

Benchmarking: An International Journal

A fuzzy embedded leagility assessment module in supply chain Chhabi Ram Matawale Saurav Datta S.S. Mahapatra

Article information:

To cite this document:

Chhabi Ram Matawale Saurav Datta S.S. Mahapatra , (2016),"A fuzzy embedded leagility assessment module in supply chain", Benchmarking: An International Journal, Vol. 23 Iss 7 pp. 1937 - 1982

Permanent link to this document: http://dx.doi.org/10.1108/BIJ-12-2013-0113

Downloaded on: 14 November 2016, At: 01:12 (PT) References: this document contains references to 85 other documents. To copy this document: permissions@emeraldinsight.com The fulltext of this document has been downloaded 51 times since 2016*

Users who downloaded this article also downloaded:

(2016), "Supplier selection in agile supply chain: Application potential of FMLMCDM approach in comparison with Fuzzy-TOPSIS and Fuzzy-MOORA", Benchmarking: An International Journal, Vol. 23 Iss 7 pp. 2027-2060 http://dx.doi.org/10.1108/BIJ-07-2015-0067

(2016),"Application of TODIM (Tomada de Decisión Inerativa Multicritero) for industrial robot selection", Benchmarking: An International Journal, Vol. 23 Iss 7 pp. 1818-1833 http://dx.doi.org/10.1108/BIJ-07-2015-0078

Access to this document was granted through an Emerald subscription provided by emerald-srm:563821 []

For Authors

If you would like to write for this, or any other Emerald publication, then please use our Emerald for Authors service information about how to choose which publication to write for and submission guidelines are available for all. Please visit www.emeraldinsight.com/authors for more information.

About Emerald www.emeraldinsight.com

Emerald is a global publisher linking research and practice to the benefit of society. The company manages a portfolio of more than 290 journals and over 2,350 books and book series volumes, as well as providing an extensive range of online products and additional customer resources and services.

Emerald is both COUNTER 4 and TRANSFER compliant. The organization is a partner of the Committee on Publication Ethics (COPE) and also works with Portico and the LOCKSS initiative for digital archive preservation.

*Related content and download information correct at time of download.

A fuzzy embedded leagility assessment module in supply chain

Chhabi Ram Matawale, Saurav Datta and S.S. Mahapatra Department of Mechanical Engineering, National Institute of Technology, Rourkela, India Leagility assessment module

1937

Received 6 December 2013 Revised 19 November 2015 Accepted 1 December 2015

Abstract

Purpose – In today's ever-changing global business environment, successful survival of manufacturing firms/production units depends on the extent of fulfillment of dynamic customers' demands. Appropriate supply chain strategy is of vital concern in this context. Lean principles correspond to zero inventory level; whereas, agile concepts motivate safety inventory to face and withstand in turbulent market conditions. The leagile paradigm is gaining prime importance in the contemporary scenario which includes salient features of both leanness and agility. While lean strategy affords markets with predictable demand, low variety and long product life cycle; agility performs best in a volatile environment with high variety, mass-customization and short product life cycle. Successful implementation of leagile concept requires evaluation of the total performance metric and development of a route map for integrating lean production and agile supply in the total supply chain. To this end, the purpose of this paper is to propose a leagility evaluation framework using fuzzy logic.

Design/methodology/approach – A structured framework consisting of leagile capabilities/ attributes as well as criterions has been explored to assess an overall leagility index, for a case enterprise and the data, obtained thereof, has been analyzed. Future opportunities toward improving leagility degree have been identified as well. This paper proposes a Fuzzy Overall Performance Index to assess the combined agility and leanness measure (leagility) of the organizational supply chain.

Findings – The proposed method has been found fruitful from managerial implication viewpoint. **Originality/value** – This paper aimed to present an integrated fuzzy-based performance appraisement module in an organizational leagile supply chain. This evaluation module helps to assess existing organizational leagility degree; it can be considered as a ready reference to compare performance of different leagile organization (running under similar supply chain architecture) and to benchmark candidate leagile enterprises; so that best practices can be transmitted to the less-performing organizations. Moreover, there is scope to identify ill-performing areas (barriers of leagility) which require special managerial attention for future improvement.

Keywords Benchmarking, Decision support systems

Paper type Research paper

1. Introduction: lean, agile and leagile manufacturing concept

In this era of globalization, modern manufacturing enterprises are continuously facing tough market competitions. The remarkable industrial growth in past few decades has completely revolutionized their traditional manufacturing strategies, giving emergence to the modern concepts of lean, agile, and nowadays, leagile manufacturing. These new strategies enable the enterprises to survive in the turbulent environment of violent competitions laid down by their competitors. The requirement of faster delivery within due date, the ability of being flexible to satisfy fluctuating market demand have been the prime motivations that has provoked manufacturing enterprises to look for the

Benchmarking: An International Journal Vol. 23 No. 7, 2016 pp. 1937-1982 © Emerald Group Publishing Limited 1463-5771 DOI 10.1108/BJ-12-2013-0113

Authors gratefully acknowledge the support rendered by Professor Gunasekaran, Editor-in-Chief, *Benchmarking, An International Journal.* Special thanks to the anonymous reviewers for their valuable constructive comments and suggestions to prepare the paper a good contributor. available best alternatives, and implement it in their daily manufacturing practices. This led to the development of a new concept of leagality, which is an integration of lean and agile principles. Agile manufacturing is adopted where demand is volatile and lean manufacturing is adopted where there is a stable demand. However, in some situations it is advisable to utilize a different paradigm on either side of the material flow decoupling point to enable a total supply chain strategy. This approach is termed as leagile paradigm (Mason-Jones, 2000a, b).

Recent advancements have shown that leagile principle has immense potential to counteract the existing complexity of the market scenario. Therefore, leagile principles are, nowadays, attracting modern manufacturing enterprises; researchers as well as management practitioners are aiming to find its potential benefits almost in all industrial sectors throughout the globe.

1.1 Lean manufacturing

Lean manufacturing focusses on cost reduction by eliminating non-value added activities so that several advantages can be obtained such as minimization/elimination of waste, increased business opportunities and to gain competitive advantage. Lean manufacturing is generally adopted where there is a stable demand and to ensure a level schedule. The term "lean manufacturing," which first appeared in 1990s (Womack *et al.*, 1990; Holweg, 2007) when it was used to refer to the elimination of waste in the production process, has been announced as the production system of the twenty-first century. Historically, the concept of lean manufacturing was originated with Toyota Production Systems; and Toyota had increasingly become known for its effectiveness in implementing Just-In-Time manufacturing systems. Lean manufacturing is called "lean" as it uses less or the minimum, of everything required to produce a product or perform a service. Lean operations eliminate seven tedious wastes, namely overproduction, over processing, motion, waiting, transportation, defects and inventory.

1.2 Agile manufacturing

Agile manufacturing is the ability to respond and create new windows of opportunity in a turbulent market environment, driven by the individualization of customers' requirements cost effectively, rapidly and continuously. Agile manufacturing is essentially the utilization of market knowledge and virtual corporation to exploit profitable opportunities in a volatile marketplace (Power *et al.*, 2001; Katayama and Bennett, 1999; Christopher, 2000).

Agile manufacturing is used to represent the ability of a producer of goods and services to thrive in the face of continuous change. These changes can occur in markets, in technologies, in business relationships and in all facets of the business enterprise. On the contrary, lean manufacturing, the emphasis is on cost-cutting. The requirement for organizations, to become more flexible and responsive to customers' expectations, led to the concept of agile manufacturing as a differentiation from the lean organization.

1.3 Leagile manufacturing

Leagility is the combination of the lean and agile paradigms within a supply chain strategy by proper positioning the decoupling point. A leagile system has the characteristics of both lean and agile parts, acting together in order to exploit market opportunities in a cost-efficient manner. The system defined as leagile could be an entire supply chain or a single manufacturing plant with individual lean and agile sub-groups containing a decoupling point, which separates the lean and agile portions of the system. The decoupling point is the point in the material flow streams to which the customer's order penetrates (Mason-Jones *et al.*, 2000a, b: Prince and Kay, 2003). It is the point where order driven and the forecast-driven activities meet. A decoupling point within a factory enables lean and agile practices to complement each other at the operational level to improve overall performance and profitability of the factory. The most important reason behind combining these two concepts is to take advantages of both in a single unit; because, there is always a need for responding to volatile demand downstream and providing level scheduling upstream from the marketplace (Van Hoek et al., 2001). Navlor et al. (1999) believed that they can complement each other in the right operational conditions and should not be viewed as competitive, rather as mutually supportive. Agility is dynamic and context specific, aggressively change embracing and growth oriented (Goldman *et al.*, 1995). Agile manufacturing promises not only improved manufacturing performance, but also the support of future business strategies designed to improve the way in which an enterprise competes in the marketplace. On a strategic level, agile manufacturing is seemed very attractive for its potential to cope up with future uncertainty and the prospect of producing a wide range of highly customized products at mass production prices. Therefore, these two concepts can be combined within successfully designed and operated supply chains; where agile manufacturing concepts are applied to the part of the supply chain under the greatest pressure to operate in an environment of fluctuating demand in terms of volume and variety. Lean concepts can then be applied to the rest of the supply chain to create and encourage level demand necessary to achieve the cost benefits associated with this production strategy. The innovation being sought is the application of lean and agile concepts at different stages of the same manufacturing process route so that the benefits of both strategies can be maximized.

2. State of art and problem definition

Naylor et al. (1999) compared lean and agile paradigm highlighting the similarities and differences as agile manufacturing is best suited to satisfy a fluctuating demand and lean manufacturing requires a level schedule. They combined both the paradigm within a total supply chain strategy particularly considering market knowledge and positioning of the decoupling point. Mason-Jones et al. (2000a) integrated lean production and agile supply in the total supply chain and supplemented by information enrichment which required evaluation of the total performance metric and development of a route map. Adopting such an approach to supply chain re-engineering ensured that customer service levels were improved at the same time lead times and costs were greatly reduced. Mason-Jones et al. (2000b) classified supply chain design and operations according to the lean, agile and leagile paradigms that enabled to match the supply chain type according to marketplace necessity. Herer et al. (2002) introduced transshipments, which represented a common practice in multi-location inventory systems involving monitored movement of stock between locations at the same level of the supply chain and established a model, how transshipments could be used to enhance both agility and leanness. Stratton and Warburton (2003) explored the role of inventory and capacity in accommodating the lean as well as agile supply chain variation and identified how Theory of Inventive Problem Solving (TRIZ) separation principles and Theory of Constraints (TOC) tools might be combined in the integrated development of responsive and efficient supply chains. Prince and Kay (2003) described the circumstances on which, manufacturing organizations required an integrated agile

Leagility assessment module

1939

and lean characteristic in their supply chain. They also described the development of the virtual group (VG) concept, which was the application of virtual cells to functional layouts. VGs enabled the appropriate application of lean and agile concepts to different stages of production within a factory. The identification of VGs was achieved through enhanced production flow analysis. Bruce *et al.* (2004) discussed the characteristics of the textiles and apparel industry and identified the perspectives of leanness, agility and leagility within existing supply chain fiction, which offered as solutions to achieving quick response and reduced lead times.

Narasimhan *et al.* (2006) attempted an empirical study to determine whether leanness and agility forms occurred with any degree of uniformity in manufacturing plants. The result illustrated the existence of homogeneous groups that resembled lean and agile performing plants. They identified important differences pertaining to their constituent performance and also revealed that while the pursuit of agility might presume leanness, pursuit of leanness might not presume agility. Agarwal *et al.* (2006) presented a framework which encapsulated the market sensitiveness, process integration, information driver as well as flexibility measures of supply chain performance. They investigated the relationship among lead-time, cost, quality and service level and presented a case study on three types of supply chain: lean, agile and leagile in the context of fast moving consumer goods business. Krishnamurthy and Yauch (2007) proposed a theoretical model of leagile manufacturing and analyzed the utility of leagility concept to a single corporate with multiple business units. They explained whether a decoupling point would be necessary to distinguish the lean and agile portions of the enterprise.

Rahimnia *et al.* (2009) presented a case study to apply the decoupling point concept in a healthcare delivery system considering the leagile concept. By grouping healthcare services into three pipelines, the aforesaid study identified decoupling points for the supply chain. It also argued that while discussing leagility in a professional service organization, the important role of human resources should be highlighted. Chan et al. (2009) proposed an integrated process planning and scheduling model inheriting the salient features of outsourcing; and leagile principles to compete in the existing market scenario. The authors also proposed a new hybrid Enhanced Swift Converging Simulated Annealing (ESCSA) algorithm, to solve the complex real-time scheduling problems. It had an inherent feature of the genetic algorithm, simulated annealing and the fuzzy logic controller. Rahimnia and Moghadasian (2010) highlighted the application of leagility and its characteristics in a mass service organization. Despite the low customization in mass services, fast food restaurants faced changing needs of the customers. To respond to these demands, the case organization could adopt new strategies so that it could be able to serve the customer with short lead times, low costs and high variety. Huang and Li (2010) illustrated how a personal computer original equipment manufacturer in Taiwan achieved leagility through re-engineering of its supply chain. The case study showed how the company adjusted its production processes from build-to-order to configuration-to order so as to achieve leagility.

Konecka (2010) emphasized the importance of the risk management in supply chains strategy such as lean, agile and leagile. These studies facilitated the choice of an appropriate supply chain strategy based on the risk analysis. Moron and Haan (2011) presented a practical case study on Polish distributer in Poland. They stated that during the volatile period an agile approach provided the flexibility and competitiveness needed. However, when the market matured; the overly expensive agility caused last minute crisis; then a lean approach enabled the optimization of processes needed to supply customer in a more reliable way. Azevedo *et al.* (2012) proposed an index to evaluate the extent of agility and leanness of individual companies and the corresponding supply chain. The index was obtained from a set of agile and lean supply chain practices integrated in an assessment model, named Agile and Delphi technique which was used to develop a series of weighted agile and lean supply chain management practices and also the importance of the paradigms through experts in automotive. Soni and Kodali (2012) addressed the issue of lack of standard constructs in frameworks of lean, agile and leagile supply chain by evaluating reliability and validity of lean, agile and leagile supply chain constructs in Indian manufacturing industry. Principle component analysis was performed on these constructs to find out the pillars of each type of supply chain followed by evaluating reliability and validity of these pillars to establish the underlying constructs.

Literature has been found rich enough in delivering in-depth understanding of lean, agile and leagile concepts in supply chain management. Potential benefits of individual supply chain strategies in appropriate situation have been well documented. The need for combining lean as well as agile principles in a total supply chain has also been clearly highlighted. While adopting a particular supply chain strategy; performance assessment is indeed necessary. Relatively less work has been found reported in literature concerning different aspects of performance appraisement of leagility-driven supply chain. Motivated by this, present work attempts to develop an efficient leagility assessment module in fuzzy context. Data obtained from a case organization at eastern part of India has been explored to reflect application feasibility of the proposed method.

The rest of the paper has been organized as follows. Section 3 presents basic knowledge on fuzzy logic that will be required in data analysis as well as interpretation phase. Section 4 provides detailed understanding of the proposed evaluation framework; its procedural steps, etc. Case study has been reported in Section 5. Managerial and research implications of this work has been documented in Section 6. Finally, Section 7 draws conclusions of this research.

3. Fuzzy preliminaries

Fuzzy logic is basically a multi-value logic which permits intermediate values to be defined between conventional ones like true/false, low/high, good/bad, etc. It is an established fact that, as the complexities surrounding a system increase, making a precise statement about the state of the system becomes very difficult.

To deal with vagueness in human thought, Zadeh (1965) first introduced the fuzzy set theory, which has the capability to represent/manipulate data and information possessing based on non-statistical uncertainties. Moreover fuzzy set theory has been designed to mathematically represent uncertainty and vagueness and to provide formalized tools for dealing with the imprecision inherent to decision-making problems. Some basic definitions of fuzzy sets, fuzzy numbers and linguistic variables are reviewed from Zadeh (1975), Buckley (1985), Negi (1989), Kaufmann and Gupta (1991). The basic definitions and notations below will be used throughout this paper until otherwise stated.

3.1 Definitions of fuzzy sets

Definition 1. A fuzzy set \tilde{A} in a universe of discourse X is characterized by a membership function $\mu_{\tilde{A}}(x)$ which associates with each element x in X a real number in the interval [0, 1]. The function value $\mu_{\tilde{A}}(x)$ is termed the grade of membership of x in \tilde{A} (Kaufmann and Gupta, 1991).

Leagility assessment module 1942

Definition 2. A fuzzy set \tilde{A} in a universe of discourse X is convex if and only if:

$$\mu_{\tilde{A}}(\lambda x_1 + (1 - \lambda)x_2) \ge \min\left(\mu_{\tilde{A}}(x_1), \mu_{\tilde{A}}(x_2)\right) \tag{1}$$

For all x_1, x_2 in X and all $\lambda \in [0, 1]$, where min denotes the minimum operator (Klir and Yuan, 1995).

Definition 3. The height of a fuzzy set is the largest membership grade attained by any element in that set. A fuzzy set \tilde{A} in the universe of discourse X is called normalized when the height of \tilde{A} is equal to 1 (Klir and Yuan, 1995).

3.2 Definitions of fuzzy numbers

Definition 4. A fuzzy number is a fuzzy subset in the universe of discourse X that is both convex and normal. Figure 1 shows a fuzzy number \tilde{n} in the universe of discourse X that conforms to this definition (Kaufmann and Gupta, 1991).

Definition 5. The α -cut of fuzzy number \tilde{n} is defined as:

$$\tilde{n}^{\alpha} = \left\{ x_i : \mu_{\tilde{n}}(x_i) \geqslant \alpha, x_i \in X \right\},\tag{2}$$

Here, $\alpha \in [0,1]$.

The symbol \tilde{n}^{α} represents a non-empty bounded interval contained in *X*, which can be denoted by $\tilde{n}^{\alpha} = [n_l^{\alpha}, n_u^{\alpha}], n_l^{\alpha}$ and n_u^{α} are the lower and upper bounds of the closed interval, respectively (Kaufmann and Gupta, 1991; Zimmermann, 1991). For a fuzzy number \tilde{n} , if $n_l^{\alpha} > 0$ and $n_u^{\alpha} \le 1$ for all $\in [0, 1]$, then \tilde{n} is called a standardized (normalized) positive fuzzy number (Negi, 1989):

Definition 6. Suppose, a positive triangular fuzzy number (PTFN) is \hat{A} and that can be defined as (a, b, c) shown in Figure 2. The membership function $\mu_{\tilde{n}}(x)$ is defined as:

$$\mu_{\tilde{A}}(x) = \begin{cases} (x-a)/(b-a), & \text{if } a \leq x \leq b, \\ (c-x)/(c-b), & \text{if } b \leq x \leq c, \\ 0, & \text{otherwise,} \end{cases}$$
(3)

Figure 1. A fuzzy number \tilde{n}

Based on extension principle, the fuzzy sum \oplus and fuzzy subtraction Θ of any two triangular fuzzy numbers are also triangular fuzzy numbers; but the multiplication & of any two triangular fuzzy numbers is only approximate triangular fuzzy number (Zadeh, 1975). Let us have a two PTFN s, such as $A_1 = (a_1, b_1, c_1)$, and $A_2 =$ (a_2, b_2, c_2) , and a positive real number r = (r, r, r), some algebraic operations can be expressed as follows:

$$\tilde{A}_1 \oplus \tilde{A}_2 = (a_1 + a_2, b_1 + b_2, c_1 + c_2)$$
 (4)

$$\tilde{A}_1 \Theta \tilde{A}_2 = (a_1 - a_2, b_1 - b_2, c_1 - c_2),$$
 (5)

$$\tilde{A}_1 \otimes \tilde{A}_2 = (a_1 a_2, b_1 b_2, c_1 c_2),$$
(6)

$$r \otimes A_1 = (ra_1, rb_1, rc_1),$$
 (7)

$$\tilde{A}_1 \not O \tilde{A}_2 = (a_1/c_2, b_1/b_2, c_1/a_2), \tag{8}$$

The operations of \vee (max) and \wedge (min) are defined as:

$$\tilde{A}_1(\vee)\tilde{A}_2 = (a_1 \vee a_2, b_1 \vee b_2, c_1 \vee c_2),$$
(9)

$$\tilde{A}_1(\wedge)\tilde{A}_2 = (a_1 \wedge a_2, b_1 \wedge b_2, c_1 \wedge c_2),$$
(10)

Here, r > 0 and $a_1, b_1, c_1 > 0$.

Also the crisp value of triangular fuzzy number set A_1 can be determined by defuzzification which locates the best non-fuzzy performance (BNP) value. Thus, the BNP values of fuzzy number are calculated by using the center of area method as follows (Moeinzadeh and Hajfathaliha, 2010):

$$BNP_{i} = \frac{[(c-a) + (b-a)]}{3} + a, \ \forall_{i},$$
(11)

Definition 7. A matrix $\hat{\mathbf{D}}$ is called a fuzzy matrix if at least one element is a fuzzy number (Buckley, 1985).

Leagility assessment module

1943

Figure 2. A triangular fuzzy number \tilde{A} 3.3 Linguistic variable

Definition 8. A linguistic variable is the variable whose values are not expressed in numbers but words or sentences in a natural or artificial language (Zadeh, 1975). The concept of a linguistic variable is very useful in dealing with situations, which are too complex or not well defined to be reasonably described in conventional quantitative expressions (Zimmermann, 1991). For example, "weight" is a linguistic variable whose values are "very low," "low," "medium," "high," "very high," etc. Fuzzy numbers can also represent these linguistic values.

3.4 The concept of generalized trapezoidal fuzzy numbers (GTFNs)

By the definition given by Chen (1985), a GTFN can be defined as $\hat{A} = (a_1, a_2, a_3, a_4; w_{\tilde{A}})$, as shown in Figure 3 and the membership function $\mu_{\tilde{A}}(x)$: $R \rightarrow [0, 1]$ is defined as follows:

$$\mu_{\tilde{A}}(x) = \begin{cases} \frac{x-a_1}{a_2-a_1} \times w_{\tilde{A}}, & x \in (a_1, a_2) \\ w_{\tilde{A}}, & x \in (a_2, a_3) \\ \frac{x-a_4}{a_3-a_4} \times w_{\tilde{A}}, & x \in (a_3, a_4) \\ 0, & x \in (-\infty, a_1) \cup (a_4, \infty) \end{cases}$$
(12)

Here, $a_1 \leq a_2 \leq a \leq a_4$ and $w_{\tilde{A}} \in [0, 1]$.

The elements of the GTFNs $x \in R$ are real numbers, and its membership function $\mu_{\tilde{A}}(x)$ is the regularly and continuous convex function, it shows that the membership degree to the fuzzy sets. If $-1 \leq a_1 \leq a_2 \leq a_3 \leq a_4 \leq 1$, then \tilde{A} is called the normalized trapezoidal fuzzy number. Especially, if $w_{\tilde{A}} = 1$, then \tilde{A} is called trapezoidal fuzzy number (a_1, a_2, a_3, a_4); if $a_1 < a_2 = a_3 < a_4$, then \tilde{A} is reduced to a triangular fuzzy number. If $a_1 = a_2 = a_3 = a_4$, then \tilde{A} is reduced to a real number.

