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Application of PCA and DEA to
recognize the true expertise of a
firm: a case with primary schools

Subhadip Sarkar
Department of Management Studies, NIT Duragapur, West Bengal, India

Abstract
Purpose – The purpose of this paper is to identify important dimensions which are essential to remain
competitive. To generate scores which will be as effective as the original outputs to determine the
radial efficiency scores etc.
Design/methodology/approach – A non-central principal component analysis (PCA) were used to
determine various dimensions for each output. The objective was set to identify those special schools
which could minimize certain pre-prescribed scores.
Findings – Few schools were trying to concentrate on the students from the rich society and spending
less per student. There were other schools which targeted to minimize the social loss by providing
education to the poorer section and were funding more for them.
Research limitations/implications – Small group was considered. However, the number can be
extended.
Practical implications – The valuable findings of Hillman and Jenkner (2002), stated that –
“Children are entitled to a free, quality basic education. Many children who do attend school receive an
inadequate education because of poorly trained, underpaid teachers, overcrowded classrooms, and a
lack of basic teaching tools such as textbooks, blackboards, and pens and paper […].” “In an ideal
world, primary education would be universal and publicly financed, and all children would be able to
attend school regardless of their parents’ ability or willingness to pay. The reason is simple: when any
child fails to acquire the basic skills needed to function as a productive, responsible member of society,
[…] The cost of educating children is far outweighed by the cost of not educating them. Adults who
lack basic skills have greater difficulty in finding well-paying jobs and escaping poverty […].” In order
to understand which fact has been stressed more the proposed model is very useful.
Social implications – It is capable of describing the current standpoint of a group of homogenous
schools or firms. Quality and cost cutting principals can be isolated quite easily.
Originality/value – Introduces concepts of non-central PCA. Provides alternative scores which are as
important as the original output. Detects and analyze various important dimensions.
Keywords Benchmarking, Principal component analysis, Data envelopment analysis,
Organizational performance, Properties of positive definite matrix
Paper type Research paper

Nomenclature
Symbols Meaning
r represents any rth DMU where

r¼ 1,2,…, c
i represents any ith input i¼ 1,2,

…, v
j represents any jth output j¼ 1,2,

…,m
PROJrij projection of any rth DMU on Eij

[Rij]c,v resource matrix of c number of
DMUs

yijobs
� �

c;m output matrix of c number of
DMUs

ui,qj weight vector on input and
output

Sj slack variable
λr weight used on any rth DMU
xrij specific usage (SU) of the ith

input for any jth output of the rth
DMU

Spr specific consumption matrix
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Eij ith principal component of Spj
derived from any jth output

Trj specific usage vector for any jth
output of the rth DMU

1. Introduction
According to Porter (1985) the fundamental basis of above average performance in the
long run is due to the sustainable competitive advantage which a firm can possess by
low cost or differentiation. Appropriate strategies can provide strength to survive the
stress of the five forces in a better way than its rivals in the long run. This practice
makes a firm to remain efficient and to become a benchmark in future. This perpetual
urge compels a DMU to assess its performance among its rivals and to remain an
efficient performer while using fewer quantities of each input to generate the same set
of outputs or producing more outputs from the same set of input resources than its.
Data envelopment analysis (DEA) plays a major role for the assessment of
performance. The journey of DEA commenced when the performance of students from
participating and not participating schools were compared by Charnes et al. (1978),
using a non-linear model and an equivalent data-oriented, linear programming-based
approach. A CCR-efficient DMU was found to be scoring redial efficiency of one and did
not have any kind of input or output slacks. Later on, the assumption of constant return
on scale, was extended by Banker et al. (1984). The renowned BCC model of these
researchers was able to administer variable scaling techniques. Till the year of 1989 the
application of DEA was restricted to the non-negative data as DMU scoring negative
value on a variable were eliminated.

