Weights W(A,I1) W(A,I2) W(A,O1) W(A,O2) W(B,I1) W(B,I2) W(B,O1) W(B,O2)
Value 0 0.01555 0.03968 0 0.0000172 0.00861 0 0.00317
Reduced cost 0 0 0 0 0 0 0.21214 0
Weights W(C,I1) W(C,I2) W(C,O1) W(C,O2) W(D,I1) W(D,I2) W(D,O1) W(D,O2)
Value 0.0000165 0.00825 0 0.00304 0.000017 0.00853 0 0.00314
Reduced cost 0 0 3.90828 0 0 0 4.35459 0
Weights W(E,I1) W(E,I2) W(E,O1) W(E,O2) W(F,I1) W(F,I2) W(F,O1) W(F,O2)
Value 0.0000184 0.0092 0 0.00339 0.000212 0 0.03922 0
Reduced cost 0 0 0 0 0 0 0 0

Table III.
Values of input and
output weights

Productivity Value Productivity Value Productivity Value

Score (A) 1.2348 Score (C) 0.9635 Score (E) 1.0841
Score (B) 0.9096 Score (D) 0.9143 Score (F) 1.2396

Table IV.
DEA model for
super efficiency
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It also explains the reason that E and F achieve minimum specific consumption scores
in input 1 under output 2 and in input 2 under output 1, respectively.

The covariance matrix, eigenvalues and eigenvectors, pertaining to the embedded
PCA, are shown in Table VII. These eigenvectors assume largest degree of explanation
(W90 percent) and reflects the usual practice of schools. First input has a higher impact
than the second. Table VII is important for the derivation of the expected amount of
outputs. These MPSS-based CRS frontiers, for each output, are shown below:

0:999949298:R1þ0:010069824R2 ¼ 185:08:y1

0:9999R1þ0:01R2 ¼ 21:155y2

Spending has higher impact on both outputs than the later one. An efficient school
must produce output according to these equations. Inefficiency creeps in if any
deviation exists among the observed output and the derived output. Table VIII shows
the magnitude of inefficiency errors for each DMU in each output.

The important aspect of this table is that school A, which has been considered as an
efficient DMU, is scoring errors on both occasions. However, E and F are able to keep
their errors very close to zero and hence can be counted under the list of efficient DMUs.

Weights W(A,I1) W(A,I2) W(A,O1) W(A,O2) W(B,I1) W(B,I2) W(B,O1) W(B,O2)
Value 0 0.0155 0.03214 0.00191 1.7164E-05 0.0086 0 0.0032
Reduced cost 6057.23 0 0 0 0 0 0.21214 0
Weights W(C,I1) W(C,I2) W(C,O1) W(C,O2) W(D,I1) W(D,I2) W(D,O1) W(D,O2)
Value 1.646E-05 0.0083 0 0.003 1.702E-05 0.0085 0 0.0031
Reduced cost 0 0 3.9083 0 0 0 4.355 0
Weights W(E,I1) W(E,I2) W(E,O1) W(E,O2) W(F,I1) W(F,I2) W(F,O1) W(F,O2)
Value 3.17E-05 0.0084 0 0.0037 0.000212 0 0.049 0
Reduced cost 0 0 6.636 0 0 8.862 0 54.56

Table V.
Values of input and

output weights

Schools I1/O1 I2/O1 I1/O2 I2/O2

A 354.7222222 2.551587302 40.08520179 0.288340807
B 305.8510638 3.510638298 30.05226481 0.344947735
C 367.7891156 3.387755102 34.11041009 0.314195584
D 402.9545455 3.636363636 36.55670103 0.329896907
E 229.4117647 3.536764706 21.15254237 0.326101695
F 185.0588235 3.133333333 21.25675676 0.35990991

Table VI.
Specific consumption

matrix of two
outputs

Contents From output 1 From output 2

S matrix 603,890.4534 6,081.332298 5,909.2 59.2503
6,081.332298 65.86168651 59.25 0.6455

Eigenvalue 603,951.6945 38.22645
Eigenvector 0.999949298 0.010069824 0.9999 0.01

Table VII.
The eigenvalue and
eigenvector of the
covariance matrix
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Table IX displays the MPSS-based optimization model for problem considered above.
The output of this LPP (shown in Table X) depicts the proportions for mixing two
scores. Three constraints which are considered for first three schools yield positive
slack values are unable to reach up to the desired level of output.