Suppose that $\tilde{a} = (a_1, a_2, a_3, a_4; w_{\tilde{a}})$ and $b = (b_1, b_2, b_3, b_4; w_{\tilde{b}})$ are two GTFNs, then the operational rules of the GTFNs \tilde{a} and \tilde{b} are shown as follows (Chen and Chen, 2009):

$$\tilde{a} \oplus b = (a_1, a_2, a_3, a_4; w_{\tilde{a}}) \oplus (b_1, b_2, b_3, b_4; w_{\tilde{b}})$$
$$= (a_1 + b_1, a_2 + b_2, a_3 + b_3, a_4 + b_4; \min(w_{\tilde{a}}, w_{\tilde{b}}))$$
(13)

Figure 3. Trapezoidal fuzzy number \tilde{A}

1944

$$\tilde{a} - \tilde{b} = (a_1, a_2, a_3, a_4; w_{\tilde{a}}) - (b_1, b_2, b_3, b_4; w_{\tilde{b}})$$

$$= (a_1 - b_4, a_2 - b_3, a_3 - b_2, a_4 - b_1; \min(w_{\tilde{a}}, w_{\tilde{b}}))$$
(14) Leagility assessment module

 $\tilde{a} \otimes \tilde{b} = (a_1, a_2, a_3, a_4; w_{\tilde{a}}) \otimes (b_1, b_2, b_3, b_4; w_{\tilde{b}}) = (a, b, c, d; \min(w_{\tilde{a}}, w_{\tilde{b}}))$ (15)

Here:

$$a = \min(a_1 \times b_1, a_1 \times b_4, a_4 \times b_1, a_4 \times b_4)$$

$$b = \min(a_2 \times b_2, a_2 \times b_3, a_3 \times b_2, a_3 \times b_3)$$

$$c = \max(a_2 \times b_2, a_2 \times b_3, a_3 \times b_2, a_3 \times b_3)$$

$$d = \max(a_1 \times b_1, a_1 \times b_4, a_4 \times b_1, a_4 \times b_4)$$

If a_1 , a_2 , a_3 , a_4 , b_1 , b_2 , b_3 , b_4 are real numbers, then:

$$\tilde{a} \otimes b = (a1 \times b1, a2 \times b2, a3 \times b3, a4 \times b4; \min(w_{\tilde{a}}, w_{\tilde{b}}))$$

$$\tilde{a}/\tilde{b} = (a_1, a_2, a_3, a_4; w_{\tilde{a}})/(b_1, b_2, b_3, b_4; w_{\tilde{b}})$$

= $(a_1/b_4, a_2/b_3, a_3/b_2, a_4/b_1; \min(w_{\tilde{a}}, w_{\tilde{b}}))$ (16)

Chen and Chen (2003) proposed the concept of COG point of GTFNs, and suppose that the COG point of the GTFN $\tilde{a} = (a_1, a_2, a_3, a_4; w_{\tilde{a}})$ is $(x_{\tilde{a}}, y_{\tilde{a}})$, then:

$$y_{\tilde{a}} = \begin{cases} \frac{w_{\tilde{a}} \times \left(\frac{a_3 - a_2}{a_4 - a_1} + 2\right)}{6}, & \text{if } a_1 \neq a_4 \\ \frac{w_{\tilde{a}}}{2}, & \text{if } a_1 = a_4 \end{cases}$$
(17)

$$x_{\tilde{a}} = \frac{y_{\tilde{a}} \times (a_2 + a_3) + (a_1 + a_4) \times (w_{\tilde{a}} - y_{\tilde{a}})}{2 \times w_{\tilde{a}}}$$
(18)

3.5 Ranking of GTFNs (Thorani et al., 2012)

The centroid of a trapezoid is considered as the balancing point of the trapezoid (Figure 4). Divide the trapezoid into three plane figures. These three plane figures are a triangle (APB), a rectangle (BPQC) and a triangle (CQD), respectively. Let the centroids of the three plane figures be G_1 , G_2 and G_3 , respectively. The incenter of these centroids G_1 , G_2 and G_3 is taken as the point of reference to define the ranking of GTFNs. The reason for selecting this point as a point of reference is that each centroid point are balancing points of each individual plane figure, and the Incentre of these centroid points is a much more balancing point for a GTFN. Therefore, this point would be a better reference point than the centroid point of the trapezoid.

Consider a GTFN A = (a, b, c, d; w), (Figure 4). The centroids of the three plane figures are $G_1 = ((a+2b)/3, (w/3))$, $G_2 = ((b+c)/2, (w/2))$ and $G_3 = ((2c+d)/3, (w/3))$, (w/3)), respectively.

Equation of the line $\overline{G_1G_3}$ is y = (w/3) and G_2 does not lie on the line $\overline{G_1G_3}$. Therefore, G_1G_2 and G_3 are non-collinear and they form a triangle.

BIJ 23,7

We define the Incentre $I_{\tilde{A}}(\bar{x}_0, \bar{y}_0)$ of the triangle with vertices G_1, G_2 and G_3 of the GTFN $\tilde{A} = (a, b, c, d; w)$ as:

$$I_{\tilde{A}}(\bar{x}_0, \bar{y}_0) = \left(\frac{\alpha(\frac{a+2b}{3}) + \beta(\frac{b+c}{2}) + \gamma(\frac{2c+d}{3})}{\alpha + \beta + \gamma}, \frac{\alpha(\frac{w}{3}) + \beta(\frac{w}{2}) + \gamma(\frac{w}{3})}{\alpha + \beta + \gamma}\right)$$
(19)

Here:

$$\alpha = \frac{\sqrt{(c-3b+2d)^2 + w^2}}{6}$$
$$\beta = \frac{\sqrt{(2c+d-a-2b)^2}}{3}$$
$$\gamma = \frac{\sqrt{(3c-2a-b)^2 + w^2}}{6}$$

As a special case, for triangular fuzzy number $\tilde{A} = (a, b, c, d; w)$, i.e. c = b the incentre of centroids is given by:

 $x = \frac{\sqrt{(2d - 2b)^2 + w^2}}{6}$

 $y = \frac{\sqrt{(d-a)^2}}{3}$ $z = \frac{\sqrt{(2b-2a)^2 + w^2}}{6}$

$$I_{\tilde{A}}(\bar{x}_0, \bar{y}_0) = \left(\frac{x(\frac{a+2b}{3}) + yb + z(\frac{2b+d}{3})}{x+y+z}, \frac{x(\frac{w}{3}) + y(\frac{w}{2}) + z(\frac{w}{3})}{x+y+z}\right)$$
(20)

Here:

The ranking function of the GTFN $\tilde{A} = (a, b, c, d; w)$, which maps the set of all fuzzy numbers to a set of real numbers is defined as:

Leagility assessment module

1947

$$R(\tilde{A}) = x_0 \times y_0 = \left(\frac{x(\frac{a+2b}{3}) + yb + z(\frac{2b+d}{3})}{x+y+z} \times \frac{x(\frac{w}{3}) + y(\frac{w}{2}) + z(\frac{w}{3})}{x+y+z}\right)$$
(21)

This is the area between the incenter of the centroids $I_{\tilde{A}}(\bar{x}_0, \bar{y}_0)$ as defined in Equation (19) and the original point.

The mode (m) of the GTFN $\tilde{A} = (a, b, c, d; w)$, is defined as:

$$m = \frac{1}{2} \int_0^w (b+c) \, dx = \frac{w}{2} (b+c) \tag{22}$$

The spread (s) of the GTFN $\tilde{A} = (a, b, c, d; w)$, is defined as:

$$s = \int_0^w (d-a) \, dx = w(d-a) \tag{23}$$

The left spread (*ls*) of the GTFN $\tilde{A} = (a, b, c, d; w)$, is defined as:

$$ls = \int_0^w (b-a) \, dx = w(b-a) \tag{24}$$

The right spread (*rs*) of the GTFN $\tilde{A} = (a, b, c, d; w)$, is defined as:

$$rs = \int_0^w (d-c) \, dx = w(d-c) \tag{25}$$

Using the above definitions we now define the ranking procedure of two GTFNs.

Let $A = (a_1, b_1, c_1, d_1; w_1)$ and $B = (a_2, b_2, c_2, d_2; w_2)$ be two GTFNs. The working procedure to compare \tilde{A} and \tilde{B} is as follows:

Step 1: find $R(\tilde{A})$ and $R(\tilde{B})$: Case (i) If R(A) > R(B) then A > BCase (ii) If $R(\tilde{A}) < R(\tilde{B})$ then $\tilde{A} < \tilde{B}$ Case (iii) If $R(\tilde{A}) = R(\tilde{B})$ comparison is not possible, then go to step 2. Step 2: find m(A) and m(B): Case (i) If m(A) > m(B) then A > BCase (ii) If $m(\tilde{A}) < m(\tilde{B})$ then $\tilde{A} < \tilde{B}$ Case (iii) If $m(\hat{A}) = m(\hat{B})$ comparison is not possible, then go to step 3. Step 3: find s(A) and s(B): Case (i) If s(A) > s(B) then A < BCase (ii) If $s(\tilde{A}) < s(\tilde{B})$ then $\tilde{A} > \tilde{B}$ Case (iii) If s(A) = s(B) comparison is not possible, then go to step 4. Step 4: find $ls(\tilde{A})$ and $ls(\tilde{B})$: Case (i) If $ls(\tilde{A}) > ls(\tilde{B})$ then $\tilde{A} > \tilde{B}$ Case (ii) If $ls(\tilde{A}) < ls(\tilde{B})$ then $\tilde{A} < \tilde{B}$ Case (iii) If ls(A) = ls(B) comparison is not possible, then go to step 5. Step 5: examine w_1 and w_2 : Case (i) If $w_1 > w_2$ then A > BCase (ii) If $w_1 < w_2$ then A < BCase (iii) If $w_1 = w_2$ then $A \approx B$

4. Leagility evaluation: a conceptual framework

Leagile supply chain is a new conception that proposed in the context of diversified and personalized customer demands; it can quickly response fast changing demands, and modularize all kinds of personalized products as much as possible (Zhang *et al.*, 2012). Successful implication of leagility-driven supply chain requires its performance to be assessed.

The procedural hierarchical framework (Table I) for leagility evaluation assessment module has been illustrated as follows. The assessment framework is based on a leagile capabilities-attribute-criterion hierarchy; and it consists of five leagile enablers (at first level), 40 leagile attributes (at second level) and 188 leagile criterions (at third level). This descriptive model is very much comprehensive; it has been partially adapted from the work (Vinodh and Aravindraj, 2012) and extended up to third level with the help of extensive literature survey from internet. The model addresses all major dimensions (leagile capabilities) of leagility such as virtual enterprise; collaborative relationship; strategic management; knowledge and IT management; customer and market sensitiveness; termed as first level evaluation indices or leagile capabilities. In the proposed three-level evaluation hierarchy, the first level indices have been comprised by examining business operation environments, measuring leagile drives and thereby identifying of leagile supply chain capabilities. The second level of the framework assesses the leagile enabled attributes and synthesizes appropriateness ratings as well as priority weights. The third level of the evaluation module assesses the leagile criterions and synthesizes appropriateness ratings (performance extent) and priority weights. As the module encompasses various leagile capabilities, attributes as well as leagile criterions; subjectivity of the evaluation indices incorporates various decision-making uncertainty, ambiguity and vagueness. Therefore, a fuzzy logic approach has been utilized toward avoiding imprecision, inconsistency and incompleteness in the decision-making information and to deduce the human error and creation of expert knowledge and interpretation of a large amount of vague data. Above mentioned framework finds a performance representative "crisp value" against each of the third level leagile criterion and finally obtains performance ranking order for different leagile criterions. It is assumed that, higher the crisp value; higher be the performance extent for the said leagile criterion. Procedural steps of leagility appraisement have been summarized as follows:

- (1) Construction of general hierarchy model (set of capabilities/attributes/criterions) toward evaluating leagility extent.
- (2) Formation of an expert team (decision-making group) consisting of a finite number of decision makers (DMs). It is solely the task of the top management to select DMs from important managerial hierarchy level of the enterprise as well as from academia.
- (3) Selection of appropriate linguistic scale to collect expert opinion in relation to priority weight as well as performance rating of different leagility evaluation indices.
- (4) Selection of a suitable fuzzy scale to transform DMs linguistic evaluation information into appropriate fuzzy numbers for further data analysis and interpretation.
- (5) Collection of survey data (expert judgment) in relation to performance ratings and importance weights of leagile indices using linguistic terms.
- (6) Approximation of the linguistic ratings and weights by using fuzzy numbers. Fuzzy weighted average method is used to aggregate decision-making information.

1948

Goal	Leagile enablers (first level)	Leagile attributes (second level)	Leagile criterions (third level)	References/citations
Leagility (C)	Virtual enterprises (C ₁)	Virtual retail stores (C ₁₁)	Customer care (C ₁₁₁) Merchandise and security (C ₁₁₂) Effective shopping (C ₁₁₃) Virtual store atmosphere (C ₁₁₄) Virtual store (C ₁₁₅)	Vrechopoulos (2001), Source: www.bartertrends.com/ creating-a-virtual-retail-store.html
		E-fulfilment logistics (C ₁)	Meeting customer expectations (C_{121}) Inventory availability (C_{122})	Source: www.globalmillenniamarketing.com/article_ fulfillment_ecommerce_ebusiness.htm
			On time delivery (C_{123}) Outsourcing the functions to third	Source: www.logwinlogistics.com/services/specials/ efulfillment.html, Deborah (2002) Deborah (2002)
			party (v124) Transparency and complete documentation of all processes (C125)	Source: www.logwinlogistics.com/services/specials/ efulfillment.html
		Outsourcing (C ₁₃)	Information technology outsourcing (C ₁₃₁)	Source: www.sourcingmag.com/content/what_is_ outsourcing.asp Source: http://en.wikipedia.org/wiki/Information_ technology outsourcing
			Business process outsourcing (C122)	Source: www.sourcingmag.com/content/what_is_ outsourcing.asp
			Operational outsourcing (C_{133})	Source: http://operationstech.about.com/od/ officestaffingandmanagem/a/OutSrcAdvantg.htm
		Integrated logistics management (C_{14})	Collaborating supply chain players (C_{141})	Source: www.four-soft.com/integrated_logistics_ management.asp
		Internal SCM (C_{15})	Process integrity (C ₁₄₂) Management support (C ₁₅₁)	Source: home.kelley.iupui.edu/tatikond//Ana_presentation. ppt - United States, Chuda Basnet (2013)
				(continued)
model for leagility evaluation	Table I.			Leagility assessment module 1949

BIJ 23,7 1950	nird level) References/citations	4) bly S(C ₁₅₅) Source: www.ism.ws/pubs/content.cfm?ItemNumber=9722) tics Wu and Barnes (2010) ment (C ₁₆₄) (C ₁₆₆) weedge	v (v. ₁₆₇) izational agement (G ₁₈₉) Source: faculty.mu.edu.sa/download.php?fid=4218	(C_{182}) Olofsgard <i>et al.</i> (2002) bjects (C_{182}) S_4)
	agile attributes cond level) Leagile criterions (third lev	Structure (C _{1:2}) Human resource management (C _{1:3}) Communication (C _{1:4}) Information systems (C _{1:5}) Purchasing and supply forecast (C _{1:6}) Response time (C _{1:6}) Production and logistics management (C _{1:6}) Partnership management (C _{1:6}) Technology and knowledg management (C _{1:6})	$\begin{array}{llllllllllllllllllllllllllllllllllll$	stributed virtual Component objects (\overline{C}_{181}) nufacturing (C_{18}) Persistent storage objects objects (C_{183}) Service objects (C_{183}) Interface objects (C_{184})
Table I.	Leagile enablers Le al (first level) (se	š ž	St t	

Goal	Leagile enablers (first level)	Leagile attributes (second level)	Leagile criterions (third level)	References/citations
		Logistics management (C ₁₉) E-commerce (C ₁₁₀)	Movement of information (C ₁₉₁) Visibility to their supply chain (C ₁₉₂) Accessibility of shipments (C ₁₉₃) Customers satisfaction (C ₁₁₀₂) Delivery fulfilment (C ₁₁₀₂)	Source: www.globalmillenniamarketing.com/article_ fulfillment_ecommerce_ebusiness.htm
	Collaborative relationships (C_2)	Enterprise wide relationship management (C ₂₁)	Complete visibility across supply chain (C_{1103}) Flexibility in order (C_{1104}) Database marketing strategies (C_{211}) Marketing campaign management (C_{212})	Source: www.information-management.com/issues/1999050 1/19-1.html
		Supplier relationship management (C ₂₂)	Extensive interfacing requirement of call centers and websites (C_{213}) Centralized system in CRS (C_{214}) Empowerment of employee (C_{215}) Automated and systematized communications channels (C_{216}) Organizational structure (C_{221}) Clearly and jointly agreed governance framework (C_{222}) Supplier engagement model (C_{223}) Joint activities (C_{224}) Value measurement (C_{226}) Systematic collaboration (C_{226}) Technology and systems (C_{227})	Source: http://en.wikipedia.org/wiki/Supplier_relationship_ management
				(continued)
Table I.				Leagility assessment module 1951

BIJ 23,7		WP2_	ontinued)
<u>1952</u>	References/citations	Source: www.adameurope.eu/pri/7095//CourieL_ Chapter2_final.pdf, Pache and Medina (2007) Source: http://en.wikipedia.org/wiki/Collaborative. planning,_forecasting,_and_replenishment Alt <i>et al.</i> (2005)	<i>v</i>)
	Leagile criterions (third level)	Ware housing (C_{231}) Materials handling (C_{232}) Purchassing (C_{233}) Protective packaging (C_{234}) Cooperate with production/ operations (C_{235}) Information maintenance (C_{236}) Develop front end agreement (C_{241}) Create the joint business plan (C_{242}) Identify exceptions for sales forecast (C_{246}) Resolve/collaborate on exception items (C_{245}) Create order forecast (C_{246}) Identify exceptions for order forecast (C_{246}) Resolve/collaborate on exception items (C_{243}) Order generation (C_{246}) Identify exceptions for order forecast (C_{246}) Identify exceptions for order (C_{246}) Identify exceptions for order (C_{246}) Identify exceptions for order ($C_{$	
	Leagile attributes (second level)	Logistics service providers (C_{23}) Collaborative planning, forecast and replenishment (C_{24}) C_{24}) C_{24}) C_{24}) C_{24}) C_{24})	
	Leagile enablers (first level)		
Table I.	Goal		

lavid_ magement	/uoir	igement		continued)	Leagility assessment module
ource: www.huntingdon.edu/uploadedFiles//d m13_ppt_01.ppt ource: http://en.wikipedia.org/wiki/Strategic_ma ource: http://en.wikipedia.org/wiki/Inventory	ource: www.rmdonovan.com/cycle_time-reduct	ource: http://en.wikipedia.org/wiki/Time_mana))	1953
Corporate (C ₃₁₁) Business (C ₃₁₂) Functional (C ₃₁₃) Operational (C ₃₁₄) Proper merchandise assortment	handling (C ₂₂₁) Systems and processes that identify inventory requirements (C ₂₂₂) Replenishment techniques (C ₂₂₃) Monitoring of material movements (C ₂₂₄) ABC analysis (C ₂₂₄) Pull-oriented lean	manufacturing (C ₃₃₁) Demand flow manufacturing (C ₃₃₂) Cross-functional integration (C ₃₃₃) Supply chain management (C ₃₃₄) Creating an environment S conducive to effectiveness (C ₃₄₁)	Setting of priorities (C_{342}) Carrying out activity around those priorities (C_{343}) Process of reduction of time spent on non-priorities (C_{344})		
Nature of management (C ₃₁) Inventory management	Cycle time reduction (C ₃₄)	Time management (C ₃₄)			
Strategic management (C ₃)					Table I.
	StrategicNature of management (C_{31})Corporate (C_{311})Source: www.huntingdon.edu/uploadedFiles//david_management (C_3)Business (C_{312})Source: http://en.wikipedia.org/wiki/Strategic_managementFunctional (C_{313})Source: http://en.wikipedia.org/wiki/Strategic_managementProper merchandls (C_{314})Source: http://en.wikipedia.org/wiki/Strategic_management(C_{20})Proper merchandls assortmentSource: http://en.wikipedia.org/wiki/Inventory	StrategicNature of management (C_{31})Corporate (C_{311})Source: www.huntingdon.edu/uploadedFiles//david_ sml3_ppt_01.pptmanagement (C_{3})Business (C_{312})Source: http://en.wikipedia.org/wiki/Strategic_management Source: http://en.wikipedia.org/wiki/Strategic_management (C_{32})Inventory managementProper merchandise assortment while ordering, shipping, handling (C_{321})Source: http://en.wikipedia.org/wiki/Strategic_management source: http://en.wikipedia.org/wiki/Strategic_management (C_{32})Core that the ordering shipping, handling (C_{321})Source: http://en.wikipedia.org/wiki/Inventory source: http://en.wikipedia.org/wiki/Inventory montory requirements (C_{221})Cycle time reduction (C_{32})Monitoring of material movements (C_{221})Cycle time reduction (C_{33})Source: www.mndonovan.com/cycle time-reduction/	Strategic management (C3)Nature of management (C31)Corporate (C31)Source: www.huntingdon.edu/uploadedFiles//david_ anil3.ppt_01.pptManagement (C3)Business (C312)Source: http://en.wikipedia.org/wiki/Strategic_management Proper merchandle assortment while ordering, shipping, handling (C32)Source: http://en.wikipedia.org/wiki/Strategic_management source: http://en.wikipedia.org/wiki/Inventory managementC3)Inventory management (C32)Source: http://en.wikipedia.org/wiki/Inventory wikie ordering, shipping, handling (C32)Source: http://en.wikipedia.org/wiki/Inventory burce: http://en.wikipedia.org/wiki/Inventory management (C33)Cycle time reduction (C33)Replenishment techniques (C32) Monitoring of material movements (C32)Source: www.mndonovan.com/cycle_time-reduction/ Demand flow management (C33)Time management (C3)Time management (C33)Source: www.mndonovan.com/cycle_time-reduction/ Gasin management (C33)	Strategic management (c) Nature of management (C ₁₁) Carporate (C ₁₁) Surce: www.hurtingdon.edu/uploadedFiles/./david_ minagement (C ₁₂) Inventory management (C ₂₂) Business (C ₂₁₃) Business (C ₂₁₃) Business (C ₂₁₃) Inventory management (C ₂₂) Business (C ₂₁₃) Business (C ₂₁₃) Business (C ₂₁₃) Inventory management (C ₂₃) Evoper mechandles assortment (C ₂₃) Business (C ₂₁₃) Business (C ₂₁₃) Inventory requirements (C ₂₂₃) Evoper mechandles (C ₂₂₃) Business (C ₂₂₃) Business (C ₂₂₃) Cycle time reduction (C ₂₃) Monitoring of material Business (C ₂₂₃) Business (C ₂₂₃) I'Immerander techniques (C ₂₂₃) Business (C ₂₂₃) Business (C ₂₂₃) Business (C ₂₂₃) Monitoring of material Business (C ₂₂₃) Business (C ₂₂₃) Business (C ₂₂₃) I'Imme management (C ₂₃) Busine material Busine material Busine material Monitoring of material Busine material Busine material Busine material I'Imme management (C ₂₃) Busine material Busine material Busine material Disposition (C ₂₃) Busine material Busine material	Strategic management (c) Nature of management (c). Corporate (c). Source: www.huntingdon.edu/upbadedFiles//david_ smil3_ppt_01.ppt Inventory menorement (c). Source: www.huntingdon.edu/upbadedFiles//david_ smil3_ppt_01.ppt Source: www.huntingdon.edu/upbadedFiles//david_ smil3_ppt_01.ppt Inventory menorement (c). Source: http://en.wikipedia.org/wiki/Inventory Inventory menorement (c). Source: http://en.wikipedia.org/wiki/Inventory (c) Source: http://en.wikipedia.org/wiki/Inventory Source: http://en.wikipedia.org/wiki/Inventory (c) Source: http://en.wikipedia.org/wiki/Inventory Source: http://en.wikipedia.org/wiki/Inventory (c) Source: http://en.wikipedia.org/wiki/Inventory Source: http://en.wikipedia.org/wiki/Inventory (c) Medicania (Gau) Source: http://en.wikipedia.org/wiki/Inventory (c) Medicania (Gau) Source: http://en.wikipedia.org/wiki/Inventory (c) Medicania (Gau) Source: www.mudonovan.com/cycle_time-reduction/ (c) Medicania (Gau) Source: www.mudonovan.com/cycle_time-reduction/ (c) Medicania (Gau) Source: www.mudonovan.com/cycle_time-reduction/ (c) Medicania (Gau) Source: http//en.wikiped

BIJ 23.7		.u	(pəni
<u>1954</u>	References/citations	<pre>3annon and Roodman (2004) Ource: http://en.wikipedia.org/wiki/Business_Process mprovement Source: http://kalyan-city.blogspot.com/2012/01/what- oroduction-planning-meaning.html</pre>	(conti
	Leagile criterions (third level) F	Publicly performed research (C_{351}) I Direct subsidies for private research (C_{352}) Tax incentives (C_{353}) Intellectual property rights (C_{354}) Processes need to align to business goals (C_{361}) Customer focus (C_{362}) Importance of benchmarks (C_{363}) Effective utilization of resources (C_{311}) Effective utilization of resources (C_{373}) Effective utilization of resources (C_{373}) Ensure optimum inventory (C_{374}) departments (C_{376}) Minimize wastage of raw materials (C_{376}) Improves labor productivity (C_{377}) Helps to capture the market (C_{378}) Results in consumer satisfaction (C_{371}) Results in consumer satisfaction (C_{371}) Reduce the production costs (C_{371})	
	Leagile attributes (second level)	Development of new technology (C ₃₅) Process management (C ₃₆) Production planning (C ₃₇)	
	Leagile enablers (first level)		
Table I.	Goal		

Goal	Leagile enablers (first level)	Leagile attributes (second level)	Leagile criterions (third level)	References/citations
		Quality status (C ₃₈) Product design and	Developing the quality strategy (C ₃₈₁) Establishing goals and objectives (C ₃₈₂) Identifying specific quality initiatives (C ₃₈₄) Implementing action plans (C ₃₈₄) Cheaper, to disassemble (C ₃₀₁)	Beecroft (1999) Source: www.brass.cf.ac.uk/uploads/
		service (C ₃₉) Manufacturing setup (C ₃₁₀)	Refurbish or recycle after the initial use phase (C ₃₉₂) Durability of products (C ₃₉₃) Product modularity and upgradeability (C ₃₉₄) Manufacturing basic setup (C ₃₁₀₁) Security (C ₃₁₀₂) Manufacturing core functions	wpstratmgtofPSSsAW1005.pdf Source: http://mbs.microsoft.com/downloads/public/GP10 Docs/MfgSetup.pdf
		Human resources (C ₃₁₁)	setup (C_{3103}) Manufacturing production functions setup (C_{3104}) Manufacturing management functions setup (C_{3105}) Manufacturing planning functions setup (C_{3106}) The hiring process (C_{3111}) Classification (C_{3112}) Compensation (C_{3112}) Compensation (C_{3112}) Employee relation (C_{3113}) Employee relation (C_{3113}) Performance management (C_{3117})	Source: www.co.moore.nc.us/index.php/what- exactly-is-hr?lang=
				(continued)
Table I.				Leagility assessment module 1955

Laggle enablers Laggle antherit Laggle criterions (third level) References/citations cal (first level) Second level) Laggle criterions (G ₁₂) Nurce: www.cunaopssconneil.org/news/203.html rendor De diligence in vendor De diligence in vendor Source: www.cunaopssconneil.org/news/203.html Knowledge and IT E-business (C ₁₁) Nurce: textor (C ₁₂) Source: textor (C ₁₂) Knowledge and IT E-business (C ₁₁) Source: textor (C ₁₂) Source: textor (C ₁₂) Reengineered working Process (C ₁₃) Don Sparrow (2001) Don Sparrow (2001) Reengineered working Process (C ₁₃) Douter entralization (C ₁₂) Douter (C ₁₂) Decentralization (C ₁₃) Document inprovement (C ₁₄) Source: http://14251.19.180/drdnotes/3146_cox.chl Decentralization (C ₁₃) Document inprovement (C ₁₄) Source: http://14251.19.180/drdnotes/3146_cox.chl Supply chain visibility (C ₄₁) Numaging change and risk (C ₂₂) Source: http://14251.19.180/drdnotes/3146_cox.chl Decentralization (C ₁₂) Document inprovement (C ₁₄) Source: http://14251.19.180/drdnotes/3146_cox.chl Supply chain visibility (C ₄₁) Numaging change and risk (C ₂₂) <th>Table I.</th> <th></th> <th></th> <th></th> <th>23,7 1956</th>	Table I.				23,7 1956
Vendor management (C_{121})Risk analysis (C_{1221})Bource: www.cumaopsecouncilorg/news/323.htmlVendor management (C_{211})De diligence in vendor section (C_{2122})Bource: www.cumaopsecouncilorg/news/323.htmlKhowledge and ITE-business (C_{111})Documenting the vendor relationship ontract issues (C_{1223})Bource: who w.cumaopsecouncilorg/news/323.htmlKhowledge and ITE-business (C_{111})Strategy (C_{112})Bource: who w.cumaopsecouncilorg/news/323.htmlKhowledge and ITE-business (C_{121})Documenti g vendors (C_{223})John Sparrow (2001)Khowledge and ITE-business management (C_{121})Document improvement (C_{122})John Sparrow (2001)Re-engineered workingProcess focus (C_{121})Dource: http://142.51.19.180/drdnotes/3146_cox_cdn1Pattern (C_{120})Document improvement (C_{120})Dource: http://142.51.19.180/drdnotes/3146_cox_cdn1Supply chain visibility (C_{10})Document improvement (C_{120})Dource: http://142.51.19.180/drdnotes/3146_cox_cdn1Supply chain visibility (C_{10})Document improvement (C_{120})Dource: http://142.51.19.180/drdnotes/3146_cox_cdn2Supply chain visibility (C_{10})Document improvement (C_{120})Dource: http://142.51.19.180/drdnotes/31	oal	Leagile enablers (first level)	Leagile attributes (second level)	Leagile criterions (third level)	References/citations
Knowledge and ITE-business (C_{41})Integration (C_{42})John Sparrow (2001)management (C_4)Website effectiveness (C_{412})John Sparrow (2001)management (C_4)Website effectiveness (C_{412})John Sparrow (2001)Reengineered workingProcesses (C_{412})Bources intrp//142.51.19.180/drdnotes/3146_cox_ch1Reengineered workingProcess (C_{423})Bources intrp//142.51.19.180/drdnotes/3146_cox_ch1Reengineered workingProcess (C_{423})Bources intrp//142.51.19.180/drdnotes/3146_cox_ch1Decentralization (C_{423})Document improvement (C_{423})Sources intrp//142.51.19.180/drdnotes/3146_cox_ch1Decentralization (C_{43})Document improvement (C_{43})Sources intrp//142.51.19.180/drdnotes/3146_cox_ch1Supply chain visibility (C_{43})Document improvement (C_{43})Sources intrp//142.51.19.180/drdnotes/3146_cox_fh1Supply chain visibility (C_{44})Document improvement (C_{43})Source intro//142.51.19.180/drdnotes/3146_cox_fh1Supply chain visibility (C_{44})Document improvement (C_{43})Source intro//142.51.19.180/drdnotes/3146_cox_fh1Fulfilment visibility (C_{44})Document improvement (C_{44})Source intro//142.50.190/01Fulfilment visi			Vendor management (C ₃₁₂)	Risk analysis (C_{3121}) Due diligence in vendor selection (C_{3122}) Documenting the vendor relationship contract issues (C_{3123}) Ongoing supervision and	Source: www.cunaopsscouncil.org/news/323.html
Re-engineered working pattern (C_{42}) E-busmess management (C_{414}) Process focus (C_{421}) Source: http://142.51.19.180/drdnotes/3146_cox_chlRe-entralization (C_{43}) Document improvement (C_{423}) Document improvement (C_{423}) Source: http://142.51.19.180/drdnotes/3146_cox_chlDecentralization (C_{43}) Locality of expertise modeling (C_{431}) Yimam and Kobsa (2000) Decentralization (C_{43}) Lower control complexity of the expertise modeling process (C_{432}) Yimam and Kobsa (2000) Decentralization (C_{43}) Lower control complexity of the expertise modeling process (C_{432}) Source: http://142.51.19.180/drdnotes/3146_cox_chlDecentralization (C_{43}) Lower control complexity of the expertise modeling process (C_{432}) Source: http://142.51.19.180/drdnotes/3146_cox_chlSupply chain visibility (C_{44}) Demand visibility (C_{44}) Source: www.krannert.purdue.edu/centers/dcmme_ downloads/2012.%20spring/gordon/Wipro.pdfProcurement visibility (C_{44}) Source: Vernon (2008) Source: Vernon (2008) Manufacturing visibility (C_{445}) Source: Vernon (2008) Source: Vernon (2008)		Knowledge and IT management (C ₄)	E-business (C_{41})	monuorung of ventuors (C_{3124}) Strategy (C_{411}) Website effectiveness (C_{412}) Integration of business processes (C_{413})	John Sparrow (2001)
Decentralization (C_{43})Locality of expertise modeling (C_{43})Yimam and Kobsa (2000)Decentralization (C_{43})Locality of expertise modeling process (C_{423})Yimam and Kobsa (2000)Decentralization (C_{43})Lower control complexity of the expertise modeling process (C_{423})Yimam and Kobsa (2000)Demand visibility (C_{441})Demand visibility (C_{441})Source: www.krannert.purdue.edu/centers/dcmme_ downloads/2012%.20spring/gordon.Wipro.pdfProturement visibility (C_{441})Pource: www.krannert.purdue.edu/centers/dcmme_ downloads/2012%.20spring/gordon.Wipro.pdfProturement visibility (C_{443})Source: Vernon (2008)Manufacturing visibility (C_{443})Source: Vernon (2008)Transportation visibility (C_{443})Source: Vernon (2008)			Re-engineered working pattern (C_{42})	E-business management (C ₄₁₄) Process focus (C ₄₂₁) Managing change and risk (C ₄₂₂) Dominiont immergement (C ₋₀ 42)	Source: http://142.51.19.180/drdnotes/3146_cox_ch13.htm
Lower control complexity of the expertise modeling process (C_{423}) Privacy or individualization (C_{433}) Graceful degradation of the overall performance (C_{433}) Supply chain visibility (C_{44})Lower control complexity of the everall performance (C_{433}) Source: www.krannert.purdue.edu/centers/dcmme_ downloads/2012%.20spring/gordon.Wipro.pdf Manufacturing visibility (C_{443}) 			Decentralization (C_{43})	Locality of expertise modeling ($C_{ m en}$)	Yimam and Kobsa (2000)
Fulfilment visibility (C ₄₄₂) Procurement visibility (C ₄₄₃) Manufacturing visibility (C ₄₄₃) Transportation visibility (C ₄₄₄)			Supply chain visibility (C4)	Conservent control complexity of the expertise modeling process (C ₄₃₂) Privacy or individualization (C ₄₃₃) Graceful degradation of the overall performance (C ₄₃₄) Demand visibility (C ₄₄₁)	Source: www.krannert.purdue.edu/centers/dcmme_gscm
				Fulfilment visibility (C ₄₄₂) Procurement visibility (C ₄₄₃) Manufacturing visibility (C ₄₄₄) Transportation visibility (C ₄₄₅)	downloads/2012%.20spring/gordonWipro.pdf Source: Vernon (2008)

al Jac	Leagile enablers (first level)	Leagile attributes (second level)	Leagile criterions (third level)	References/citations
		Equipment engineering system (EES) (C ₄₅)	Data collection and pre-processing (C ₄₅₁) Data storage and management (C ₄₅₂) Tool template library (C ₄₅₃)	Source: www.sematech.org/videos/SemiconWest-06/p0 39141.pdf
			Data selection, query and retrieval (C_{454}) Data display and visualization (C_{455}) Data analysis and transformation (C_{456}) Production and process Production and process	
		Information system (C_{46})	Tool and process characterization (C_{458}) Transaction processing systems (C_{461}) Management information	Source: http://araku.ac.ir/~a_fiantial/ISR_Lec_[4].pdf
		Electronic data interchange (EDI) (<i>C</i> ₄₇)	systems (C_{462}) Decision support systems (C_{463}) Executive information systems (C_{464}) Exchange of structured business information (C_{471}) Inport transactions support (C_{472}) Inproved business cycle time (C_{473}) Application service (C_{474}) Translation service (C_{474})	Source: http://220.227.161.86/22529ittstm_U10_cp6.pdf, Source: http://en.wikipedia.org/wiki/Electronic_data_ interchange
			Communication service (C_{476})	(continued)
Table I				Leagility assessment module 1957

BIJ 23,7		
1958		
	References/citations	Vinodh and Aravindraj (2013)
	Leagile criterions (third level)	Customer-driven products and process (C_{511}) Accurate customer voice translation (C_{512}) Avenues for increasing customer values (C_{513}) Market trend analysis (C_{521}) Gathering of customer responses (C_{522}) Market winning criteria (C_{521}) Institutionalization of change management programs (C_{531}) Development of communication plans (C_{532}) Design for service dacility (C_{641}) Well-equipped service centers' focus on product variety (C_{541}) Products tuned to customers' requirements (C_{552}) Market dynamism (C_{552})
	Leagile attributes (second level)	Customer focus (C ₅₁) Market sensitivity (C ₅₂) Culture and change management (C ₅₃) Product service level (C ₅₄) Mass customisation (C ₅₆) Quality of product (C ₅₆)
	Leagile enablers (first level)	Customer and market sensitiveness (C ₅)
Table I.	Goal	

Assume a three-level evaluation criteria hierarchy consisting of m capabilities (at first level). Under each first level capability there exist n number of attributes (at second level). Each second level attribute is followed by p number of criterions.

Fuzzy appropriateness rating (U_{ij}) of *j*th second level attribute (C_{ij}) is computed as follows:

$$U_{ij} = \frac{\sum_{k=1}^{p} w_{ijk} \otimes U_{ijk}}{\sum_{k=1}^{p} w_{ijk}}$$
(26) ______

here U_{ijk} is the fuzzy appropriateness rating of *k*th leagile criterion (C_{ijk}) at third level w_{ijk} the fuzzy priority weight of *k*th leagile criterion (C_{ijk}) at third level fuzzy appropriateness rating (U_i) of *i*th first level capability (C_i) is computed as follows:

$$U_{i} = \frac{\sum_{j=1}^{n} w_{ij} \otimes U_{ij}}{\sum_{j=1}^{n} w_{ij}}$$
(27)

here U_{ij} is the fuzzy appropriateness rating of *j*th leagile attribute (C_{ij}) at second level computed from Equation (26), w_{ij} the fuzzy priority weight of *j*th leagile attribute (C_{ij}) at second level:

(7) Determination of Fuzzy Overall Performance Index (FOPI) and finding the existing leagility level.

Finally, FOPI is computed as follows:

$$FOPI = \frac{\sum_{i=1}^{m} w_i \otimes U_i}{\sum_{i=1}^{m} w_i}$$
(28)

here U_i is the fuzzy appropriateness rating of *i*th leagile capability (C_i) at first level computed from Equation (27), w_i the fuzzy priority weight of *i*th leagile capability (C_i) at first level:

(8) Determination of Fuzzy Performance Importance Index (FPII) corresponding to individual third level leagile criterions.

FPII is computed as follows (Lin et al., 2006):

$$FPII_k = \begin{bmatrix} 1 - w_{ijk} \end{bmatrix} \otimes U_{ijk} \tag{29}$$

Representative crisp value corresponding to individual $FPII_k((kth))$ third level criterion) is used to determine performance ranking order of third level leagile criterions:

(9) Perform gap analysis and identify the barriers (ill-performing areas) to achieve leagility.

5. Case application

This evaluation framework has been case studied in a famous locomotive part manufacturing organization at eastern part of India. The study presents the application of the conceptual model of leagility embedded with lean and agile principles. A fuzzy logic approach has been used for the evaluation of leagility in supply chains. It is aimed to compute the performance of supply chain using both lean and agile concepts (as leagility supply chains) using a fuzzy logic approach. General hierarchy model for leagility evaluation has been furnished in Table I. Definitions of linguistic variables for assignment of priority weight and performance ratings have been shown in Table II. which is basically a nine-member linguistic-term set. Linguistic evaluation information needs to be converted into appropriate fuzzy numbers. A fuzzy scale (Table II) consisting of GTFNs has been explored to convert DMs linguistic evaluation into fuzzy numbers. An expert group consists of ten DMs has been constructed by the top management. The expert group has been instructed to utilize aforesaid linguistic scale toward assigning appropriateness rating against each of the third level leagile criterions; priority weights against individual leagile capabilities (at first level), attributes (at second level) as well as criterions (at third level). Priority weight of leagile criterions (in linguistic term) assigned by the DMs has been shown in Table III. Table IV represents appropriateness rating (in linguistic terms) of leagile criterions assigned by the DMs. Linguistic priority weight of leagile attributes (at second level) as well as leagile enablers (at first level) given by DMs have been shown in Tables V and VI, respectively. Linguistic data have been converted into appropriate fuzzy numbers as depicted in Table II. The "Aggregated average rule" has been utilized to accumulate DMs opinion. Table VII represents aggregated fuzzy priority weight as well as aggregated fuzzy rating of individual leagile criterions. Aggregated fuzzy priority weight and computed fuzzy rating (computed using Equation (26)) of leagile attributes have been given in Table VIII. Aggregated fuzzy priority weight and computed fuzzy rating (computed using Equation (27)) of leagile enablers have been tabulated in Table IX. The FOPI thus becomes (Equation (28)): (0.399, 0.554, 1.170, 1.580, 1.000).

Table X represents computed values of FPII against individual third level leagile criterions (using Equation (29)) and corresponding performance ranking order.

6. Managerial and research implications

The paradigm combining lean and agile principles invites a new management framework. The leagile framework allows firms and supply networks to configure an appropriate profile to face successfully the market volatility and fight to secure competitive advantages. It is particularly important for the firms and enterprises exploiting markets in terms of cost, quality, response time and service level where the consumers seek for better responsiveness to meet unpredictable ever-changing demands.