The condition of the remaining last two schools is somewhat better in this regard.
Though, the school F gets higher importance in this table and Table XI clarifies its
position from the column of ranking. It ranks 2nd among others due to the ability of
its students in the domain of language group. Having a positive dual price and
first rank among the competitors, school E, sets a bench mark in the arena of science
group. An extended output-oriented CCR model is applied here for resolving the issue
of contradictions stated before. Six more schools are adopted for analysis apart from

Schools
Predicted
output 1

Observed
output 1

Error in
output 1

Predicted
output 2

Observed
output 2

Error in
output 2

A 48.3 25.2 23.1 422.56 223 199.6
B 46.6 28.2 18.4 407.73 287 120.7
C 58.4 29.4 29.0 511.15 317 194.16
D 57.5 26.4 31.1 502.88 291 211.89
E 33.7 27.2 6.5 295 295 0
F 25.5 25.5 0 223.10 222 1.1

Table VIII.
Predicted output
level and
inefficiency error

1. Maximize S
Subject to

2. 25.2× a1+ 223× a2+ So ¼ a1× 48.2988238265909+ a2× 422.562114693711
3. 28.2× a1+ 287× a2+ So ¼ a1×46.6042432434978+ a2× 407.736304094862
4. 29.4× a1+317× a2+ So ¼ a1× 58.4255279303645+ a2× 511.159703649781
5. 26.4× a1+ 291× a2+ So ¼ a1× 57.4798480100451+ a2× 502.886038920934
6. 27.2× a1+ 295× a2+ So ¼ a1× 33.718493954692+ a2× 295
7. 25.5× a1+ 222× a2+ So ¼ a1× 25.5+a2× 223.097138205249
8. a1+ a2¼ 1

Table IX.
Linear model of
MPSS DEA

Variable Value Reduced cost
S 0.9390801 0
a1 0.144064 0
a2 0.855936 0
Constr Slack or surplus Dual price
1 173.201 0
2 105.0549 0
3 169.4307 0
4 184.8993 0
5 0 0.144064
6 0 0.855936
7 0 0.93908

Table X.
Output of
MPSS-based DEA
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the original DMUs. Those new schools are assumed to be using the same resources
like the original schools but producing outputs similar to the PCA-efficient DMU
(shown in Table XII).

The equation below incorporates the LPP of the Extended CCR Model:

Maxy

Subjected to : Ro ⩾ ROri:bOriþRDer :bDer
y:yopYOri:bOriþYDer :bDer; and b ⩾ 0

The summary of these optimizations is displayed in Tables XIII and XIV.
It is quite evident from here that school E is the best DMU among the other

competitors followed by F, B, etc. School A stays at last according to this model.
The ranking in this model is same as shown by the proposed model but the

productivity scores offered by this model is larger than the proposed one.
In these tables only the results of original six schools are included. The productivity
score of E is highest among others. Table XIV contains values of weights on each DMU
during each optimization. The weight vector for original schools remains zero after
each optimization and thus is not included in the above table. A very important

Schools
Error in output 1
(weight¼ 0.144)

Error in output 2
(weight¼ 0.856)

Combined
error

Performance
ratio Ranking

A 23.1 199.6 174.15 0.52762 6
B 18.4 120.7 106.00 0.702023 3
C 29.0 194.16 170.38 0.617952 4
D 31.1 211.89 185.85 0.576408 5
E 6.5 0 0.9387 0.996353 1
F 0 1.1 0.9391 0.995175 2

Table XI.
Combined error

Old schools [(I1, I2), (O1, O2)] New schools [(I1, I2), (O1, O2)]

A [(8,939, 64.3), (25.2, 223)] AA [(8,939, 64.3), (48.3, 422.56)]
B [(8,625, 99), (28.2, 287)] BB [(8,625, 99), (46.6, 407.73)]
C [(10,813, 99.6), (29.4, 317)] CC [(10,813, 99.6), (58.4, 511.15)]
D [(10,638, 96), (26.4, 291)] DD [(10,638, 96), (57.5, 502.88)]
E [(6,240, 96.2), (27.2, 295)] EE [(6,240, 96.2), (33.7, 295)]
F [(4,719, 79.9), (25.5, 222)] FF [(4,719, 79.9), (25.5, 223.10)]

Table XII.
Data set for new

CCR model

Schools θ Productivity (1/θ) Rank

A 1.89 0.5291 6
B 1.42 0.70423 3
C 1.61 0.62112 4
D 1.73 0.57803 5
E 1 1 1
F 1.00027 0.99973 2

Table XIII.
Ranking of schools

using extended
CCR model
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observation can be made from this table. Although, new schools were brought in from
the original schools, but, apart from school A, no other original schools are containing
their respective new schools under their production possibility set (like school B does
not have new school BB in the production possibility set).

5. Conclusion
To address the question “why this new DEAmodel” it is referred here that the traditional
CCR DEA model is very useful to define a kinked frontier which discriminates the
efficient DMUs from the rests. However, it hardly mentions anything about the internal
dimensions of resource utilization. The cost (collective consumption) frontier is derived
from the first principal component of a non-central covariance matrix. The corresponding
eigenvector shows positive direction of the joint variation of all resources. Any DMU
which has lowest intercept will be counted as economic user of resources. As a result it
remains close to the cost frontier to become cost efficient.