The major implications of this research are standardization of leagility evaluation methodology and adoption of new strategic technique for an organizational supply chain management. As far as practitioners/consultants realm is concerned, the proposed leagility evaluation platform and fuzzy-based appraisement framework

	Linguistic terms (attribute ratings)	Linguistic terms (priority weights)	Generalized trapezoidal fuzzy numbers
of riables weight e ratings	Absolutely poor (AP) Very poor (VP) Poor (P) Medium poor (MP) Medium (M) Medium good (MG) Good (G)	Absolutely low (AL) Very low (VL) Low (L) Medium low (ML) Medium (M) Medium high (MH) High (H)	$\begin{array}{c} (0,0,0,0;1)\\ (0,0,0,0,0,0,0;1)\\ (0,0,0,0,0,0,0,0;1)\\ (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,$
m set)	Very good (VG) Absolutely good (AG)	Very high (VH) Absolutely high (AH)	(0.93,0.98,1,1;1) (1,1,1,1;1)

Table II. Definitions of linguistic va for priority v and attribute (A-9 member linguistic-ter

Leagile criterions (C_{ijk})	DM1	DM2	DM3	DM4	DM5	DM6	DM7	DM8	DM9	DM10	Leagility assessment
<i>C</i> ₁₁₁	MH	Н	AH	MH	VH	Н	Н	AH	Н	MH	module
C_{112}	Η	Μ	Н	VH	MH	Н	MH	Η	VH	AH	
C_{113}	MH	AH	AH	VH	Н	Н	Н	AH	Н	Н	
C_{114}	AH	Н	VH	AH	AH	Н	AH	VH	Н	H	1961
C_{115}	MH	VH	H	H	MH	VH	MH	H	VH	H	
C_{121}	AH	MH	H VII	VH	MH	H	AH	AH	H II	H MI	
C ₁₂₂	п МН	п Н	и И	Н	п М	п н	п ДН		п Н	vп H	
C ₁₂₃	H	VH	VH	AH	AH	H	VH	MH	VH	H	
C_{124} C_{125}	H	MH	MH	MH	Н	AH	Н	MH	Н	VH	
C_{131}	VH	VH	AH	AH	VH	MH	Н	Н	AH	Н	
C_{132}	Н	AH	Н	Н	MH	AH	VH	Μ	MH	MH	
C_{133}	MH	MH	VH	Н	Н	MH	Н	AH	AH	Н	
C_{141}	Н	MH	MH	Н	VH	Н	VH	Н	Н	MH	
C_{142}	VH	Н	Н	H	H	H	MH	VH	Н	H	
C_{151}	MH	M	H	VH	MH	VH	H	MH	H	AH	
C ₁₅₂	H VU	AH	MH	H U	H U		AH	AH U	H VU		
C ₁₅₃	VП MH	АП Ц	п ли	п ц	п VH	АП МН	ЛП	п VH	vп u	АП Ц	
C ₁₅₄	H	VH	MH	AH	H	MH	H	MH	H	AH	
C_{155} C_{161}	H	Н	AH	Н	Н	Н	VH	Н	Н	VH	
C_{162}	MH	AH	Н	VH	VH	M	MH	MH	VH	Н	
C_{163}	MH	MH	AH	VH	Н	AH	Н	Н	Н	Н	
C_{164}	VH	AH	VH	Н	Н	Η	AH	AH	AH	VH	
C_{165}	VH	Н	Н	MH	Н	VH	Н	MH	MH	Н	
C_{166}	Н	Н	Н	Н	VH	MH	VH	AH	AH	VH	
C_{167}	MH	H	AH	MH	H	H	MH	H	H	MH	
C_{168}	MH	H VU	H VU		H VU	H VU	H U	AH VU	H U	Н ЛЦ	
C ₁₆₉	п VH	и Ч	VП MH	MH	и Ч	VH VH	п VH	и Ч	п Н	MH	
C_{171}	H	VH	MH	MH		H	H	H	VH	VH	
C ₁₇₂	MH	H	MH	VH	VH	VH	H	VH	MH	AH	
C_{173} C_{174}	Н	H	Н	Н	VH	MH	AH	Н	MH	Н	
C_{181}	VH	VH	Μ	AH	Н	MH	Н	Н	Н	VH	
C_{182}	MH	VH	AH	Н	Н	Н	AH	Н	VH	MH	
C_{183}	Η	Η	MH	VH	VH	Μ	MH	AH	Н	MH	
C_{184}	VH	VH	MH	AH	Н	Н	Н	MH	VH	AH	
C_{191}	AH	AH	H	H	AH	AH	AH	H	Н	H	
C_{192}	Н	MH	AH	VH	AH		MH	AH	MH		
C_{193}	VП MH	ип ц		ИП	п VH	АП Ц	АП Ц	ЛП	п	АП МН	
C_{1101}	H	M	Н	VH	MH	H	MH	Н	VH	AH	
C_{1102} C_{1102}	H	AH	AH	VH	Н	H	H	AH	H	H	
C_{1104}	AH	Н	VH	AH	AH	H	AH	VH	Н	Н	
C ₂₁₁	MH	VH	Н	Н	MH	VH	MH	Н	VH	Н	
C_{212}	AH	MH	Н	VH	MH	Η	AH	AH	Н	Н	Table III.
C_{213}	Η	Η	VH	MH	Η	Η	Н	MH	Н	VH	Priority weight of
C_{214}	MH	Η	Η	Н	Μ	Η	AH	AH	Н	Н	(in linguistic term)
C_{215}	MH	VH	VH	AH	AH	Η	VH	MH	VH	Н	assigned by the
											decision makers
									(cor	ntinued)	(DMs)
									`	/	

133,7 Leagile critterions (C _{ga}) DMI DM2 DM3 DM4 DM5 DM6 DM7 DM8 DM9 DM1 1962 Cate H H MH MH MH MH H AH H <th>DII</th> <th></th>	DII											
1962 Case Case Case Case Case Case Case Case	ыј 23,7	Leagile criterions (C_{ijk})	DM1	DM2	DM3	DM4	DM5	DM6	DM7	DM8	DM9	DM10
		C_{216}	Н	MH	MH	MH	Н	AH	Н	MH	Н	VH
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		C_{221}	MH	VH	AH	AH	VH	MH	Η	Н	AH	Н
1962 C ₂₂₃ H MH VH H H MH H MH VH H H MH WH H		C_{222}	Н	AH	Н	Н	MH	AH	VH	Μ	MH	MH
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1962	C_{223}	Н	MH	VH	Н	Н	MH	Н	AH	AH	Н
$ \begin{array}{cccccc} C_{225} & VH & H & H & H & H & H & H & M & VH & H & AH \\ C_{227} & VH & VH & MH & AH & AH & H & H & MH & VH & AH \\ C_{231} & AH & AH & H & H & AH & AH & AH & H & $	1002	C_{224}	Н	MH	MH	H	VH	H	VH	Н	H	MH
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		C_{225}	VH	H	H	H	H	H	MH	VH	H	H
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		C ₂₂₆	MH	M	H	VH	MH	VH	H	MH	H	AH
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		C ₂₂₇	VП ЛЦ	VП ЛЦ	ИП	АП Ц	п лн	п лн	п лн	ИП	vп u	АП Ц
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		C ₂₃₁	H	MH	ΔН	II VH		MH	MH	ΔH	MH	н
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		C ₂₃₂	VH	MH	MH	MH	Н	AH	AH	MH	H	AH
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		C233	MH	H	AH	H	VH	H	H	AH	H	MH
$ \begin{array}{cccc} \hline \begin{array}{cccc} \hline \begin{array}{cccc} \hline \begin{array}{cccc} \hline \begin{array}{cccc} \hline \begin{array}{cccc} \hline \begin{array}{cccc} H & AH & AH & H & H & H & H & H & H & H$		C235	Н	M	Н	VH	MH	Н	MH	Н	VH	AH
$ \begin{array}{ccccc} G_{221} & AH & H & VH & AH & AH & H & AH & VH & H & H \\ G_{242} & MH & VH & H & H & MH & VH & MH & H & VH & H & H \\ G_{243} & AH & MH & H & VH & MH & H & AH & AH & H & H \\ G_{244} & H & H & VH & MH & H & H & H & MH & H & H \\ G_{245} & H & H & H & H & M & H & AH & AH & H & H \\ G_{266} & MH & VH & VH & AH & AH & H & VH & MH & H & H \\ G_{267} & H & MH & MH & MH & H & AH & H & H & H \\ G_{268} & VH & VH & AH & AH & H & VH & MH & H & H & H \\ G_{269} & H & AH & H & H & MH & AH & H & MH & M$		C ₂₃₆	Н	AH	AH	VH	Н	Н	Н	AH	Н	Н
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		C_{241}	AH	Н	VH	AH	AH	Н	AH	VH	Н	Η
		C_{242}	MH	VH	Η	Η	MH	VH	MH	Н	VH	Н
		C_{243}	AH	MH	Н	VH	MH	Н	AH	AH	Н	Н
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		C_{244}	Н	Н	VH	MH	Н	Н	Η	MH	Н	VH
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		C_{245}	Н	Н	Н	Н	Μ	Н	AH	AH	Н	Н
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		C_{246}	MH	VH	VH	AH	AH	Н	VH	MH	VH	Н
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		C_{247}	Н	MH	MH	MH	Н	AH	Н	MH	Н	VH
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		C_{248}	VH	VH	AH	AH	VH	MH	H	Н	AH	H
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		C_{249}	H	AH	H	H	MH	AH	VH	M	MH	MH
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		C_{251}	MH	MH	VH	H	H	MH	H	AH	AH	Н
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		C ₂₅₂	MH	MH	MH	H	VH	H	VH	H VII	H	MH
C311AIIAIIAIIAIIAIIAIIAIIAIIAIIAIIC312HAHMHHHHMHAHAHAHAHAHC313VHAHHHHHHAHAHAHAHAHC314MHHAHHHHHHHHHAHC321HVHAHAHHHHHHAHC322HHAHHHHHHHC323VHAHHVHVHMHMHHC324MHMHAHVHVHHHHC325MHAHVHHHHHHC331VHHHHHHHHC332MHHHHHHHHC333MHHHHHHHHC334HHHHHHHHC343HVHVHAHHHHHC344AHHHHHHHHC343HVHVHAHHHHHC344HHHHHHHHC343HVHVHAHH<		C ₂₅₃	VП ЛЦ	п	п	п VH	п MH	п VH	ИП	VП MH	п	п лн
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		C ₃₁₁	н		MH	H	Н	MH			н	MH
G_{313} MH HH H G_{322} H VH MH AH H H H H H H H H G_{322} H H AH H H H H H H H H G_{323} VH AH H VH HH H H H H H G_{324} MH MH AH VH H H H H H H G_{325} MH AH VH H H H H H H H G_{331} VH H H H H H H H H H G_{332} MH H H H H H H H H H G_{344} H G_{343} H <		C ₃₁₂	VH	AH	H	H	Н	AH	MH	H	VH	AH
G_{321} HVHMHAHHMHHMHAH G_{322} HHAHHHHHHHHH G_{322} HHAHHHHHHHHVH G_{323} VHAHHVHVHMHMHHHHVH G_{324} MHMHAHVHHHAHHHH G_{325} MHAHVHHHHAHAHVH G_{331} VHHHHHHHHH G_{332} MHHHHHHHH G_{333} MHHHHHHHH G_{334} HHHHHHHH G_{341} HVHVHAHVHVHVHHAH G_{343} HVHVHVHVHVHVHVHVHVH G_{344} AHHMHVHVHVHVHVHVHHAH G_{351} HHHHHHHHHHH G_{361} MHMHVHVHVHMHAHHMHHMH G_{362} MHMHVHVHMHHMHH		C_{313}	MH	Н	AH	Н	VH	MH	AH	VH	Н	Н
G_{322} HHHHHHHHHHH G_{323} VHAHHVHVHMHMHVHHH G_{324} MHMHAHVHHAHHHHHH G_{325} MHAHVHHHAHHHHHH G_{331} VHHHHHHHHHH G_{332} MHHHHHHHHH G_{333} MHHHHHHHH G_{334} HHHHHHHH G_{344} HVHVHAHVHVHHAH G_{343} HVHMHMHAHHHH G_{343} HVHMHMHAHHHMH G_{343} HVHMHMHAHHHMH G_{344} AHHMHVHVHVHVHVH G_{351} HHHHHHHHH G_{353} VHVHAHHHHHHH G_{361} MHHAHHHHMHAHHMH G_{361} MHMHVHMHHH<		C_{321}	Н	VH	MH	AH	Н	MH	Н	MH	Н	AH
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		C_{322}	Н	Н	AH	Н	Н	Н	VH	Н	Н	VH
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		C_{323}	VH	AH	Н	VH	VH	Μ	MH	MH	VH	Η
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		C_{324}	MH	MH	AH	VH	Н	AH	Η	Н	Н	Н
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		C_{325}	MH	AH	VH	Η	Η	Η	AH	AH	AH	VH
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		C_{331}	VH	Η	Η	MH	Н	VH	Н	MH	MH	Η
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		C_{332}	MH	Н	Н	Н	VH	MH	VH	AH	AH	VH
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		C_{333}	MH	H	AH	MH	H	H	MH	H	H	MH
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		C_{334}	H	H	H	H	H	H	H	AH	H	H
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		C_{341}	H VII	VH	VH	AH	VH	VH	H	VH	H	AH
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		C ₃₄₂	vн u	П VЛТ	MIT	MU		vн u	vн u	П U	п лл	WIH VII
C_{344} AllIIMIIVIIVIIVIIIIIIVIIAll C_{351} HHHHHVHMHAHHMHH C_{352} VHVHMAHHMHHHHVHVH C_{353} VHVHAHHHHHVHVHMH C_{354} HHMHVHVHMHAHHMH C_{361} MHHAHHVHHHAHH C_{362} MHMHVHMHHVHAH		C ₃₄₃	п 44	ин Н	MH	VH	AH VH	п VH	п Н	п VH	V f1 MF1	V日 A日
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		C ₃₄₄	Н	H	Н	Н	VH	MH	AH	H	MH	Н
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		C ₃₅₁	VH	VH	M	AH	H	MH	H	H	H	VH
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		~352 Coro	VH	VH	AH	H	Н	H	AH	H	VH	MH
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		C ₃₅₃ C ₂₅₄	H	H	MH	VH	VH	M	MH	AH	H	MH
C_{362} MH M H VH MH H MH H VH AH		C361	MH	H	AH	Н	VH	H	Н	AH	H	MH
		C_{362}	MH	M	Н	VH	MH	H	MH	Н	VH	AH
		005										

Table III.

(continued)

											T •1•,
Leagile criterions (C_{ijk})	DM1	DM2	DM3	DM4	DM5	DM6	DM7	DM8	DM9	DM10	Leagility
C363	MH	AH	AH	VH	Н	Н	Н	AH	Н	Н	module
C_{364}	AH	Н	VH	AH	AH	Н	AH	VH	Н	Н	
C_{371}	MH	VH	Н	Н	MH	VH	MH	Н	VH	Н	
C_{372}	AH	MH	Н	VH	MH	Н	AH	AH	Н	Н	1062
C ₃₇₃	Η	Н	VH	MH	Η	Н	Н	MH	Н	VH	1905
C_{374}	MH	Н	Н	Н	Μ	Н	AH	AH	Н	Н	
C_{375}	Η	VH	VH	AH	AH	Н	VH	MH	VH	Н	
C_{376}	MH	MH	MH	MH	Н	AH	Н	MH	Н	VH	
C_{377}	VH	VH	AH	AH	VH	MH	Н	Н	AH	Н	
C_{378}	Н	AH	Н	Н	MH	AH	VH	Μ	MH	MH	
C_{379}	H	MH	VH	H	H	MH	H	AH	AH	H	
C_{3710}	MH	MH	MH	H	VH	H	VH	H	H	MH	
C_{3711}	VH	H	H	H	H	H	MH	VH	H	H	
C_{381}	AH	M	H	VH	MH	VH	H	MH	H	AH	
C ₃₈₂	H	AH	MH	H	H	MH	AH	AH	H	MH	
C_{383}	VH	AH	H	H	H	AH	MH	H	VH	AH	
C ₃₈₄	MH	п	AH			MH	AH		п		
C ₃₉₁	п	V T		АП	п		п		п	АП VII	
C ₃₉₂	п VH	п ли	АП Ц	п VH	п VH	п	VII MH	п МН	п VH	vп u	
C ₃₉₃	MH	MH	ΔH	VH	И		Н	Н	И	н	
	VH	AH	VH	Н	Н	Н				VH	
C_{3101}	VH	Н	Н	MH	Н	VH	H	MH	MH	H	
C ₃₁₀₂	Н	Н	Н	Н	VH	MH	VH	AH	AH	VH	
C_{2104}	MH	Н	AH	MH	Н	Н	MH	Н	Н	MH	
C_{3105}	Н	H	MH	MH	H	H	Н	AH	H	Н	
C_{2106}	Н	VH	VH	AH	VH	VH	Н	VH	Н	AH	
C_{3111}	VH	Н	MH	MH	Н	VH	VH	Н	Н	MH	
C_{3112}	Η	VH	MH	MH	AH	Н	Н	Н	VH	VH	
C_{3113}	AH	Н	MH	VH	VH	VH	Н	VH	MH	AH	
C_{3114}	Η	Н	Н	Н	VH	MH	AH	Н	MH	Н	
C_{3115}	VH	VH	Μ	AH	Н	MH	Н	Н	Н	VH	
C_{3116}	VH	VH	AH	Н	Η	Н	AH	Н	VH	MH	
C_{3117}	Η	Н	MH	VH	VH	Μ	MH	AH	Н	MH	
C_{3121}	VH	VH	MH	AH	Н	Н	Н	MH	VH	AH	
C_{3122}	AH	AH	Н	Н	AH	AH	AH	Н	Н	Н	
C_{3123}	H	MH	AH	VH	AH	MH	MH	AH	MH	H	
C_{3124}	VH	MH	MH	MH	H	AH	AH	MH	H	AH	
C_{411}	MH	H	AH	H	VH	H	H	AH	H	MH	
C_{412}	H	M	H	VH	MH	H	MH	H	VH	AH	
C ₄₁₃		AH	AH			п		AH	п	П	
C_{414}	MH	н VH	VП Ц	АП Ц	MH	UH	MH	VП Ц	II VH	п ц	
C ₄₂₁	ΔH	MH	Н	VH	MH	H	ΔH	ΔH	H	Н	
C422	H	Н	VH	MH	H	H	H	MH	Н	VH	
C ₄₂₃	AH	Н	Н	Н	M	H	AH	AH	Н	H	
C_{431}	H	VH	ЙН	AH	AH	Ĥ	VH	MH	VН	Ĥ	
-432 C433	AH	MH	MH	MH	Н	AH	H	MH	Н	VH	
C134	VH	VH	AH	AH	VH	MH	H	Н	AH	Н	
101					=						

(continued)

Table III.

BII											
23,7	Leagile criterions (C_{ijk})	DM1	DM2	DM3	DM4	DM5	DM6	DM7	DM8	DM9	DM10
	$C_{441} \\ C_{442} \\ C_{443}$	H VH H	AH MH MH	H VH MH	H H H	MH H VH	AH MH H	VH H VH	M AH H	MH AH H	MH H MH
1964	C_{444} C_{445} C_{451} C_{451}	VH AH VH AH	H M VH AH	H H MH H	H VH AH H	H MH H AH	H VH H AH	MH H H AH	VH MH MH H	H H VH H	H AH AH H
	C_{452} C_{453} C_{454} C_{455}	H VH MH	MH MH H	AH MH AH	VH MH H	AH H VH	MH AH H	MH AH H	AH MH AH	MH H H	H AH MH
	$C_{456} \\ C_{457} \\ C_{458} \\ C_{461} \\ C_{461}$	H AH MH	AH H VH	н АН VH Н	VH AH H	H AH MH	H H VH	H AH MH	AH VH H	H H VH	H H H
	$C_{462} \\ C_{463} \\ C_{464} \\ C_{471}$	AH VH H VH	MH H H VH	H VH MH VH	VH MH H AH	MH H M AH	H H H H	AH H AH VH	AH MH AH MH	H H H VH	H VH H H
	$C_{472} \\ C_{473} \\ C_{474} \\ C_{475}$	H VH H H	MH VH AH MH	MH AH H VH	MH AH H H	H VH MH H	AH MH AH MH	H H VH H	MH H M AH	H AH MH AH	VH H MH H
	$C_{476} \\ C_{511} \\ C_{512} \\ C_{513}$	H VH AH H	MH H M AH	MH H H MH	H H VH H	VH H MH H	H H VH MH	VH MH H AH	H VH MH AH	Н Н Н Н	MH H AH MH
	$C_{521} \\ C_{522} \\ C_{523} \\ C_{531} \\ C_{532}$	VH MH H H VH	AH H VH H AH	H AH MH AH H	H H AH H VH	H VH H H VH	AH MH MH H M	MH AH H VH MH	H VH MH H MH	VH H H H VH	AH H AH VH H
	$C_{533} \\ C_{541} \\ C_{542} \\ C_{543} \\ C_{551}$	MH VH VH H MH	MH AH H H H	AH VH H H AH	VH H MH H MH	H H H VH H	AH H VH MH H	H AH H VH MH	H AH MH AH H	H AH MH AH H	H VH H VH MH
Table III.	$C_{552} \\ C_{553} \\ C_{561} \\ C_{562} \\ C_{563}$	H H VH H AH	H VH H VH H	H VH MH MH MH	H AH MH MH VH	H VH H AH VH	H VH VH H VH	H H VH H H	AH VH H H VH	H H VH MH	H AH MH VH AH

provides a guideline and test-kit to achieve strategic fit by focussing on the leagility of a particular type of supply chain strategy.

Managerial decision-making process often experience uncertain-vague data which is really difficult to analyze. Fuzzy logic has the capability to overcome such imprecise linguistic human judgment. Fuzzy logic is an efficient tool to capture human perception to correlate with a mathematical base. Supply chain leagility, as a whole, is a conceptual philosophy difficult to model and to estimate an overall leagility index quantitatively. In this paper, an effort has been made to establish a scientific mathematical background to assess overall leagility degree for a given supply chain and to assess the

assessment	DM10	DM9	DM8	DM7	DM6	DM5	DM4	DM3	DM2	DM1	Leagile criterions (C_{ijk})
module	VG	G	М	AG	G	М	G	MG	VG	G	<i>C</i> ₁₁₁
	MG	G	G	G	MG	G	G	G	VG	MG	C_{112}
	G	MG	G	MG	VG	G	Μ	VG	G	G	C_{113}
1965	AG	VG	M	G	VG	M	G	MG	MP	G	C_{114}
1000	AG _	VG	VG	MG	G	G	AG	G	G	VG	C ₁₁₅
	G	G	G	MG	MP	AG	VG	AG	VG	MG	C_{121}
	G	MP	G	G	G	VG	AG	AG	G	G	C ₁₂₂
	AG C	G VC	MG VC	VG MC	NG C	G AC	G MC	G	G MC	AG M	C ₁₂₃
	G MC	C	VG	C	G	AG C	MG		WG VC	M	C ₁₂₄
	M	G	G	AG	MG	MG	G	MG	VG	MG	C ₁₂₅
	G	M	MP	AG	VG	M	G	M	AG	G	C ₁₃₁
	Ğ	VG	G	G	ĂĠ	G	M	AG	G	MG	C_{132}
	M	Ğ	ŇĠ	Ğ	G	Ğ	VG	G	MG	M	C_{141}
	G	G	G	ĀG	MG	MG	G	AG	M	MP	C142
	AG	MG	G	MG	Μ	MG	G	G	G	G	C_{151}
	VG	MG	MG	Μ	G	G	MG	MG	G	AG	C_{152}
	G	G	VG	G	G	VG	AG	Μ	Μ	G	C_{153}
	G	VG	VG	VG	Μ	MG	G	G	G	MG	C_{154}
	MG	MG	G	MG	G	G	MG	G	G	MG	C_{155}
	VG	G	MP	M	AG	AG	M	M	MG	VG	C_{161}
	VG	AG	G	G	VG	AG	G	G	MG	G	C_{162}
	G MD	AG	M	AG	G MC	G	G	AG VC	G	G	C_{163}
	NIF C	G	rG C	G MC	MG		C	rG C	VG MC	MC	C ₁₆₄
	M	AG	AG	MG	VC	MG	G MG	MG	G	G	C ₁₆₅
	VG	MG	G	G	G	M	VG	VG	AG	MG	C166
	AG	M	MG	G	G	AG	VG	AG	AG	M	C_{167}
	G	G	M	M	MG	VG	G	G	G	G	C_{160}
	MG	VG	G	G	Μ	G	MP	MG	M	Ğ	C_{171}
	VG	AG	Μ	VG	VG	MP	MG	G	G	MG	C_{172}
	Μ	Μ	G	MG	VG	MG	Μ	AG	AG	Μ	C ₁₇₃
	MG	MG	AG	Μ	VG	Μ	G	VG	AG	G	C_{174}
	Μ	MP	VG	VG	VG	AG	MG	Μ	G	MG	C_{181}
	G	MG	G	G	MG	VG	AG	VG	MP	Μ	C_{182}
	MP	M	AG	AG	M	VG	G	G	MG	VG	C_{183}
	G	VG	VG	M	AG	G	AG	M	VG	G	C_{184}
	MG	G	AG	VG	G	VG	G	VG	G	MG	C_{191}
	MG	VG	G	G	VG C	G	MG	G	G	M	C ₁₉₂
	G VC		MG	G	G	MG	NI C	MG	MG VC	G	C ₁₉₃
	MG	G	G	AG C	G MG	G	G	G	VG	MG	C_{1101}
	C	MG	G	MG	VC	G	M	VC	G	G	C_{1102}
	ĂĢ	VG	M	G	VG	M	G	MG	MP	G	C_{1103}
Table IV	AG	VG	VG	MG	Ğ	G	ĂG	G	G	ŇĠ	C_{211}
Appropriateness	G	G	G	MG	MP	ĀG	VG	ĀG	VG	MG	C_{212}
rating of leagile	G	MP	G	G	G	VĞ	AG	AĞ	G	G	C_{213}
criterions	AG	G	MG	VG	VG	G	G	G	G	AG	C ₂₁₄
(in linguistic term) assigned by	G	VG	VG	MG	G	AG	MG	G	MG	M	C_{215}
the decision makers (DMs)	tinued)	(con									

3,7	Leagile criterions (C_{ijk})	DM1	DM2	DM3	DM4	DM5	DM6	DM7	DM8	DM9	DM1
	C ₂₁₆	М	VG	AG	М	G	G	G	VG	G	MG
	C_{221}	MG	VG	MG	G	MG	MG	ĂG	G	Ğ	Μ
	C_{222}	G	AG	Μ	Ğ	Μ	VG	AG	MP	M	G
000	C_{222}	MG	G	AG	M	G	AG	G	G	VG	Ğ
966	C_{223}	Μ	MG	G	VG	Ğ	G	Ğ	VG	G	M
	C225	MP	Μ	ĂG	G	MG	MG	ĂĢ	G	Ğ	G
	C_{226}	G	G	G	Ğ	MG	Μ	MG	Ğ	MG	ĂG
	C_{227}	G	VG	М	AG	G	AG	Μ	VG	VG	G
	C ₂₂₁	MG	G	VG	G	VG	G	VG	AG	G	MG
	C_{2231}	M	Ğ	Ğ	MG	Ğ	ŇĠ	Ğ	G	ŇĠ	MG
	C_{232}	G	MG	MG	M	MG	Ġ	Ğ	MG	VĞ	G
	C_{233}	Ğ	VG	MG	G	M	Ğ	ĂĢ	M	Ğ	ŇĠ
	C2254	MG	VG	G	Ğ	G	MG	G	G	Ğ	MG
	C235	G	G	VG	M	Ğ	VG	MG	G	MG	G
	C ₂₃₆	Ğ	MP	MG	G	M	VG	G	M	VG	AG
		VG	G	G	AG	G	G	MG	VG	VG	AG
		MG	VG	AG	VG	AG	MP	MG	G	G	G
		G	G	AG	AG	VG	G	G	G	MP	Ğ
	C ₂₄₄	AG	G	G	G	G	VG	VC	MG	G	AG
	C_{245}	M	MC	G	MC		C	MC	VC	VC	C
	C_{246}	M	VC		M	ло С	C	C	VG	C C	MC
	C ₂₄₇	MC	VG	MC	C	MC	G MC	G AC	C C	G	MG
	C ₂₄₈	C		MG	G	M	VC	AG	MD	M	C
	C ₂₄₉	MC	AG C		M	C		AG C	C	VC	G
	C_{251}	MG	MC	AG C	VC	G	AG C	G	UC UC	C C	M
	C_{252}	MD	MG	G	VG C	G MC	G MC	G AC	VG C	G	C
	C_{253}	NIP C	C	AG C	G	MG	MG	AG MC	G	G MC	G
	C_{311}	G	G	G	G	MG	IVI C	MG	G	MG	AG
	C_{312}	AG	G	MG	MG	G	G	NI C	MG	MG	VG C
	C_{313}	G	M	M	AG	VG	G	G	VG	G	G
	C_{314}	MG	G	G	G	MG	M	VG	VG	VG	G
	C_{321}	MG	G	G	MG	G	G	MG	G	MG	MG
	C_{322}	VG	MG	M	M	AG	AG	M	MP	G	VG
	C_{323}	G	MG	G	G	AG	VG	G	G	AG	VG
	C_{324}	G	G	AG	G	G	G	AG	M	AG	G
	C_{325}	M	VG	VG	G	G	MG	G	VG	G	MP
	C_{331}	MG	MG	G	G	AG	M	MG	G	G	G
	C_{332}	G	G	MG	MG	MG	VG	Μ	AG	AG	Μ
	C_{333}	MG	AG	VG	VG	Μ	G	G	G	MG	VG
	C_{334}	Μ	AG	AG	VG	AG	G	G	MG	Μ	AG
	C_{341}	G	G	G	G	VG	MG	Μ	Μ	G	G
	C_{342}	G	Μ	MG	MP	G	Μ	G	G	VG	MG
	C_{343}	MG	G	G	MG	MP	VG	VG	Μ	AG	VG
	C_{344}	Μ	AG	AG	Μ	MG	VG	MG	G	Μ	Μ
	C_{351}	G	AG	VG	G	Μ	VG	Μ	AG	MG	MG
	C_{352}	MG	G	Μ	MG	AG	VG	VG	VG	MP	Μ
	C_{353}	Μ	MP	VG	AG	VG	MG	G	G	MG	G
	C_{354}	VG	MG	G	G	VG	Μ	AG	AG	Μ	MP
	C_{361}	G	VG	MG	G	Μ	G	AG	Μ	G	VG
	C_{362}	MG	VĞ	G	G	G	MG	G	G	G	MG

Table IV.

(continued)

Leagile criterions (C_{ijk})	DM1	DM2	DM3	DM4	DM5	DM6	DM7	DM8	DM9	DM10	Leagility assessment
C_{363}	G	G	VG	М	G	VG	MG	G	MG	G	module
C_{364}	G	MP	MG	G	Μ	VG	G	Μ	VG	AG	
C_{371}	VG	G	G	AG	G	G	MG	VG	VG	AG	
C_{372}	MG	VG	AG	VG	AG	MP	MG	G	G	G	1967
C_{373}	G	G	AG	AG	VG	G	G	G	MP	G	1007
C_{374}	AG	G	G	G	G	VG	VG	MG	G	AG	
C_{375}	Μ	MG	G	MG	AG	G	MG	VG	VG	G	
C_{376}	Μ	VG	AG	Μ	G	G	G	VG	G	MG	
C_{377}	MG	VG	MG	G	MG	MG	AG	G	G	Μ	
C_{378}	G	AG	M	G	M	VG	AG	MP	M	G	
C_{379}	MG	G	AG	M	G	AG	G	G	VG	G	
C_{3710}	M	MG	G	VG	G	G	G	VG	G	M	
C_{3711}	MP	M	AG	G	MG	MG	AG	G	G	G	
C_{381}	G	G	G	G	MG	M	MG	G	MG	AG	
C ₃₈₂	AG	G	MG	MG	G	G	M	MG	MG	VG C	
C ₃₈₃	G	M C	M C	AG	VG MC	G	G	VG	G	G	
C ₃₈₄	MG	G	G	G	MG	M C	VG	VG C	VG MC	G	
C ₃₉₁	MG VC	G MC	G	MG	G	G	MG	G MD	MG C	MG VC	
C ₃₉₂	C	MG	IVI C	IVI C	AG	AG VC	IVI C	G		VG	
C ₃₉₃	G	C	AG	G	C AG	G	AC	M	AG	C C	
C ₃₉₄	M	VG	VC	G	G	MG	C	VC	G	MP	
C ₃₁₀₁	MG	MG	G	G	AG	M	MG	G	G	G	
C ₃₁₀₂	G	G	MG	MG	MG	VG	M	AG	ĂG	M	
C_{2104}	MG	ĂĢ	VG	VG	M	G	G	G	MG	VG	
C_{3104}	Μ	AG	AG	VG	AG	Ğ	Ğ	MG	Μ	AG	
C_{3106}	G	G	G	G	VG	MG	М	Μ	G	G	
C_{3111}	G	Μ	MG	MP	G	Μ	G	G	VG	MG	
C_{3112}	MG	G	G	MG	MP	VG	VG	Μ	AG	VG	
C_{3113}	Μ	AG	AG	Μ	MG	VG	MG	G	Μ	Μ	
C_{3114}	G	AG	VG	G	Μ	VG	Μ	AG	MG	MG	
C_{3115}	MG	G	Μ	MG	AG	VG	VG	VG	MP	Μ	
C_{3116}	Μ	MP	VG	AG	VG	MG	G	G	MG	G	
C ₃₁₁₇	VG	MG	G	G	VG	M	AG	AG	M	MP	
C_{3121}	G	VG	M	AG	G	AG	M	VG	VG	G	
C_{3122}	MG	G	VG	G	VG	G	VG	AG	G	MG	
C ₃₁₂₃	IVI C	G	G MC	MG	G	VG C	G	G	VG	MG	
C ₃₁₂₄	G	VC	MG	C	MG	G		M	rG C	G VC	
C_{411}	MG	VG	C	G	G	MG	AG C	G	G	MG	
C ₄₁₂	G	G	VG	M	G	VG	MG	G	MG	G	
C ₄₁₃	G	MP	MG	G	M	VG	G	M	VG	AG	
C_{414} C_{421}	VG	G	G	ĂG	G	G	MG	VG	VG	AG	
C_{422}	MG	VG	ĂG	VG	ĂG	MP	MG	G	G	G	
C_{423}	G	G	AG	AG	VĠ	G	G	G	MP	G	
C_{431}	AG	G	G	G	G	VG	VG	MG	G	AG	
C_{432}	Μ	MG	G	MG	AG	G	MG	VG	VG	G	
C_{433}	Μ	VG	AG	Μ	G	G	G	VG	G	MG	
C_{434}	MG	VG	MG	G	MG	MG	AG	G	G	Μ	
1.71				-			~	-	-	-	

(continued)

Table IV.

BIJ	Longilo										
23,7	criterions (C_{ijk})	DM1	DM2	DM3	DM4	DM5	DM6	DM7	DM8	DM9	DM10
	C_{441}	G	AG	М	G	М	VG	AG	MP	М	G
	C_{441}	MG	G	AG	M	G	AG	G	G	VG	Ğ
	C_{443}	Μ	MG	G	VG	G	G	G	VG	G	Μ
1000	C_{444}	MP	Μ	AG	G	MG	MG	AG	G	G	G
1908	$-C_{445}$	G	G	G	G	MG	Μ	MG	G	MG	AG
	C_{451}	G	VG	Μ	AG	G	AG	Μ	VG	VG	G
	C_{452}	MG	G	VG	G	VG	G	VG	AG	G	MG
	C_{453}	Μ	G	G	MG	G	VG	G	G	VG	MG
	C_{454}	G	MG	MG	Μ	MG	G	G	MG	VG	G
	C_{455}	G	VG	MG	G	Μ	G	AG	Μ	G	VG
	C_{456}	MG	VG	G	G	G	MG	G	G	G	MG
	C_{457}	G	G	VG	Μ	G	VG	MG	G	MG	G
	C_{458}	G	MP	MG	G	Μ	VG	G	Μ	VG	AG
	C_{461}	VG	G	G	AG	G	G	MG	VG	VG	AG
	C_{462}	MG	VG	AG	VG	AG	MP	MG	G	G	G
	C_{463}	G	G	AG	AG	VG	G	G	G	MP	G
	C_{464}	AG	G	G	G	G	VG	VG	MG	G	AG
	C_{471}	Μ	MG	G	MG	AG	G	MG	VG	VG	G
	C_{472}	Μ	VG	AG	Μ	G	G	G	VG	G	MG
	C_{473}	MG	VG	MG	G	MG	MG	AG	G	G	М
	C_{474}	G	AG	M	G	M	VG	AG	MP	M	G
	C_{475}	MG	G	AG	M	G	AG	G	G	VG	G
	C_{476}	M	MG	G	VG	G	G	G	VG	G	M
	C_{511}	MP	M	AG	G	MG	MG	AG	G	G	G
	C_{512}	G	G	G	G	MG	M	MG	G	MG	AG
	C_{513}	AG	G	MG	MG	G	G	M	MG	MG	VG
	C_{521}	G	M C	M C	AG	VG MC	G	G	VG VC	G	G
	C ₅₂₂	MG	G	G	G MC	MG C	IVI C	VG MC	VG C	VG MC	G MC
	C ₅₂₃	VC	MC	M	MG	G AC	G AC	MG	MD	C	VC
	C ₅₃₁	C	MC	C	C	AG	NG VC	C	C		VG
	C ₅₃₂	G	C	AG	G	C	G	AG	M	AG	G
	C ₅₃₃	M	VG	VG	G	G	MG	G	VG	G	MP
	C541	MG	MG	G	G	AG	M	MG	G	G	G
	C542	G	G	MG	MG	MG	VG	M	AG	AG	M
	C_{EE1}	MG	ĂG	VG	VG	M	Ġ	G	G	MG	VG
	C552	M	AG	ÅĞ	VG	ÂG	Ğ	Ğ	MG	M	ĂĞ
	C552	G	G	G	Ģ	VG	MG	M	M	G	G
	C561	Ğ	M	MG	мр	Ġ	M	G	G	ŇG	MG
	C_{562}	MG	G	G	MG	мр	VG	ŇĠ	M	ĂĞ	VG
Table IV.	C_{563}	Μ	ĂG	ĂG	Μ	MG	VĞ	MG	G	M	M

extent of successful performance of the key indices that stimulate leagility. The fuzzybased leagility evaluation model presented here can be effectively implemented in industries supply chain to attain competitive advantage in the market.

7. Conclusions

Improved supply chain agility and leanness imply that a supply chain is capable of quickly responding to variations in customer demand with cost and waste reduction. Leanness in a supply chain maximizes profits through cost reduction, while agility maximizes profit through providing exactly what the customer requires. This paper

												-
Leagile												Leagility
attributes (C_{ij})	Weight	DM1	DM2	DM3	DM4	DM5	DM6	DM7	DM8	DM9	DM10	assessment
Ca	11/11	MH	VH	MH	AH	AH	Н	Н	MH	VH	АН	module
C_{12}	w_{12}	AH	AH	Н	Н	AH	AH	AH	Н	MH	Н	
C_{13}	w_{13}	MH	MH	AH	VH	AH	MH	MH	AH	MH	Н	
C_{14}	w_{14}	MH	MH	Η	Η	Η	AH	AH	MH	Н	AH	1969
C_{15}	w_{15}	MH	Η	AH	Н	VH	Н	Н	AH	Н	MH	1000
C_{16}	w_{16}	AH	М	Н	VH	MH	MH	MH	Н	VH	AH	
C_{17}	w_{17}	H	AH	MH	VH	H	MH	H	AH	H	H	
C_{18}	w_{18}	AH MH	н VH	МН Ц	AH U	AH MH	н VH	AH MH	vн u	н VH	н ц	
C_{19}	w ₁₉		MH	н	VH	MH	Н			Н	MH	
C_{110}	W ₁₁₀	H	H	VH	MH	H	H	H	MH	Н	VH	
C_{21}	W21 W22	Н	H	MH	MH	M	Н	AH	AH	Н	Н	
C_{23}	W22 W23	AH	VH	VH	AH	AH	H	MH	MH	VH	H	
C_{24}^{20}	w_{24}	AH	MH	MH	MH	Η	AH	Н	MH	Н	VH	
C_{25}	w_{25}	VH	VH	AH	AH	VH	Η	Η	Η	AH	Η	
C_{31}	w_{31}	Η	AH	Н	Η	MH	AH	VH	Μ	MH	MH	
C_{32}	w_{32}	Н	MH	VH	AH	Н	MH	Н	AH	AH	Н	
C_{33}	w_{33}	Н	MH	MH	Н	VH	Н	VH	Н	AH	MH	
C_{34}	w_{34}	VH	H	H	H	H	Н	MH	VH	H	H	
C_{35}	w_{35}	AH	M	H	VH	MH	VH	H	MH	H	AH	
C_{36}	w ₃₆	H MU	AH	MH	MH	H U		AH	AH U	H AU		
C_{37}	w ₃₇ w ₂₂	MH	H		H	VH	MH	AH	VH	Н	H	
C ₃₈	1038 1000	H	VH	H	AH	H	MH	H	MH	Н	AH	
C_{210}	W210	Н	Н	AH	H	Н	Н	VH	MH	MH	VH	
C_{311}	W310	VH	AH	Н	VH	VH	M	MH	MH	VH	Н	
C_{312}	w_{312}	MH	AH	AH	VH	Н	AH	Н	AH	Н	Н	
C_{41}	w_{41}	VH	AH	VH	Η	Η	Н	AH	AH	AH	VH	
C_{42}	w_{42}	VH	Η	Η	MH	Η	VH	Η	MH	MH	Η	
C_{43}	w_{43}	Н	MH	Н	Н	VH	MH	VH	AH	AH	VH	
C_{44}	w_{44}	MH	MH	AH	MH	H	H	MH	H	H	MH	
C_{45}	w_{45}	H	H	H	MH	MH	MH	MH	AH	H	H	
C_{46}	w_{46}	H VII		VH	AH		VH	H MI		AH	AH	
C ₄₇	W ₄₇	vп ц	п VH	MH	MH	п лн	vп u	VП MH	п u	п VH	VH	Table V
C ₅₁	W51 W50	AH	H	MH	VH	VH	VH	MH	VH	MH	AH	Priority weight of
C_{52} C_{52}	W52 W52	MH	H	Н	Н	VH	MH	AH	AH	MH	H	leagile attributes
C_{54}	W54	MH	VH	M	AH	Н	MH	Н	Н	Н	VH	(in linguistic term)
C_{55}	w_{55}	VH	VH	AH	Н	Н	Н	AH	Н	VH	MH	given by decision
C_{56}	w_{56}	Н	Η	MH	VH	VH	Μ	MH	AH	Н	MH	maker (DMs)
Leagilo												
enablers (C_i)	Weight	DM1	DM2	DM3	DM4	DM5	DM6	DM7	DM8	DM9	DM10	
									0			Table VI.
C_1	w_1	VH	AH	Н	AH	VH	Н	AH	AH	VH	MH	Priority weight of
C_2	w_2	VH	AH	VH	AH	H	VH	VH	MH	MH	AH	leagile enablers
C_3	W3	АН Н	АН Н	AH MH	п VH	VH MH	н Ди	MH H	VH VH	ин Ч	п Δµ	(in linguistic term)
C_4	w_4 w_{π}	VH	MH	Н	MH	Н	MH	VH	AH	AH	MH	given by decision maker (DMa)
\boldsymbol{v}_{5}	w5	111	1411 1	11	14111	11	1111	V 1 1	1111	1111	14111	maker (DIVIS)

BIJ	Leagile criterions (C_{ijk})	Aggregated priority weight (w_{ijk})	Aggregated rating (U_{ijk})
23,7			
	\mathcal{L}_{111}	(0.755,0.799,0.908,0.946;1.000)	(0.696, 0.753, 0.864, 0.904; 1.000)
	C_{112}	(0.722, 0.775, 0.886, 0.925; 1.000)	(0.699, 0.755, 0.892, 0.940; 1.000)
	C_{113}	(0.811, 0.851, 0.940, 0.971; 1.000)	(0.094, 0.753, 0.878, 0.922; 1.000)
	C_{114}	(0.874, 0.908, 0.968, 0.988; 1.000)	(0.641,0.697,0.808,0.849;1.000)
1970	C_{115}	(0.741,0.795,0.908,0.946;1.000)	(0.825,0.869,0.948,0.974;1.000)
	C_{121}	(0.797, 0.836, 0.928, 0.960; 1.000)	(0.735, 0.778, 0.872, 0.905; 1.000)
	C_{122}	(0.734,0.790,0.912,0.954;1.000)	(0.742, 0.788, 0.888, 0.924; 1.000)
	C_{123}	(0.722, 0.772, 0.890, 0.933; 1.000)	(0.804,0.849,0.940,0.971;1.000)
	C_{124}	(0.846,0.889,0.956,0.977;1.000)	(0.708, 0.760, 0.874, 0.914; 1.000)
	C_{125}	(0.713,0.762,0.888,0.932;1.000)	(0.696,0.753,0.864,0.904;1.000)
	C_{131}	(0.853,0.891,0.956,0.977;1.000)	(0.673,0.725,0.854,0.900;1.000)
	\mathcal{L}_{132}	(0.715,0.762,0.874,0.914;1.000)	(0.622,0.677,0.786,0.828;1.000)
	C_{133}	(0.755,0.799,0.908,0.946;1.000)	(0.743, 0.792, 0.898, 0.936; 1.000)
	\mathcal{L}_{141}	(0.720,0.775,0.900,0.943;1.000)	(0.668,0.731,0.856,0.901;1.000)
	C_{142}	(0.748, 0.805, 0.924, 0.965; 1.000)	(0.653,0.701,0.822,0.867;1.000)
	C_{151}	(0.708,0.760,0.874,0.914;1.000)	(0.666,0.720,0.858,0.908;1.000)
	C_{152}	(0.762,0.801,0.908,0.946;1.000)	(0.673,0.725,0.854,0.900;1.000)
	\mathcal{L}_{153}	(0.832,0.871,0.948,0.974;1.000)	(0.710,0.768,0.876,0.915;1.000)
	C_{154}	(0.790,0.834,0.928,0.960;1.000)	(0.715,0.773,0.886,0.925;1.000)
	C ₁₅₅	(0.755,0.799,0.908,0.946;1.000)	(0.650,0.705,0.860,0.915;1.000)
	C_{161}	(0.790,0.842,0.944,0.979;1.000)	(0.629,0.682,0.782,0.820;1.000)
	C_{162}	(0.729,0.780,0.882,0.917;1.000)	(0.804,0.849,0.940,0.971;1.000)
	C_{163}	(0.769,0.814,0.920,0.957;1.000)	(0.764,0.809,0.910,0.947;1.000)
	C_{164}	(0.895,0.928,0.976,0.991;1.000)	(0.674,0.732,0.842,0.881;1.000)
	C_{165}	(0.720,0.775,0.900,0.943;1.000)	(0.666,0.720,0.858,0.908;1.000)
	C_{166}	(0.825,0.869,0.948,0.974;1.000)	(0.675,0.725,0.840,0.882;1.000)
	C_{167}	(0.692,0.742,0.880,0.929;1.000)	(0.743,0.795,0.894,0.928;1.000)
	C_{168}	(0.720,0.772,0.904,0.951;1.000)	(0.759,0.799,0.880,0.910;1.000)
	C_{169}	(0.881,0.924,0.976,0.991;1.000)	(0.647,0.711,0.848,0.898;1.000)
	C_{171}	(0.741,0.795,0.908,0.946;1.000)	(0.578,0.640,0.780,0.832;1.000)
	C_{172}	(0.783,0.832,0.928,0.960;1.000)	(0.688,0.739,0.838,0.873;1.000)
	C_{173}	(0.790,0.837,0.924,0.952;1.000)	(0.609, 0.666, 0.784, 0.829; 1.000)
	C_{174}	(0.741,0.792,0.912,0.954;1.000)	(0.710,0.760,0.860,0.896;1.000)
	C_{181}	(0.757,0.810,0.906,0.939;1.000)	(0.648,0.702,0.804,0.841;1.000)
	C_{182}	(0.790,0.834,0.928,0.960;1.000)	(0.667,0.719,0.830,0.870;1.000)
	C_{183}	(0.708,0.760,0.874,0.914;1.000)	(0.669,0.719,0.816,0.852;1.000)
	C_{184}	(0.811,0.854,0.936,0.963;1.000)	(0.759,0.810,0.892,0.921;1.000)
	C_{191}	(0.860,0.890,0.960,0.985;1.000)	(0.783,0.832,0.928,0.960;1.000)
	C_{192}	(0.769,0.806,0.904,0.938;1.000)	(0.694,0.753,0.878,0.922;1.000)
	C_{193}	(0.769,0.806,0.904,0.938;1.000)	(0.645,0.703,0.846,0.897;1.000)
	C_{1101}	(0.769,0.814,0.920,0.957;1.000)	(0.696,0.753,0.864,0.904;1.000)
	C_{1102}	(0.722,0.775,0.886,0.925;1.000)	(0.699,0.755,0.892,0.940;1.000)
	C_{1103}	(0.825,0.866,0.952,0.982;1.000)	(0.694,0.753,0.878,0.922;1.000)
	C_{1104}	(0.874, 0.908, 0.968, 0.988; 1.000)	(0.641,0.697,0.808,0.849;1.000)
	C ₂₁₁	(0.741,0.795,0.908,0.946;1.000)	(0.825,0.809,0.948,0.974;1.000)
Table VII.		(0.797,0.836,0.928,0.960;1.000)	(0.735, 0.778, 0.872, 0.905; 1.000)
Aggregated priority	C_{213}	(0.734,0.790,0.912,0.954;1.000)	(0.742,0.788,0.888,0.924;1.000)
weight as well as	C_{214}	(0.722,0.772,0.890,0.933;1.000)	(0.804, 0.849, 0.940, 0.971; 1.000)
aggregated	C ₂₁₅	(0.832,0.874,0.944,0.906;1.000)	(0.708, 0.760, 0.874, 0.914; 1.000)
appropriateness	C_{216}	(0.713,0.762,0.888,0.932;1.000)	(0.696,0.753,0.864,0.904;1.000)
rating of leagile			
criterions			(continued)