The proposed method offers ranking to the DMU based on their performance index.
Although, it does not have any resemblance with the ranking found in case of CCR
DEA or from their super-efficiencies, but, it clearly supports the claim of these two
models that the schools E and F are very close to be referred as efficient performers.
However, deficits are found high in case of schools like B-E in both outputs. Apart from
this, the magnitudes of these errors are much less than whatever is seen in Table XI.

School A School E School F

Weights Value
Reduced
cost Value

Reduced
cost Value

Reduced
cost

X1 1 0 0.54031 0 0.958987 0
X2 0 3.35E-05 0 2.6E-05 0 2.35E-05
X3 0 4.05E-05 0 3.15E-05 0 2.85E-05
X4 0 2.34E-05 0 1.81E-05 0 1.64E-05
X5 0 1.33E-05 0 1.03E-05 0 9.36E-06
X6 0 0 0.804231 0 0.474808 0
Constrs. Slack or

surplus
Dual price Slack or

surplus
Dual price Slack or

surplus
Dual price

1 0 0.000212 0 0.000165 0 0.000149
2 0 2.51E-06 0 1.95E-06 0 1.77E-06
3 0.548825 0 6.541476 0 11.0195 0
4 0 −0.00448 0 −0.00348 0 −0.00315

School D School E School F
Weights Value Reduced

cost
Value Reduced

cost
Value Reduced

cost
X1 1.7281 0 0.1086 0 0 0.000653
X2 0.9663 0 0 2.53E-05 0 0.000762
X3 0 2.56E-05 0 3.06E-05 0 0.0018
X4 0 3.1E-05 0 1.77E-05 0.4436 0
X5 0 1.79E-05 0 1.01E-05 0 0.001104
X6 0 1.02E-05 1.1166 0 0 0.000271
Constrs. Slack or

surplus
Dual price Slack or

surplus
Dual price Slack or

surplus
Dual price

1 0 0.000162 0 0.000165 0 0.000212
2 0 1.93E-06 0 1.95E-06 37.315 0
3 11.858 0 6.5415 0 0 −0.03922
4 0 −0.00344 0 −0.00348 1.0166 0

Table XIV.
Summary of
extended CCR DEA
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As per the proposed model, school A, which is among the super-efficient group, has
never been put under the list of efficient performers as the errors due to inefficiency in
each output are close to inefficient schools like C and D. This contradiction is settled by
using the new CCR DEA model which provides the same type of ranking as Table XI.
The productivity scores, however, are not identical with the former one. The reason of
this difference can be realized by the fact that the proposed model is based on a
pessimistic view which locates the MPSS frontier through points where the model
maximizes the minimum error. Thus, the performance measured from this plane will
always be less than whatever is found in case of new CCR model. It is, thus, capable of
identifying a superior point which is situated closer to the point generated from the
proposed method to generate better productivity. The specialty of this work is that it
can measure inefficiency related errors and also can be extended to the stochastic
analysis of errors.
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Appendix 1. The highest eigenvalue of a positive definite matrix that contains
entirely positive elements will always be greater than the highest diagonal
element of that matrix
Let A be a positive definite matrix with all non-negative elements, and let x be the eigenvector
corresponding to the eigenvalue, γ, then, from the definition of an eigenvalue, [Ax− γ.Ix]¼ 0 and
therefore, det ∣A−γ.I ∣¼ 0; must hold:

A�g:I
�� �� ¼ a11 � g a12 ::: a1n

a12 a22 � g ::: a2n
a1n a2n ann � g

264
375 ¼ 0; (A1.1)

Thus, the linearized form of the first (n−1) rows and n columns are as follows:

a11�gð Þ:x1 a12x2 :::a1n�1xn�1 ¼ �a1nxn
a12:x1 a22�gð Þ:x2 :::a2n�1xn�1 ¼ �a2nxn

a1n�1x1 a2n:x2 an�1n�1�gð Þxn�1 ¼ �an�1nxn

This can also be expressed as follows:

gV 1 ¼ g
x1
X 1

" #
¼

a11 a1p
ap1 A1

" #
x1
X 1

" #
(A1.2)

The first set of linear equation represents (γ− a11).x1¼ a1p.X1W0; which essentially refers to two
conditions; (γWa11) when x1W0 and (γoa11) when x1o0. As a result, it can be interpreted that
any ith element of an eigenvector will be positive if the corresponding eigenvalue is more than
the ith diagonal element. Therefore, if an eigenvector contains all positive elements then the
relationship ( γWmax(a11, a22,… ,ann)) must be true.