Leagile criterions (C _{iik})	Aggregated priority weight (w_{iik})	Aggregated rating (U_{iik})	Leagility
			assessment
C_{221}	(0.818,0.856,0.936,0.963;1.000)	(0.673,0.725,0.854,0.900;1.000)	module
C_{222}	(0.715,0.762,0.874,0.914;1.000)	(0.622, 0.677, 0.786, 0.828; 1.000)	
C_{223}	(0.769, 0.814, 0.920, 0.957; 1.000)	(0.743, 0.792, 0.898, 0.936; 1.000)	
C_{224}	(0.720, 0.775, 0.900, 0.943; 1.000)	(0.668, 0.731, 0.856, 0.901; 1.000)	
C_{225}	(0.748, 0.805, 0.924, 0.965; 1.000)	(0.653, 0.701, 0.822, 0.867; 1.000)	1071
C_{226}	(0.708, 0.760, 0.874, 0.914; 1.000)	(0.666, 0.720, 0.858, 0.908; 1.000)	1371
C ₂₂₇	(0.811, 0.854, 0.936, 0.963; 1.000)	(0.759,0.810,0.892,0.921;1.000)	
C_{231}	(0.860, 0.890, 0.960, 0.985; 1.000)	(0.783, 0.832, 0.928, 0.960; 1.000)	
C_{232}	(0.769.0.806.0.904.0.938:1.000)	(0.694.0.753.0.878.0.922:1.000)	
C222	(0,769,0,806,0,904,0,938;1,000)	(0.645, 0.703, 0.846, 0.897; 1.000)	
C ₂₃₅	(0.769, 0.814, 0.920, 0.957, 1.000)	(0.696, 0.753, 0.864, 0.904, 1.000)	
C234	(0.722, 0.775, 0.886, 0.925, 1.000)	(0.699, 0.755, 0.892, 0.940, 1.000)	
C ₂₃₅	(0.825, 0.866, 0.952, 0.982, 1.000)	(0.694, 0.753, 0.878, 0.922, 10, 10, 1000)	
C ₂₃₆	(0.825, 0.000, 0.552, 0.562, 1.000) (0.874, 0.009, 0.068, 0.089, 1.000)	(0.641, 0.607, 0.808, 0.810, 0.522, 1.000)	
C_{241}	(0.074, 0.900, 0.900, 0.900, 1.000) (0.741, 0.705, 0.002, 0.046, 1.000)	(0.041, 0.097, 0.000, 0.049, 1.000)	
C ₂₄₂	(0.741,0.795,0.908,0.946;1.000)	(0.825,0.809,0.948,0.974;1.000)	
C_{243}	(0.797, 0.836, 0.928, 0.960; 1.000)	(0.735, 0.778, 0.872, 0.905; 1.000)	
C_{244}	(0.734, 0.790, 0.912, 0.954; 1.000)	(0.742,0.788,0.888,0.924;1.000)	
C_{245}	(0.736,0.787,0.902,0.944;1.000)	(0.804,0.849,0.940,0.971;1.000)	
C_{246}	(0.832,0.874,0.944,0.966;1.000)	(0.708,0.760,0.874,0.914;1.000)	
C_{247}	(0.713,0.762,0.888,0.932;1.000)	(0.696, 0.753, 0.864, 0.904; 1.000)	
C_{248}	(0.853, 0.891, 0.956, 0.977; 1.000)	(0.673,0.725,0.854,0.900;1.000)	
C_{249}	(0.715,0.762,0.874,0.914;1.000)	(0.622, 0.677, 0.786, 0.828; 1.000)	
C_{251}	(0.755, 0.799, 0.908, 0.946; 1.000)	(0.743, 0.792, 0.898, 0.936; 1.000)	
C_{252}	(0.706, 0.760, 0.888, 0.932; 1.000)	(0.668, 0.731, 0.856, 0.901; 1.000)	
C_{253}	(0.748, 0.805, 0.924, 0.965; 1.000)	(0.653, 0.701, 0.822, 0.867; 1.000)	
C_{311}	(0.750, 0.797, 0.894, 0.928; 1.000)	(0.666,0.720,0.858,0.908;1.000)	
C_{312}	(0.762, 0.801, 0.908, 0.946; 1.000)	(0.673, 0.725, 0.854, 0.900; 1.000)	
C_{313}	(0.832, 0.871, 0.948, 0.974; 1.000)	(0.710,0.768,0.876,0.915;1.000)	
C_{314}	(0.790, 0.834, 0.928, 0.960; 1.000)	(0.715,0.773,0.886,0.925;1.000)	
C_{321}	(0.755, 0.799, 0.908, 0.946; 1.000)	(0.650, 0.705, 0.860, 0.915; 1.000)	
C ₃₂₂	(0.790, 0.842, 0.944, 0.979; 1.000)	(0.629, 0.682, 0.782, 0.820; 1.000)	
C ₃₂₃	(0.764, 0.815, 0.902, 0.931; 1.000)	(0.804,0.849,0.940,0.971;1.000)	
C324	(0.769.0.814.0.920.0.957:1.000)	(0.764.0.809.0.910.0.947:1.000)	
C225	(0.860.0.893.0.956.0.977:1.000)	(0.674.0.732.0.842.0.881:1.000)	
C ₂₂₁	(0.720, 0.775, 0.900, 0.943; 1.000)	(0.666.0.720.0.858.0.908.1.000)	
C ₂₂₂	(0.811, 0.854, 0.936, 0.963; 1.000)	(0.675, 0.725, 0.840, 0.882; 1.000)	
	(0.692, 0.742, 0.880, 0.929, 1.000)	(0.743, 0.795, 0.894, 0.928, 1.000)	
	(0.052,0.112,0.000,0.023,1.000) (0.748,0.802,0.928,0.973,1.000)	(0.759, 0.799, 0.880, 0.910, 1.000)	
C ₃₃₄	(0.881, 0.924, 0.976, 0.991, 1.000)	$(0.647 \ 0.711 \ 0.848 \ 0.898 \ 1.000)$	
	(0.001, 0.024, 0.070, 0.001, 1.000) (0.741, 0.795, 0.908, 0.946, 1.000)	(0.578064007800832.1000)	
C ₃₄₂	(0.741, 0.753, 0.500, 0.540, 1.000) (0.783, 0.832, 0.028, 0.060, 1.000)	(0.573, 0.040, 0.730, 0.052, 1.000) (0.688, 0.730, 0.838, 0.873, 1.000)	
C ₃₄₃	(0.703, 0.032, 0.920, 0.900, 1.000) (0.922, 0.974, 0.044, 0.066, 1.000)	(0.000, 0.739, 0.030, 0.073, 1.000) (0.600, 0.666, 0.784, 0.820, 1.000)	
C ₃₄₄	(0.032, 0.074, 0.944, 0.900, 1.000) (0.741, 0.702, 0.012, 0.054, 1.000)	(0.009, 0.000, 0.764, 0.829, 1.000) (0.710, 0.760, 0.860, 0.806, 1.000)	
	(0.741, 0.792, 0.912, 0.934; 1.000)	(0.710, 0.700, 0.800, 0.890, 1.000)	
C ₃₅₂	(0.757,0.810,0.906,0.939;1.000)	(0.648,0.702,0.804,0.841;1.000)	
C ₃₅₃	(0.825, 0.809, 0.948, 0.974, 1.000)	(0.007, 0.719, 0.830, 0.870; 1.000)	
C ₃₅₄	(0.708,0.760,0.874,0.914;1.000)	(0.669,0.719,0.816,0.852;1.000)	
C_{361}	(0.769,0.814,0.920,0.957;1.000)	(0.696,0.753,0.864,0.904;1.000)	
C_{362}	(0.708,0.760,0.874,0.914;1.000)	(0.699,0.755,0.892,0.940;1.000)	
C_{363}	(0.811,0.851,0.940,0.971;1.000)	(0.694,0.753,0.878,0.922;1.000)	
C_{364}	(0.874,0.908,0.968,0.988;1.000)	(0.641,0.697,0.808,0.849;1.000)	

(continued)

Table VII.

BIJ 23.7	Leagile criterions (C_{ijk})	Aggregated priority weight (w_{ijk})	Aggregated rating (U_{ijk})
20,1	C_{371}	(0.741, 0.795, 0.908, 0.946; 1.000)	(0.825, 0.869, 0.948, 0.974; 1.000)
	C ₃₇₂	(0.797,0.836,0.928,0.960;1.000)	(0.735,0.778,0.872,0.905;1.000)
	C ₃₇₃	(0.734,0.790,0.912,0.954;1.000)	(0.742,0.788,0.888,0.924;1.000)
	C ₃₇₄	(0.722,0.772,0.890,0.933;1.000)	(0.804,0.849,0.940,0.971;1.000)
1072	C ₃₇₅	(0.846, 0.889, 0.956, 0.977; 1.000)	(0.708,0.760,0.874,0.914;1.000)
1972	C_{376}	(0.699,0.747,0.876,0.921;1.000)	(0.696,0.753,0.864,0.904;1.000)
	C ₃₇₇	(0.853, 0.891, 0.956, 0.977; 1.000)	(0.673, 0.725, 0.854, 0.900; 1.000)
	C_{378}	(0.715,0.762,0.874,0.914;1.000)	(0.622, 0.677, 0.786, 0.828; 1.000)
	C_{379}	(0.769,0.814,0.920,0.957;1.000)	(0.743,0.792,0.898,0.936;1.000)
	C_{3710}	(0.706,0.760,0.888,0.932;1.000)	(0.668,0.731,0.856,0.901;1.000)
	C_{3711}	(0.748,0.805,0.924,0.965;1.000)	(0.653,0.701,0.822,0.867;1.000)
	C_{381}	(0.750, 0.797, 0.894, 0.928; 1.000)	(0.666,0.720,0.858,0.908;1.000)
	C_{382}	(0.762,0.801,0.908,0.946;1.000)	(0.673, 0.725, 0.854, 0.900; 1.000)
	C_{383}	(0.832,0.871,0.948,0.974;1.000)	(0.710,0.768,0.876,0.915;1.000)
	C_{384}	(0.790,0.834,0.928,0.960;1.000)	(0.715,0.773,0.886,0.925;1.000)
	C_{391}	(0.755,0.799,0.908,0.946;1.000)	(0.650,0.705,0.860,0.915;1.000)
	C_{392}	(0.790,0.842,0.944,0.979;1.000)	(0.629, 0.682, 0.782, 0.820; 1.000)
	C_{393}	(0.764,0.815,0.902,0.931;1.000)	(0.804,0.849,0.940,0.971;1.000)
	C_{394}	(0.769,0.814,0.920,0.957;1.000)	(0.764,0.809,0.910,0.947;1.000)
	C_{3101}	(0.895,0.928,0.976,0.991;1.000)	(0.674,0.732,0.842,0.881;1.000)
	C_{3102}	(0.720,0.775,0.900,0.943;1.000)	(0.666,0.720,0.858,0.908;1.000)
	C_{3103}	(0.825, 0.869, 0.948, 0.974; 1.000)	(0.675, 0.725, 0.840, 0.882; 1.000)
	C_{3104}	(0.692,0.742,0.880,0.929;1.000)	(0.743, 0.795, 0.894, 0.928; 1.000)
	C_{3105}	(0.720,0.772,0.904,0.951;1.000)	(0.759,0.799,0.880,0.910;1.000)
	C_{3106}	(0.881,0.924,0.976,0.991;1.000)	(0.647,0.711,0.848,0.898;1.000)
	C_{3111}	(0.741,0.795,0.908,0.946;1.000)	(0.578,0.640,0.780,0.832;1.000)
	C_{3112}	(0.783,0.832,0.928,0.960;1.000)	(0.688,0.739,0.838,0.873;1.000)
	C_{3113}	(0.832,0.874,0.944,0.966;1.000)	(0.609, 0.666, 0.784, 0.829; 1.000)
	C_{3114}	(0.741,0.792,0.912,0.954;1.000)	(0.710,0.760,0.860,0.896;1.000)
	C_{3115}	(0.757,0.810,0.906,0.939;1.000)	(0.648,0.702,0.804,0.841;1.000)
	C_{3116}	(0.825,0.869,0.948,0.974;1.000)	(0.667,0.719,0.830,0.870;1.000)
	C_{3117}	(0.708, 0.760, 0.874, 0.914; 1.000)	(0.669,0.719,0.816,0.852;1.000)
	C ₃₁₂₁	(0.811, 0.854, 0.936, 0.963; 1.000)	(0.759, 0.810, 0.892, 0.921; 1.000)
	C ₃₁₂₂	(0.860,0.890,0.960,0.985;1.000)	(0.783,0.832,0.928,0.960;1.000)
	C ₃₁₂₃	(0.769, 0.806, 0.904, 0.938; 1.000)	(0.694, 0.753, 0.878, 0.922; 1.000)
	C ₃₁₂₄	(0.769, 0.806, 0.904, 0.938, 1.000) (0.760, 0.814, 0.020, 0.057, 1.000)	(0.645, 0.703, 0.846, 0.897; 1.000)
	C_{411}	(0.709, 0.814, 0.920, 0.957, 1.000) (0.722, 0.775, 0.886, 0.025, 1.000)	(0.090, 0.755, 0.804, 0.904, 1.000)
	C_{412}	(0.722, 0.773, 0.000, 0.923, 1.000) (0.825, 0.866, 0.052, 0.082, 1.000)	(0.099, 0.753, 0.092, 0.940, 1.000) (0.604, 0.752, 0.978, 0.092, 1.000)
	C_{413}	(0.874,0.000,0.952,0.962,1.000)	(0.094, 0.753, 0.076, 0.922, 1.000) (0.641, 0.607, 0.808, 0.840, 1.000)
	C_{414}	(0.741, 0.705, 0.908, 0.908, 1.000)	(0.041, 0.057, 0.000, 0.045, 1.000) (0.825, 0.860, 0.948, 0.974, 1.000)
		(0.741, 0.753, 0.500, 0.540, 1.000) (0.797, 0.836, 0.928, 0.960, 1.000)	(0.025, 0.005, 0.040, 0.074, 1.000) (0.735, 0.778, 0.872, 0.905, 1.000)
	C ₄₂₂	(0.734, 0.790, 0.912, 0.950, 1.000)	(0.742, 0.788, 0.888, 0.924, 1.000)
	C ₄₂₃	(0.764, 0.809, 0.910, 0.947.1, 0.00)	$(0.804 0.849 0.940 0.971 \cdot 1.000)$
	C_{431}	(0.846 0.889 0.956 0.977 1.000)	(0.708, 0.760, 0.874, 0.914.1, 0.00)
	C432	(0.741, 0.784, 0.896, 0.935, 1.000)	(0.696, 0.753, 0.864, 0.904.1, 0.00)
	C433	(0.853, 0.891, 0.956, 0.977, 1.000)	(0.673, 0.725, 0.854, 0.900, 1.000)
	C_{434}	(0.715.0.762.0.874.0.914.1.000)	(0.622.0.677.07860828.1000)
	C_{441}	(0.790.0.834.0.928.0.960.1.000)	(0.743.0.792.0.898.0.936.1.000)
	-442 C443	(0.720, 0.775, 0.900, 0.943, 1,000)	(0.668.0.731.0.856.0.901.1.000)
	- 110	(,	(

(continued)

Table VII.

Leagile criterions (C_{ijk})	Aggregated priority weight (w_{ijk})	Aggregated rating (U_{ijk})	Leagility
C_{444}	(0.748.0.805.0.924.0.965:1.000)	(0.653.0.701.0.822.0.867:1.000)	module
C_{445}	(0.750,0.797,0.894,0.928;1.000)	(0.666,0.720,0.858,0.908;1.000)	module
C_{451}	(0.811,0.854,0.936,0.963;1.000)	(0.759,0.810,0.892,0.921;1.000)	
C452	(0.860,0.890,0.960,0.985;1.000)	(0.783, 0.832, 0.928, 0.960; 1.000)	
C ₄₅₃	(0.769,0.806,0.904,0.938;1.000)	(0.694, 0.753, 0.878, 0.922; 1.000)	1973
C_{454}	(0.769,0.806,0.904,0.938;1.000)	(0.645,0.703,0.846,0.897;1.000)	1575
C ₄₅₅	(0.769, 0.814, 0.920, 0.957; 1.000)	(0.696, 0.753, 0.864, 0.904; 1.000)	
C_{456}	(0.722, 0.775, 0.886, 0.925; 1.000)	(0.699, 0.755, 0.892, 0.940; 1.000)	
C ₄₅₇	(0.825, 0.866, 0.952, 0.982; 1.000)	(0.694, 0.753, 0.878, 0.922; 1.000)	
C ₄₅₈	(0.874,0.908,0.968,0.988;1.000)	(0.641, 0.697, 0.808, 0.849; 1.000)	
C_{461}	(0.741,0.795,0.908,0.946;1.000)	(0.825, 0.869, 0.948, 0.974; 1.000)	
C_{462}	(0.797, 0.836, 0.928, 0.960; 1.000)	(0.735, 0.778, 0.872, 0.905; 1.000)	
C_{463}	(0.755, 0.810, 0.920, 0.957; 1.000)	(0.742, 0.788, 0.888, 0.924; 1.000)	
C_{464}	(0.722,0.772,0.890,0.933;1.000)	(0.804, 0.849, 0.940, 0.971; 1.000)	
C_{471}	(0.867,0.909,0.964,0.980;1.000)	(0.708,0.760,0.874,0.914;1.000)	
C_{472}	(0.713, 0.762, 0.888, 0.932; 1.000)	(0.696, 0.753, 0.864, 0.904; 1.000)	
C_{473}	(0.853, 0.891, 0.956, 0.977; 1.000)	(0.673, 0.725, 0.854, 0.900; 1.000)	
C_{474}	(0.715, 0.762, 0.874, 0.914; 1.000)	(0.622, 0.677, 0.786, 0.828; 1.000)	
C_{475}	(0.769, 0.814, 0.920, 0.957; 1.000)	(0.743, 0.792, 0.898, 0.936; 1.000)	
C_{476}	(0.720,0.775,0.900,0.943;1.000)	(0.668,0.731,0.856,0.901;1.000)	
C_{511}	(0.748, 0.805, 0.924, 0.965; 1.000)	(0.653, 0.701, 0.822, 0.867; 1.000)	
C_{512}	(0.750, 0.797, 0.894, 0.928; 1.000)	(0.666,0.720,0.858,0.908;1.000)	
C_{513}	(0.762,0.801,0.908,0.946;1.000)	(0.673, 0.725, 0.854, 0.900; 1.000)	
C_{521}	(0.832, 0.871, 0.948, 0.974; 1.000)	(0.710,0.768,0.876,0.915;1.000)	
C_{522}	(0.790, 0.834, 0.928, 0.960; 1.000)	(0.715,0.773,0.886,0.925;1.000)	
C ₅₂₃	(0.755, 0.799, 0.908, 0.946; 1.000)	(0.650,0.705,0.860,0.915;1.000)	
C ₅₃₁	(0.790, 0.842, 0.944, 0.979; 1.000)	(0.629, 0.682, 0.782, 0.820; 1.000)	
C ₅₃₂	(0.764,0.815,0.902,0.931;1.000)	(0.804,0.849,0.940,0.971;1.000)	
C_{533}	(0.769, 0.814, 0.920, 0.957; 1.000)	(0.764,0.809,0.910,0.947;1.000)	
C_{541}	(0.895,0.928,0.976,0.991;1.000)	(0.674,0.732,0.842,0.881;1.000)	
C_{542}	(0.720,0.775,0.900,0.943;1.000)	(0.666,0.720,0.858,0.908;1.000)	
C_{543}	(0.825, 0.869, 0.948, 0.974; 1.000)	(0.675, 0.725, 0.840, 0.882; 1.000)	
C_{551}	(0.692,0.742,0.880,0.929;1.000)	(0.743, 0.795, 0.894, 0.928; 1.000)	
C ₅₅₂	(0.748,0.802,0.928,0.973;1.000)	(0.759,0.799,0.880,0.910;1.000)	
C ₅₅₃	(0.881,0.924,0.976,0.991;1.000)	(0.647, 0.711, 0.848, 0.898; 1.000)	
C_{561}	(0.741,0.795,0.908,0.946;1.000)	(0.578, 0.640, 0.780, 0.832; 1.000)	
C_{562}	(0.783, 0.832, 0.928, 0.960; 1.000)	(0.688, 0.739, 0.838, 0.873; 1.000)	
C_{563}	(0.832,0.874,0.944,0.966;1.000)	(0.609, 0.666, 0.784, 0.829; 1.000)	Table VII.

aimed to present an integrated fuzzy-based performance appraisement module in an organizational leagile supply chain.

This paper proposes a FOPI to assess the combined agility and leanness measure (leagility) of the organizational supply chain. This evaluation module helps to assess existing organizational leagility degree; it can be considered as a ready reference to compare performance of different leagile organization (running under similar supply chain architecture) and to benchmark candidate leagile enterprises; so that best practices can be transmitted to the less-performing organizations. Moreover, there is scope to identify ill-performing areas (barriers of leagility) which require special managerial attention for future improvement.

DH			
BIJ 23,7	Leagile attributes (C_{ij})	Aggregated priority weight (w_{ij})	Computed fuzzy rating (U_{ij})
,	C_{11}	(0.804, 0.841, 0.924, 0.952; 1.000)	(0.579,0.684,0.979,1.122;1.000)
	C_{12}	(0.846, 0.875, 0.948, 0.974; 1.000)	(0.590,0.695,1.002,1.152;1.000)
	$C_{13}^{}$	(0.755,0.791,0.892,0.927;1.000)	(0.557, 0.655, 0.946, 1.085; 1.000)
	C_{14}	(0.762,0.801,0.908,0.946;1.000)	(0.508, 0.620, 0.968, 1.149; 1.000)
107/	C_{15}	(0.769, 0.814, 0.920, 0.957; 1.000)	(0.555,0.658,0.974,1.125;1.000)
1374	C_{16}^{10}	(0.736,0.782,0.882,0.917;1.000)	(0.572, 0.675, 0.968, 1.112; 1.000)
	C_{17}^{10}	(0.769, 0.814, 0.920, 0.957; 1.000)	(0.518,0.622,0.920,1.070;1.000)
	C_{18}	(0.839, 0.873, 0.948, 0.974; 1.000)	(0.558, 0.660, 0.935, 1.073; 1.000)
	C_{19}	(0.741, 0.795, 0.908, 0.946; 1.000)	(0.595, 0.691, 0.979, 1.106; 1.000)
	C_{110}	(0.783, 0.821, 0.916, 0.949; 1.000)	(0.564, 0.666, 0.952, 1.091; 1.000)
	C_{21}	(0.734,0.790,0.912,0.954;1.000)	(0.599,0.705,1.017,1.168;1.000)
	C_{22}	(0.708, 0.757, 0.878, 0.922; 1.000)	(0.547, 0.652, 0.965, 1.120; 1.000)
	C_{23}	(0.839, 0.876, 0.944, 0.966; 1.000)	(0.579, 0.681, 0.983, 1.123; 1.000)
	C_{24}	(0.741, 0.784, 0.896, 0.935; 1.000)	(0.582, 0.684, 0.973, 1.113; 1.000)
	C_{25}	(0.867,0.906,0.968,0.988;1.000)	(0.535, 0.644, 0.988, 1.160; 1.000)
	C_{31}	(0.715, 0.762, 0.874, 0.914; 1.000)	(0.569, 0.671, 0.967, 1.108; 1.000)
	C_{32}	(0.797, 0.836, 0.928, 0.960; 1.000)	(0.578, 0.679, 0.963, 1.102; 1.000)
	C_{33}	(0.748, 0.797, 0.908, 0.946; 1.000)	(0.554, 0.661, 0.996, 1.162; 1.000)
	C_{34}	(0.748, 0.805, 0.924, 0.965; 1.000)	(0.529, 0.629, 0.892, 1.024; 1.000)
	C_{35}	(0.750, 0.797, 0.894, 0.928; 1.000)	(0.540, 0.643, 0.932, 1.079; 1.000)
	C_{36}	(0.748, 0.786, 0.896, 0.935; 1.000)	(0.562, 0.665, 0.955, 1.094; 1.000)
	C_{37}	(0.804, 0.838, 0.928, 0.960; 1.000)	(0.571, 0.676, 0.988, 1.142; 1.000)
	C_{38}	(0.790, 0.834, 0.928, 0.960; 1.000)	(0.569, 0.671, 0.967, 1.108; 1.000)
	C_{39}	(0.769, 0.814, 0.920, 0.957; 1.000)	(0.574,0.677,0.980,1.130;1.000)
	C_{310}	(0.762, 0.812, 0.920, 0.957; 1.000)	(0.566, 0.668, 0.958, 1.100; 1.000)
	C_{311}	(0.764, 0.815, 0.902, 0.931; 1.000)	(0.528, 0.630, 0.914, 1.057; 1.000)
	C_{312}	(0.839, 0.873, 0.948, 0.974; 1.000)	(0.606,0.703,0.979,1.103;1.000)
	C_{41}	(0.895, 0.928, 0.976, 0.991; 1.000)	(0.564, 0.666, 0.952, 1.091; 1.000)
	C_{42}	(0.720,0.775,0.900,0.943;1.000)	(0.609, 0.715, 1.024, 1.176; 1.000)
	C_{43}	(0.811,0.854,0.936,0.963;1.000)	(0.600, 0.699, 0.973, 1.104; 1.000)
	C_{44}	(0.678, 0.727, 0.868, 0.918; 1.000)	(0.531, 0.637, 0.961, 1.124; 1.000)
	C_{45}	(0.692, 0.742, 0.880, 0.929; 1.000)	(0.585, 0.685, 0.966, 1.097; 1.000)
	C_{46}	(0.909,0.946,0.984,0.994;1.000)	(0.616, 0.723, 1.034, 1.188; 1.000)
	C_{47}	(0.741, 0.795, 0.908, 0.946; 1.000)	(0.558, 0.661, 0.959, 1.104; 1.000)
Table VIII.	C_{51}	(0.769, 0.817, 0.916, 0.949; 1.000)	(0.529, 0.631, 0.958, 1.120; 1.000)
Aggregated fuzzy	C_{52}	(0.818, 0.859, 0.932, 0.955; 1.000)	(0.572, 0.674, 0.972, 1.113; 1.000)
priority weight and	C_{53}	(0.755, 0.799, 0.908, 0.946; 1.000)	(0.592,0.696,0.981,1.125;1.000)
computed fuzzy	C_{54}	(0.722,0.775,0.886,0.925;1.000)	(0.564, 0.661, 0.929, 1.061; 1.000)
rating of leagile	C_{55}	(0.825, 0.869, 0.948, 0.974; 1.000)	(0.571,0.678,0.985,1.136;1.000)
attributes	C_{56}	(0.708,0.760,0.874,0.914;1.000)	(0.513,0.614,0.890,1.030;1.000)

	Leagile enablers (C_i)	Aggregated weight (w_i)	Computed rating (U_i)
Table IX.			
Aggregated fuzzy	C_1	(0.881,0.913,0.964,0.980;1.000)	(0.460, 0.594, 1.075, 1.349; 1.000)
priority weight and	$\overline{C_2}$	(0.895, 0.931, 0.972, 0.983; 1.000)	(0.463, 0.602, 1.101, 1.393; 1.000)
computed fuzzy	$\bar{C_3}$	(0.853, 0.891, 0.956, 0.977; 1.000)	(0.456, 0.592, 1.076, 1.358; 1.000)
rating of leagile	$\tilde{C_4}$	(0.790,0.834,0.928,0.960;1.000)	(0.474, 0.612, 1.098, 1.382; 1.000)
enablers	C_5	(0.776,0.819,0.916,0.949;1.000)	(0.453, 0.589, 1.068, 1.353; 1.000)

Leagile criterions (C_{ijk})	$FPII = U_{ij} \times [(1,1,1,1,1) - w_{ij}]$	$I_{\tilde{A}}(\overline{x}_0,\overline{y}_0)$	$R(\overline{A}) = x_0 \times y_0$	Ranking order	Leagility
C111	(0.038.0.069.0.174.0.221:1.000)	(0.1232.0.3779)	0.0466	23	module
C_{112}	(0.052,0.086,0.201,0.261;1.000)	(0.1461, 0.3811)	0.0557	9	
C_{113}^{112}	(0.020,0.045,0.131,0.174;1.000)	(0.0901, 0.3727)	0.0336	40	
C_{114}	(0.008,0.022,0.074,0.107;1.000)	(0.0507, 0.3610)	0.0183	56	1075
C_{115}^{114}	(0.045,0.080,0.194,0.252;1.000)	(0.1394, 0.3810)	0.0531	13	1975
C_{121}	(0.029,0.056,0.143,0.184;1.000)	(0.1011, 0.3730)	0.0377	35	
C_{122}	(0.034,0.069,0.186,0.246;1.000)	(0.1303, 0.3816)	0.0497	17	
C_{123}	(0.054,0.093,0.214,0.270;1.000)	(0.1554, 0.3823)	0.0594	4	
C_{124}	(0.016,0.033,0.097,0.141;1.000)	(0.0686, 0.3660)	0.0251	52	
C_{125}	(0.047,0.084,0.206,0.259;1.000)	(0.1466, 0.3821)	0.0560	7	
C_{131}	(0.015,0.032,0.093,0.132;1.000)	(0.0654, 0.3648)	0.0239	53	
C ₁₃₂	(0.053, 0.085, 0.187, 0.236; 1.000)	(0.1380, 0.3775)	0.0521	14	
C_{133}	(0.040,0.073,0.180,0.229;1.000)	(0.1284, 0.3788)	0.0486	20	
C_{141}	(0.038,0.073,0.193,0.252;1.000)	(0.1353, 0.3820)	0.0517	15	
C_{142}	(0.023, 0.053, 0.160, 0.218; 1.000)	(0.1097, 0.3791)	0.0416	32	
C_{151}	(0.057,0.091,0.206,0.265;1.000)	(0.1509, 0.3811)	0.0575	6	
C ₁₅₂	(0.036,0.067,0.170,0.214;1.000)	(0.1198, 0.3773)	0.0452	26	
C_{153}	(0.018,0.040,0.113,0.154;1.000)	(0.0788, 0.3689)	0.0291	47	
C ₁₅₄	(0.029, 0.056, 0.147, 0.194; 1.000)	(0.1036, 0.3746)	0.0388	34	
C_{155}	(0.035,0.065,0.173,0.224;1.000)	(0.1211,0.3788)	0.0459	25	
C_{161}	(0.013,0.038,0.124,0.172;1.000)	(0.0836,0.3731)	0.0312	43	
C_{162}	(0.067,0.100,0.207,0.263;1.000)	(0.1559,0.3791)	0.0591	5	
C_{163}	(0.033,0.065,0.169,0.219;1.000)	(0.1188,0.3781)	0.0449	27	
C_{164}	(0.006,0.018,0.061,0.093;1.000)	(0.0419,0.3576)	0.0150	58	
C_{165}	(0.038,0.072,0.193,0.254;1.000)	(0.1352,0.3823)	0.0517	15	
C_{166}	(0.018,0.038,0.110,0.154;1.000)	(0.0768,0.3689)	0.0283	48	
C_{167}	(0.053,0.095,0.231,0.286;1.000)	(0.1642,0.3850)	0.0632	1	
C_{168}	(0.037,0.077,0.201,0.255;1.000)	(0.1401,0.3828)	0.0536	12	
C_{169}	(0.006,0.017,0.064,0.107;1.000)	(0.0450, 0.3602)	0.0162	57	
C ₁₇₁	(0.031,0.059,0.160,0.215;1.000)	(0.1124,0.3775)	0.0424	30	
C ₁₇₂	(0.028,0.053,0.141,0.189;1.000)	(0.0996,0.3737)	0.0372	36	
C ₁₇₃	(0.029,0.051,0.128,0.174;1.000)	(0.0922,0.3705)	0.0341	39	
C ₁₇₄	(0.033,0.067,0.179,0.232;1.000)	(0.1248,0.3801)	0.0474	22	
C ₁₈₁	(0.040,0.066,0.153,0.204;1.000)	(0.1122,0.3738)	0.0419	31	
C ₁₈₂	(0.027,0.052,0.138,0.183;1.000)	(0.0970,0.3729)	0.0362	37	
C ₁₈₃	(0.058,0.091,0.196,0.249;1.000)	(0.1453,0.3786)	0.0550	10	
C_{184}	(0.028,0.052,0.130,0.174;1.000)	(0.0934,0.3708)	0.0346	38	
C_{191}	(0.012, 0.033, 0.102, 0.134; 1.000)	(0.0690, 0.3669)	0.0253	51	
C ₁₉₂	(0.043, 0.072, 0.170, 0.213; 1.000)	(0.1228,0.3760)	0.0462	24	
C_{193}	(0.040,0.067,0.164,0.207;1.000)	(0.1175,0.3755)	0.0441	29	
C_{1101}	(0.030, 0.060, 0.161, 0.209; 1.000)	(0.1124, 0.3770)	0.0424	30	
C_{1102}	(0.052, 0.086, 0.201, 0.261; 1.000)	(0.1461, 0.3811) (0.0702, 0.2716)	0.0557	9 45	
C_{1103}	(0.012, 0.030, 0.118, 0.101; 1.000)	(0.0792, 0.3710)	0.0294	40 50	
C ₁₁₀₄	(0.000, 0.022, 0.074, 0.107; 1.000)	(0.0307, 0.3010)	0.0183	00 12	
C ₂₁₁	(0.043, 0.000, 0.134, 0.232, 1.000) (0.020, 0.056, 0.143, 0.184, 1.000)	(0.1094,0.0010)	0.0331	15 25	
C ₂₁₂	(0.023, 0.030, 0.143, 0.104, 1.000) (0.034, 0.060, 0.186, 0.246, 1.000)	(0.1011, 0.3730) (0.1303.0.3816)	0.0377	30 17	
C ₂₁₃	(0.034, 0.003, 0.100, 0.240, 1.000) (0.054, 0.003, 0.214, 0.270, 1.000)	(0.1303,0.3010)	0.0497	11	
C ₂₁₄	(0.034, 0.035, 0.214, 0.270, 1.000) (0.024, 0.043, 0.110, 0.154, 1.000)	(0.1004,0.0020) (0.079/ 0.2672)	0.0094	4 16	Table X.
✓215	(0.024,0.040,0.110,0.104,1.000)	(0.0794,0.0073)	0.0434	40	Computation of FPII and ranking order of
				(continued)	leagile criterions

BII					
23,7	Leagile criterions (C_{ijk})	$FPII = U_{ij} \times [(1,1,1,1,1) - w_{ij}]$	$I_{\tilde{A}}(\overline{x}_0,\overline{y}_0)$	$R(\overline{A}) = x_0 \times y_0$	Ranking order
	C216	(0.047.0.084.0.206.0.259:1.000)	(0.1466.0.3821)	0.0560	7
	C_{221}	(0.025, 0.046, 0.123, 0.164; 1.000)	(0.0870.0.3698)	0.0322	42
	C_{222}	(0.053, 0.085, 0.187, 0.236; 1.000)	(0.1380, 0.3775)	0.0521	14
1076	C_{223}	(0.032,0.063,0.167,0.216;1.000)	(0.1171, 0.3779)	0.0442	28
1976	C_{224}	(0.038.0.073.0.193.0.252:1.000)	(0.1353.0.3820)	0.0517	15
	C_{225}	(0.023, 0.053, 0.160, 0.218; 1.000)	(0.1097, 0.3791)	0.0416	32
	C_{226}	(0.057.0.091.0.206.0.265:1.000)	(0.1509.0.3811)	0.0575	6
	C_{227}	(0.028.0.052.0.130.0.174:1.000)	(0.0934.0.3708)	0.0346	38
	C_{221}	(0.012.0.033.0.102.0.134:1.000)	(0.0690.0.3669)	0.0253	51
	C_{232}	(0.043.0.072.0.170.0.213:1.000)	(0.1228.0.3760)	0.0462	24
	C_{232}	(0.040.0.067.0.164.0.207:1.000)	(0.1175.0.3755)	0.0441	29
	C_{224}	(0.030.0.060.0.161.0.209:1.000)	(0.1124.0.3770)	0.0424	30
	C225	(0.052.0.086.0.201.0.261:1.000)	(0.1461.0.3811)	0.0557	9
	C_{236}	(0.012.0.036.0.118.0.161:1.000)	(0.0792.0.3716)	0.0294	45
	C_{241}	(0.008,0.022,0.074,0.107;1.000)	(0.0507, 0.3610)	0.0183	56
	C_{242}^{241}	(0.045.0.080.0.194.0.252:1.000)	(0.1394.0.3810)	0.0531	13
	C_{243}	(0.029, 0.056, 0.143, 0.184; 1.000)	(0.1011, 0.3730)	0.0377	35
	C_{244}	(0.034,0.069,0.186,0.246;1.000)	(0.1303, 0.3816)	0.0497	17
	C_{245}	(0.045,0.083,0.200,0.256;1.000)	(0.1435, 0.3815)	0.0547	11
	C_{246}	(0.024,0.043,0.110,0.154;1.000)	(0.0794, 0.3673)	0.0292	46
	C_{247}	(0.047, 0.084, 0.206, 0.259; 1.000)	(0.1466, 0.3821)	0.0560	7
	C_{248}	(0.015,0.032,0.093,0.132;1.000)	(0.0654, 0.3648)	0.0239	53
	C_{249}	(0.053, 0.085, 0.187, 0.236; 1.000)	(0.1380, 0.3775)	0.0521	14
	C_{251}	(0.040,0.073,0.180,0.229;1.000)	(0.1284, 0.3788)	0.0486	20
	C_{252}	(0.045, 0.082, 0.205, 0.265; 1.000)	(0.1459, 0.3829)	0.0558	8
	C_{253}	(0.023, 0.053, 0.160, 0.218; 1.000)	(0.1097,0.3791)	0.0416	32
	C_{311}	(0.048, 0.076, 0.174, 0.227; 1.000)	(0.1279, 0.3766)	0.0482	21
	C_{312}	(0.036,0.067,0.170,0.214;1.000)	(0.1198,0.3773)	0.0452	26
	C_{313}	(0.018,0.040,0.113,0.154;1.000)	(0.0788, 0.3689)	0.0291	47
	C_{314}	(0.029,0.056,0.147,0.194;1.000)	(0.1036,0.3746)	0.0388	34
	C_{321}	(0.035,0.065,0.173,0.224;1.000)	(0.1211, 0.3788)	0.0459	25
	C_{322}	(0.013,0.038,0.124,0.172;1.000)	(0.0836,0.3731)	0.0312	43
	C_{323}	(0.055,0.083,0.174,0.229;1.000)	(0.1316,0.3751)	0.0494	18
	C_{324}	(0.033,0.065,0.169,0.219;1.000)	(0.1188,0.3781)	0.0449	27
	C ₃₂₅	(0.016,0.032,0.090,0.123;1.000)	(0.0633,0.3632)	0.0230	54
	C_{331}	(0.038,0.072,0.193,0.254;1.000)	(0.1352,0.3823)	0.0517	15
	C_{332}	(0.025,0.046,0.123,0.167;1.000)	(0.08/2,0.3/00)	0.0323	41
	C_{333}	(0.053,0.095,0.231,0.286;1.000)	(0.1642,0.3850)	0.0632	1
	C_{334}	(0.020,0.058,0.174,0.229;1.000)	(0.1177,0.3813)	0.0449	27
	C_{341}	(0.006,0.017,0.064,0.107;1.000)	(0.0450,0.3602)	0.0162	57
	C ₃₄₂	(0.031, 0.059, 0.160, 0.215; 1.000)	(0.1124,0.3775)	0.0424	30
	C_{343}	(0.028, 0.053, 0.141, 0.189; 1.000)	(0.0996, 0.3737)	0.0372	36
	C ₃₄₄	(0.021, 0.037, 0.099, 0.139; 1.000)	(0.0711, 0.3030) (0.1949, 0.2901)	0.0259	0U 00
	C ₃₅₁	(0.033, 0.067, 0.179, 0.232; 1.000)	(0.1248, 0.3801) (0.1192, 0.2728)	0.0474	22
	C ₃₅₂	(0.040, 0.000, 0.155, 0.204; 1.000) (0.017, 0.027, 0.100, 0.159, 1.000)	(0.1122,0.3738)	0.0419	31 40
	C ₃₅₃	(0.017, 0.037, 0.109, 0.132; 1.000) (0.058, 0.091, 0.106, 0.240, 1.000)	(0.0709,0.0000) (0.1453.0.2786)	0.0200	49 10
	C ₃₅₄	(0.030, 0.031, 0.130, 0.243, 1.000) (0.030, 0.060, 0.161, 0.200, 1.000)	(0.1400, 0.0700) (0.1124, 0.3770)	0.0550	10
		(0.060, 0.000, 0.101, 0.203, 1.000) (0.060, 0.095, 0.214, 0.274, 1.000)	(0.1124, 0.3770) (0.157103820)	0.0424	3U 2U
	~ 362	(0.000,0.000,0.214,0.274,1.000)	(0.1071,0.0020)	0.0000	0

Table X.