If another eigenvector V2 (which is orthogonal to V1) is considered with a negative element
−x2 where x2W0. Then, the following equations will exist:

gV 2 ¼ g
�x2
X 2

" #
¼

a11 a1p
ap1 A1

" #
�x2
X 2

" #
(A1.3)

x1 X 1
T

h i �x2
X 2

" #
¼ 0 (A1.4)

However, this will violate the condition ( γWmax(a11, a22, … ,ann)). Thus, an eigenvector with all
positive elements can be generated only from the largest eigenvalue.

The second equation is given as (γI−A1).X1¼ ap1.x1. Using the first equation the following
expression can be established:

X 1
T gI � A1ð Þ:X 1 ¼

X 1
T ap1a1p
� �

:X 1

g � a11ð Þ x1 (A1.5)

For the largest eigenvalue, γ− a11W0; must be true. The eigenvector, corresponding to it, will
necessarily make X1, x1W0 to happen and as a result it will also impose a positive definiteness to
the ( γI−A1) matrix (as a1pW0).
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Appendix 2. If A is a positive definite matrix (shown below), then the matrix of
its eigenvectors, Ej, will maintain a special structure

A½ �pxp ¼
a11 a1p
ap1 A1

" #
¼

a11 a12 . . . a1p

a21 a22 . . . a2p

^

ap1 ap2

&

app

26666664

37777775;ai;j ⩾ ak;l 40 for ipk; jp l;

Ej
� 	

pxp ¼
E1j E2j . . . Eij . . . Epj


 �
¼

e11 �e12 . . . e1i . . . e1p

e21 e22 . . . e2i . . . e2p

^

ep�1;1

ep1

^

ep�1;2

ep2

�ei�1;i

ep�1;i

&
�ep�1;p

. . . epi . . . epp

26666666664

37777777775

Any ith column of the matrix, [Ej] p×p, which is due to the eigenvalue γi such that for i¼ 1,2, … ,
p; and γiWγi+1, must give a positive value for the sum of its elements or 1TEij⩾ 0.

Proof. From the property of diagonalization, any positive definite matrix can be .
expressed as [A]¼ [Ej].[D].[Ej]′ such that the matrix, [Ej], remains orthogonal
([Ej]′.[Ej]¼ [Ej].[Ej]′¼ I ). Moreover, from the theorem of eigenvalue, [A].
[Eij]¼ γi.[Eij] will be satisfied for any ith eigenvalue, γi. Using these concepts
the following three equations can be derived:

a11: �e12ð Þþa12: e22ð Þþ ; . . . ; þa1i: ei2ð Þ; . . . ; þa1p: ep2
� � ¼ g2: �e12ð Þ (A2.1)

a11: e13ð Þþa12: �e23ð Þþ ; . . .; þa1i: ei3ð Þ; . . . ; þa1p: ep3
� � ¼ g3: e13ð Þ (A2.2)

Using former two Equations (A2.1) and (A2.2) along with the elemental properties of A, (ai,j⩾ ak,l
for i⩽ k, j⩽ l;), the subsequent relationships can be established:

a12:
e22

e12
�e23

e13


 �
þ ; . . . ; þa1i:

ei2

e12
þei3

e13


 �
; . . . ; þa1p:

ep2

e12
þep3

e13


 �
¼ g3 � g2 (A2.3)

g2 � g3 ⩾ a12:
�e12ð Þþ e22ð Þþ ; . . . ; þ ei2ð Þ; . . . ; þ ep2

� �
e12ð Þ þ e13ð Þþ �e23ð Þþ ; . . . ; þ ei3ð Þ; . . . ; þ ep3

� �
e13ð Þ


 �
(A2.4)

But, to make the relationship of γ2⩾ γ3 to happen in A2.4, there must be two inequalities to be
satisfied always (as a12W0):

�e12ð Þþ e22ð Þþ ; . . . ; þ ei2ð Þ; . . . ; þ ep2
� �� 	

⩾ 0 or e12p e22ð Þþ ; . . . ; þ ei2ð Þ; . . . ; þ ep2
� �� 	
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e13ð Þþ �e23ð Þþ ; . . . ; þ ei3ð Þ; . . . ; þ ep3
� �� 	

⩾ 0 or e23p e13ð Þþ ; . . . ; þ ei3ð Þ; . . . ; þ ep3
� �� 	
(A2.5)

On the contrary, the reversal of inequality signs stated in A2.5 remains inconclusive. This proposition
is not only true for all other eigenvectors, which possess one negative element. The first column of
[Ej] can also be categorized under the same set. Conversely, to prove the proposition, γ2Wγ3, to be
true, the conditions shown in A2.5 are sufficient. ■
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