(continued)

Leagile criterions (C_{ijk})	$FPII = U_{ij} \times [(1,1,1,1,1) - w_{ij}]$	$I_{\tilde{A}}(\overline{x}_0,\overline{y}_0)$	$R(\overline{A}) = x_0 \times y_0$	Ranking order	assessment
Casa	(0 020 0 045 0 131 0 174.1 000)	(0.0901.0.3727)	0.0336	40	module
C264	(0.020, 0.010, 0.0101, 0.0111, 0.000) (0.008, 0.022, 0.074, 0.107, 1.000)	(0.0507, 0.3610)	0.0183	56	
C_{271}	(0.045, 0.022, 0.014, 0.101, 1.000)	(0.1394.0.3810)	0.0531	13	
C_{272}	(0.029, 0.056, 0.143, 0.184; 1.000)	(0.1011, 0.3730)	0.0377	35	1077
C272	(0.034, 0.069, 0.186, 0.246; 1.000)	(0.1303.0.3816)	0.0497	17	1977
C274	(0.054, 0.093, 0.214, 0.270; 1.000)	(0.1554, 0.3823)	0.0594	4	
C275	(0.016, 0.033, 0.097, 0.141, 1.000)	(0.0686.0.3660)	0.0251	52	
C276	(0.055, 0.093, 0.219, 0.272; 1.000)	(0.1574, 0.3829)	0.0603	2	
C277	(0.015, 0.032, 0.093, 0.132; 1.000)	(0.0654, 0.3648)	0.0239	53	
Co70	(0.053, 0.085, 0.187, 0.236, 1.000)	(0.1380, 0.3775)	0.0521	14	
C378	(0.032, 0.063, 0.167, 0.216, 1.000)	(0.1000, 0.0110) (0.1171, 0.3779)	0.0442	28	
C379	(0.045, 0.082, 0.107, 0.210, 1.000)	(0.1171, 0.0779) (0.1459, 0.3829)	0.0558	8	
C ₃₇₁₀	(0.023, 0.053, 0.160, 0.200, 1.000)	(0.1103, 0.3023) (0.1097, 0.3791)	0.0416	32	
C ₃₇₁₁	(0.048, 0.076, 0.174, 0.227, 1.000)	(0.1279, 0.3766)	0.0482	21	
C381	(0.036, 0.070, 0.171, 0.227, 1.000)	(0.1273, 0.0700) (0.1198, 0.3773)	0.0452	26	
C382	(0.018, 0.001, 0.0113, 0.0211, 0.000)	(0.078803689)	0.0291	47	
C 383	(0.029, 0.056, 0.147, 0.194, 1.000)	(0.0700, 0.0000) (0.1036, 0.3746)	0.0388	34	
C ₃₈₄	(0.035, 0.065, 0.173, 0.224, 1, 000)	(0.1211 0.3788)	0.0459	25	
C202	(0.013, 0.038, 0.124, 0.172; 1.000)	(0.0836, 0.3731)	0.0312	43	
C392	(0.055, 0.083, 0.174, 0.229, 1.000)	(0.13160.3751)	0.0494	18	
C393	(0.033, 0.065, 0.169, 0.219, 1.000)	(0.1010, 0.0701) (0.1188, 0.3781)	0.0449	27	
C ₃₁₀₁	(0.006, 0.000, 0.000, 0.000, 0.000, 0.000)	(0.04190.3576)	0.0150	58	
C_{2102}	(0.038, 0.072, 0.193, 0.254, 1.000)	(0.1352.0.3823)	0.0517	15	
C3102	(0.018, 0.038, 0.110, 0.154, 1.000)	(0.1002, 0.0020) (0.0768, 0.3689)	0.0283	48	
C_{2104}	(0.053, 0.095, 0.231, 0.286; 1.000)	(0.1642.0.3850)	0.0632	1	
C2105	(0.037, 0.077, 0.201, 0.255; 1.000)	(0.1401.0.3828)	0.0536	12	
C2106	(0.006, 0.017, 0.064, 0.107, 1.000)	(0.0450.0.3602)	0.0162	57	
C_{2111}	(0.031.0.059.0.160.0.215:1.000)	(0.11243775)	0.0424	30	
C_{2112}	(0.028.0.053.0.141.0.189:1.000)	(0.0996.0.3737)	0.0372	36	
C_{3112}	(0.021, 0.037, 0.099, 0.139; 1.000)	(0.0711.0.3650)	0.0259	50	
C_{3114}	(0.033.0.067.0.179.0.232:1.000)	(0.1248.0.3801)	0.0474	22	
C_{2115}	(0.040.0.066.0.153.0.204:1.000)	(0.1122.0.3738)	0.0419	31	
C_{3116}	(0.017.0.037.0.109.0.152:1.000)	(0.0759.0.3685)	0.0280	49	
C_{3117}	(0.058.0.091.0.196.0.249:1.000)	(0.1453.0.3786)	0.0550	10	
C_{3121}	(0.028.0.052.0.130.0.174:1.000)	(0.0934.0.3708)	0.0346	38	
C_{3122}	(0.012.0.033.0.102.0.134:1.000)	(0.0690.0.3669)	0.0253	51	
C_{3123}	(0.043,0.072,0.170,0.213;1.000)	(0.1228, 0.3760)	0.0462	24	
C_{3124}	(0.040,0.067,0.164,0.207;1.000)	(0.1175, 0.3755)	0.0441	29	
C ₄₁₁	(0.030.0.060.0.161.0.209:1.000)	(0.1124.0.3770)	0.0424	30	
C_{412}	(0.052,0.086,0.201,0.261;1.000)	(0.1461, 0.3811)	0.0557	9	
C_{413}^{412}	(0.012,0.036,0.118,0.161;1.000)	(0.0792,0.3716)	0.0294	45	
C_{414}	(0.008,0.022,0.074,0.107;1.000)	(0.0507, 0.3610)	0.0183	56	
C_{421}	(0.045,0.080,0.194,0.252;1.000)	(0.1394, 0.3810)	0.0531	13	
C_{422}	(0.029,0.056,0.143,0.184;1.000)	(0.1011,0.3730)	0.0377	35	
C_{423}	(0.034,0.069,0.186,0.246;1.000)	(0.1303,0.3816)	0.0497	17	
C_{431}	(0.043,0.076,0.180,0.229;1.000)	(0.1296, 0.3780)	0.0490	19	
C_{432}	(0.016,0.033,0.097,0.141;1.000)	(0.0686, 0.3660)	0.0251	52	
C_{433}	(0.045,0.078,0.187,0.234;1.000)	(0.1340,0.3789)	0.0508	16	
C_{434}	(0.015.0.032.0.093.0.132:1.000)	(0.0654.0.3648)	0.0239	53	

(continued)

Table X.

DH					
BIJ	Leagile				
23,7	criterions (C_{ijk})	$FPII = U_{ij} \times [(1,1,1,1,1) - w_{ij}]$	$I_{\tilde{A}}(\overline{x}_0,\overline{y}_0)$	$R(\overline{A}) = x_0 \times y_0$	Ranking order
	C_{441}	(0.053.0.085.0.187.0.236:1.000)	(0.1380.0.3775)	0.0521	14
	C_{442}	(0.030,0.057,0.149,0.197;1.000)	(0.1053, 0.3748)	0.0395	33
	C_{443}	(0.038,0.073,0.193,0.252;1.000)	(0.1353, 0.3820)	0.0517	15
1079	C_{444}	(0.023, 0.053, 0.160, 0.218; 1.000)	(0.1097, 0.3791)	0.0416	32
1978	_ C ₄₄₅	(0.048,0.076,0.174,0.227;1.000)	(0.1279, 0.3766)	0.0482	21
	C_{451}	(0.028,0.052,0.130,0.174;1.000)	(0.0934, 0.3708)	0.0346	38
	C_{452}	(0.012,0.033,0.102,0.134;1.000)	(0.0690, 0.3669)	0.0253	51
	C_{453}	(0.043,0.072,0.170,0.213;1.000)	(0.1228, 0.3760)	0.0462	24
	C_{454}	(0.040, 0.067, 0.164, 0.207; 1.000)	(0.1175, 0.3755)	0.0441	29
	C_{455}	(0.030,0.060,0.161,0.209;1.000)	(0.1124, 0.3770)	0.0424	30
	C_{456}	(0.052, 0.086, 0.201, 0.261; 1.000)	(0.1461, 0.3811)	0.0557	9
	C_{457}	(0.012,0.036,0.118,0.161;1.000)	(0.0792, 0.3716)	0.0294	45
	C_{458}	(0.008,0.022,0.074,0.107;1.000)	(0.0507, 0.3610)	0.0183	56
	C_{461}	(0.045,0.080,0.194,0.252;1.000)	(0.1394, 0.3810)	0.0531	13
	C_{462}	(0.029,0.056,0.143,0.184;1.000)	(0.1011, 0.3730)	0.0377	35
	C_{463}	(0.032, 0.063, 0.169, 0.226; 1.000)	(0.1186, 0.3789)	0.0449	27
	C_{464}	(0.054,0.093,0.214,0.270;1.000)	(0.1554, 0.3823)	0.0594	4
	C_{471}	(0.014,0.027,0.080,0.122;1.000)	(0.0573, 0.3619)	0.0207	55
	C_{472}	(0.047,0.084,0.206,0.259;1.000)	(0.1466, 0.3821)	0.0560	7
	C_{473}	(0.015,0.032,0.093,0.132;1.000)	(0.0654, 0.3648)	0.0239	53
	C_{474}	(0.053, 0.085, 0.187, 0.236; 1.000)	(0.1380, 0.3775)	0.0521	14
	C_{475}	(0.032,0.063,0.167,0.216;1.000)	(0.1171, 0.3779)	0.0442	28
	C_{476}	(0.038,0.073,0.193,0.252;1.000)	(0.1353, 0.3820)	0.0517	15
	C_{511}	(0.023, 0.053, 0.160, 0.218; 1.000)	(0.1097, 0.3791)	0.0416	32
	C_{512}	(0.048, 0.076, 0.174, 0.227; 1.000)	(0.1279, 0.3766)	0.0482	21
	C_{513}	(0.036,0.067,0.170,0.214;1.000)	(0.1198, 0.3773)	0.0452	26
	C_{521}	(0.018,0.040,0.113,0.154;1.000)	(0.0788, 0.3689)	0.0291	47
	C_{522}	(0.029, 0.056, 0.147, 0.194; 1.000)	(0.1036, 0.3746)	0.0388	34
	C_{523}	(0.035, 0.065, 0.173, 0.224; 1.000)	(0.1211, 0.3788)	0.0459	25
	C_{531}	(0.013,0.038,0.124,0.172;1.000)	(0.0836, 0.3731)	0.0312	43
	C_{532}	(0.055, 0.083, 0.174, 0.229; 1.000)	(0.1316,0.3751)	0.0494	18
	C_{533}	(0.033, 0.065, 0.169, 0.219; 1.000)	(0.1188, 0.3781)	0.0449	27
	C_{541}	(0.006,0.018,0.061,0.093;1.000)	(0.0419,0.3576)	0.0150	58
	C_{542}	(0.038,0.072,0.193,0.254;1.000)	(0.1352, 0.3823)	0.0517	15
	C_{543}	(0.018,0.038,0.110,0.154;1.000)	(0.0768, 0.3689)	0.0283	48
	C_{551}	(0.053,0.095,0.231,0.286;1.000)	(0.1642, 0.3850)	0.0632	1
	C_{552}	(0.020, 0.058, 0.174, 0.229; 1.000)	(0.1177, 0.3813)	0.0449	27
	C_{553}	(0.006,0.017,0.064,0.107;1.000)	(0.0450, 0.3602)	0.0162	57
	C_{561}	(0.031,0.059,0.160,0.215;1.000)	(0.1124, 0.3775)	0.0424	30
	C_{562}	(0.028,0.053,0.141,0.189;1.000)	(0.0996, 0.3737)	0.0372	36
Table X.	C_{563}	(0.021,0.037,0.099,0.139;1.000)	(0.0711,0.3650)	0.0259	50
	500				

References

- Agarwal, A., Shankar, R. and Tiwari, M.K. (2006), "Modeling the metrics of lean, agile and leagile supply chain: an ANP-based approach", *European Journal of Operational Research*, Vol. 173 No. 1, pp. 211-225.
- Alt, R., Gizanis, D. and Legner, C. (2005), "Collaborative order management: toward standard solutions for interorganisational order management", *International Journal of Technology Management*, Vol. 31 Nos 1/2, pp. 78-97.

Azevedo, S.G., Govindanb, K., Carvalho, H. and Cruz-Machado, V. (2012), "An integrated model to assess the leanness and agility of the automotive industry", *Resources, Conservation and Recycling*, Vol. 66, pp. 85-94

Bannon, A. and Roodman, D. (2004), "Technology and the Commitment to Development Index", April.

- Beecroft, G.D. (1999), "The role of quality in strategic management", Management Decision, Vol. 37 No. 6, pp. 499-503.
- Bruce, M., Daly, L. and Towers, N. (2004), "Lean or agile: a solution for supply chain management in the textiles and clothing industry", *International Journal of Operations & Production Management*, Vol. 24 No. 2, pp. 151-170.
- Buckley, J.J. (1985), "Fuzzy hierarchical analysis", Fuzzy Sets and Systems, Vol. 17 No. 3, pp. 233-247.
- Chan, F.T.S., Kumar, V. and Tiwari, M.K. (2009), "The relevance of outsourcing and leagile strategies in performance optimization of an integrated process planning and scheduling model", *International Journal of Production Research*, Vol. 47 No. 1, pp. 119-142.
- Chen, S.H. (1985), "Ranking fuzzy numbers with maximizing set and minimizing set", Fuzzy Sets and Systems, Vol. 17 No. 2, pp. 113-129.
- Chen, S.J. and Chen, S.M. (2003), "A new method for handing multi-criteria fuzzy decision-making problems using FN-IOWA operators", *Cybernetics and Systems*, Vol. 34 No. 2, pp. 109-137.
- Chen, S.M. and Chen, J.H. (2009), "Fuzzy risk analysis based on ranking generalized fuzzy numbers with different heights and different spreads", *Expert Systems with Applications*, Vol. 36 No. 3, pp. 6833-6842.
- Christopher, M. (2000), "The agile supply chain, competing in volatile markets", Industrial Marketing Management, Vol. 29 No. 1, pp. 37-44.
- Chuda Basnet (2013), "The measurement of internal supply chain integration", Management Research Review, Vol. 36 No. 2, pp. 153-172.
- Deborah, L.B. (2002), "E-logistics & e-fulfillment: beyond the 'Buy' button", Workshop, UNCTAD Inc., CURAÇAO, June 25-27.
- Goldman, S.L., Negal, R.N. and Preiss, K. (1995), Agile Competitors and Virtual Organizations-Measuring Agility and Infrastructure for Agility, Van Nostrand Reinhold, International Thomas Publishing, London.
- Herer, Y.T., Tzur, M. and Yucesan, E. (2002), "Transshipments: an emerging inventory recourse to achieve supply chain leagility", *International Journal of Production Economics*, Vol. 80 No. 3, pp. 201-212.
- Holweg, M. (2007), "The genealogy of lean production", Journal of Operations Management, Vol. 25 No. 2, pp. 420-437.
- Huang, Y.Y. and Li, S.J. (2010), "How to achieve leagility: a case study of a personal computer original equipment manufacturer in Taiwan", *Journal of Manufacturing Systems*, Vol. 29 Nos 2-3, pp. 63-70.
- Katayama, H. and Bennett, D. (1999), "Agility, adaptability and leanness: a comparison of concepts and a study of practice", *International Journal of Production Economics*, Vols 60-61, pp. 43-51.
- Kaufmann, A. and Gupta, M.M. (1991), Introduction to Fuzzy Arithmetic: Theory and Applications, Van Nostrand Reinhold Electrical/Computer Science and Engineering Series, New York, NY.
- Klir, G.J. and Yuan, B. (1995), *Fuzzy Sets and Fuzzy Logic: Theory and Applications*, Prentice-Hall Inc., Upper Saddle River, NJ.
- Konecka, S. (2010), "Lean and agile supply chain management concepts in the aspect of risk management", *Electronic Scientific Journal of Logistics*, Vol. 6 No. 4, pp. 23-31.

assessment module

Leagility

- Krishnamurthy, R. and Yauch, C.A. (2007), "Leagile manufacturing: a proposed corporate infrastructure", *International Journal of Operations & Production Management*, Vol. 27 No. 6, pp. 588-604.
- Lin, C.-T., Chiu, H. and Chu, P.-Y. (2006), "Agility index in the supply chain", *International Journal of Production Economics*, Vol. 100 No. 2, pp. 285-299.
- Mason-Jones, R., Naylor, B. and Towill, D.R. (2000a), "Engineering the leagile supply chain", International Journal of Agile Management Systems, Vol. 2 No. 1, pp. 54-61.
- Mason-Jones, R., Naylor, B. and Towill, D.R. (2000b), "Lean, agile or leagile? Matching your supply chain to the marketplace", *International Journal of Production Research*, Vol. 38 No. 17, pp. 4061-4070.
- Moeinzadeh, P. and Hajfathaliha, A. (2010), "A combined fuzzy decision making approach to supply chain risk assessment", *International Journal of Human and Social Sciences*, Vol. 5 No. 13, pp. 859-875.
- Moron, D.K. and Haan, J. (2011), "Improving supply chain performance to satisfy final customers: leagile experiences of a polish distributor", *International Journal of Production Economics*, Vol. 133 No. 1, pp. 127-134.
- Narasimhan, R., Swink, M. and Kim, S.W. (2006), "Disentangling leanness and agility: an empirical investigation", *Journal of Operations Management*, Vol. 24 No. 5, pp. 440-457.
- Naylor, J.B., Naim, M.M. and Berry, D. (1999), "Leagility: integrating the lean and agile manufacturing paradigms in the total supply chain", *International Journal of Production Economics*, Vol. 62 Nos 1/2, pp. 107-118.
- Negi, D.S. (1989), "Fuzzy analysis and optimization", PhD dissertation, Department of Industrial Engineering, Kansas State University.
- Olofsgard, P., Ng, A.H.C., Morre, P.R., Pu, J., Wong, C.B. and DeVin, L.J. (2002), "Distributed virtual manufacturing for development of modular machine systems", *Journal of Advance Manufacturing Systems*, Vol. 1 No. 2, pp. 141-158.
- Pache, G. and Medina, P. (2007), "The entrenchment strategy of logistics service providers: towards a sequential cooperation-competition process?", *Journal of Transport and Supply Chain Management*, Vol. 1 No. 1, pp. 65-78.
- Power, D.J., Sohal, A.S. and Rahman, S. (2001), "Critical success factors in agile supply chain management: an empirical study", *International Journal of Physical Distribution and Logistics Management*, Vol. 31 No. 4, pp. 247-265.
- Prince, J. and Kay, J.M. (2003), "Combining lean and agile characteristics: creation of virtual groups by enhanced production flow analysis", *International Journal of Production Economics*, Vol. 85 No. 3, pp. 305-318.
- Rahimnia, F. and Moghadasian, M. (2010), "Supply chain leagility in professional services: how to apply decoupling point concept in healthcare delivery system", *Supply Chain Management:* An International Journal, Vol. 15 No. 1, pp. 80-91.
- Rahimnia, F., Moghadasian, M. and Castka, P. (2009), "Benchmarking leagility in mass services: the case of a fast food restaurant chains in Iran", *Benchmarking: An International Journal*, Vol. 16 No. 6, pp. 799-816.
- Soni, G. and Kodali, P. (2012), "Evaluating reliability and validity of lean, agile and leagile supply chain constructs in Indian manufacturing industry", *Production Planning & Control*, Vol. 23 Nos 10/11, pp. 864-884.
- Sparrow, J.A. (2001), "Knowledge-based view of support for small business management of e-business activities", Knowledge Management Centre UCE Business School, Birmingham.
- Stratton, R. and Warburton, R.D.H. (2003), "The strategic integration of agile and lean supply", International Journal of Production Economics, Vol. 85 No. 2, pp. 183-198.

- Thorani, Y.L.P., Rao, P.P.B. and Shankar, N.R. (2012), "Ordering generalized trapezoidal fuzzy numbers", *International Journal of Contemporary Mathematical Sciences*, Vol. 7 No. 12, pp. 555-573.
- Van Hoek, R.I., Harrison, A. and Christopher, M. (2001), "Measuring agile capabilities in the supply chain", *International Journal of Operations and Production Management*, Vol. 21 Nos 1/2, pp. 126-147.
- Vernon, F. (2008), "Supply chain visibility: lost in translation?", Supply Chain Management: An International Journal, Vol. 13 No. 3, pp. 180-184.
- Vinodh, S. and Aravindraj, S. (2012), "Agility evaluation using the IF-THEN approach", International Journal of Production Research, Vol. 50 No. 24, pp. 7100-7109.
- Vinodh, S. and Aravindraj, S. (2013), "Evaluation of leagility in supply chains using fuzzy logic approach", *International Journal of Production Research*, Vol. 51 No. 4, pp. 1186-1195.
- Vrechopoulos, A.P. (2001), "Virtual store atmosphere in internet retailing: measuring virtual retail store layout effects on consumer buying behavior", PhD thesis, Department of Information Systems and Computing, Brunel University, London, November.
- Womack, J.P., Jones, D.T. and Ross, D. (1990), "The machine that changed the world", *Free Press*, April 9, p. 352.
- Wu, C. and Barnes, D. (2010), "Formulating partner selection criteria for agile supply chains: a dempster-shafer belief acceptability optimisation approach", *International Journal of Production Economics*, Vol. 125 No. 2, pp. 284-293.
- Yimam, D. and Kobsa, A. (2000), Centralization vs Decentralization Issues in Internet-Based Knowledge Management Systems: Experiences from Expert Recommender Systems (TWIST), University of California Software Institute, Irvine, CA.
- Zadeh, L.A. (1965), "Fuzzy sets", Information and Control, Vol. 8 No. 3, pp. 338-353.
- Zadeh, L.A. (1975), "The concept of a linguistic variable and its application to approximate reasoning-I and II", *Information Sciences*, Vol. 8 No. 3(I) 4(II), pp. 199-249(I), 301-357(II).
- Zhang, Y., Wang, Y. and Wu, L. (2012), "Research on demand-driven leagile supply chain operation model: a simulation based on anylogic in system engineering", *Systems Engineering Procedia*, Vol. 3 No. 3, pp. 249-258.
- Zimmermann, H.J. (1991), Fuzzy Set Theory and its Applications, 2nd ed., Kluwer Academic Publishers, Boston, MA, Dordrecht and London.

Web references

www.barter-trends.com/creating-a-virtual-retail-store.html

www.globalmillenniamarketing.com/article_fulfillment_ecommerce_ebusiness.htm

www.logwin-logistics.com/services/specials/efulfillment.html

www.sourcingmag.com/content/what_is_outsourcing.asp

http://en.wikipedia.org/wiki/Information_technology_outsourcing

http://operationstech.about.com/od/officestaffingandmanagem/a/OutSrcAdvantg.htm

www.four-soft.com/integrated_logistics_management.asp

http://home.kelley.iupui.edu/tatikond/.../Ana_presentation.ppt-United States

www.globalmillenniamarketing.com/article_fulfillment_ecommerce_ebusiness.htm

www.information-management.com/issues/19990501/19-1.html

http://en.wikipedia.org/wiki/Supplier_relationship_management

www.adam-europe.eu/prj/7095/.../CourieL_WP2_Chapter2_final.pdf

1981

BIJ	www.huntingdon.edu/uploadedFiles//david_sm13_ppt_01.ppt
23,7	http://en.wikipedia.org/wiki/Strategic_management
	http://en.wikipedia.org/wiki/Inventory
	www.rmdonovan.com/cycle_time-reduction/
	http://en.wikipedia.org/wiki/Time_management
1982	http://en.wikipedia.org/wiki/Business_Process_Improvement
1002	http://kalyan-city.blogspot.com/2012/01/what-is-production-planning-meaning.html
	www.brass.cf.ac.uk/uploads/wpstratmgtofPSSsAW1005.pdf
	http://mbs.microsoft.com/downloads/public/GP10Docs/MfgSetup.pdf
	www.co.moore.nc.us/index.php/what-exactly-is-hr?lang=
	www.cunaopsscouncil.org/news/323.html
	www.krannert.purdue.edu/centers/dcmme_gscmi/downloads/2012%20spring/gordonWipro.pdf
	www.sematech.org/videos/SemiconWest-06/p039141.pdf
	http://araku.ac.ir/~a_fiantial/ISR_Lec_[4].pdf
	http://220.227.161.86/22529ittstm_U10_cp6.pdf
	http://en.wikipedia.org/wiki/Electronic_data_interchange
	www.ism.ws/pubs/content.cfm?ItemNumber=9722
	http://faculty.mu.edu.sa/download.php?fid=4218
	http://en.wikipedia.org/wiki/Collaborative_planning,_forecasting,_and_replenishment
	http://142.51.19.180/drdnotes/3146_cox_ch13.htm

For instructions on how to order reprints of this article, please visit our website: www.emeraldgrouppublishing.com/licensing/reprints.htm Or contact us for further details: permissions@emeraldinsight.com