The combined effort of Ali and Seiford (1990) (Cooper et al., 2002/2011) added a new
property in DEA called “translational invariance.” However, they never made any
comments on zero or on negative data. Pastor (1993) was the first who applied this
Theorem to all three basic models of DEA for solving the problem of measuring the
performances of 23 bank branches. A data transformation process was applied to turn
the negative values into positive values. This new form of data was fed into those
models which were invariant to translation. Moreover, he showed (Pastor, 1996), that a
displacement does not alter the efficient frontier for certain DEA formulations
(specifically, the additive model for both inputs and outputs and the BCC model for
outputs (or inputs)) and thus these approaches are translation invariant. Though,
additive models were found most efficient in this regard, the solution was not unit
invariant and “it yields in respect of an inefficient unit the ‘furthest’ targets on the
production frontier” (Portela et al., 2004). A completely new thought came up as Portela
et al. (2004), proposed a range directional model, based on directional distance functions
from a so called Ideal point, for helping a Portuguese bank to manage the performance
of its branches. The bank wanted to set targets for the branches on such variables as
growth in number of clients, growth in funds deposited and so on. These variables
could take positive and negative values, preventing the use of traditional DEA. They
pointed out inefficiency of a firm in comparison to deviation seen from the Ideal point in
the context of input as well as output.

A case of few primary schools, presented in this paper, considers two inputs like
spending per student and percentage of income not from poor group. The reason for
taking them into account is that in many developing countries, the governments’ lack
either the financial resources or the political will to meet their citizens’ educational
needs. The valuable findings of Hillman and Jenkner (2002), in this regard can be cited
here as – “Children are entitled to a free, quality basic education. Many children who do
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attend school receive an inadequate education because of poorly trained, underpaid
teachers, overcrowded classrooms, and a lack of basic teaching tools such as textbooks,
blackboards, and pens and paper […].” The inclusion of the first input is due to the
measurement of willingness of a primary school to impart education. Commenting on
the ill-effects they mentioned “In an ideal world, primary education would be universal
and publicly financed, and all children would be able to attend school regardless of
their parents’ ability or willingness to pay. The reason is simple: when any child fails to
acquire the basic skills needed to function as a productive, responsible member of
society, […] The cost of educating children is far outweighed by the cost of not
educating them. Adults who lack basic skills have greater difficulty in finding
well-paying jobs and escaping poverty […].” Thus, the second input plays a key role to
measure the intention of a primary school to serve for the social benefit.

The proposed model, rather, concentrates on the generating scores in various
dimensions using principal component analysis (PCA). There is an instance of PCA
application when Nicole Adler and Boaz Golani (L.M. Seiford, 1989), adopted a PCA
DEA model in a case study of municipal solid waste, in the Oulu district of Finland, for
curtailing the number of analyzed variables by grouping highly correlated variables
within a factor. In their second model PCA was applied separately on the input and
output variables for strengthening the power of DEA. However, they had never spoken
of about the exploration of expertise of a firm using PCA. The first principal
eigenvector of a specific consumption matrix of an output reflects the cost (as it has all
positive elements), whereas, the remaining principal vectors denote several other
attributes essential for gaining competitive advantage (as it contains one negative
element and thus represent dexterity of a firm manage that essential dimension). These
scores are treated as new inputs (which can assume positive and negative values) and
used along with the original outputs to produce efficiency scores.

2. Definitions and theorems
2.1 Data envelopment analysis with BCC model
From an assumption of constant returns to scale, Banker et al. (1984) found proportional
changes in weighted output that derive from the alterations in weighted inputs (Table I).

The algebraic models of variable return to scale for c DMUs (each of which
consumes v inputs given by the R¼ [Rij]c,v to generate m number of outputs (observed
from the c number of homogeneous systems considered) given by Y ¼ ½ yijobs�c;m)
are shown above.

Primal form Dual form

Max h0 ¼
Pm
j¼1

qj:yrj

 !
�w0 Min y0�E

Pv
i¼1

Siþ
Pm
j¼1

Sj

 !

Subjected to:
Pv
j¼1

vj:Rrj ¼ 1; Subjected to: y0:RriþSi ¼
Pc
r¼1

lr :Rri; Si; lrX0

Pv
i¼1

ui:RriX
Pm
j¼1

qj:yrjobsþw0;
For any jth input i¼ 1,2,…, v

ui, qj⩾∈; w0¼ unrestricted yrjobs ¼ Sjþ
Pc
r¼1

lr :yrjobs for j ¼ 1; 2; . . .; m

Where ∈¼ non-Archemedean value
SiX0 for j ¼ 1; 2; . . .; m;

Pc
r¼1

lr ¼ 1;

For any DMU r

Table I.
Primal and dual
form of BCC DEA
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2.2 A BCC-efficient unit
A DMU is called BCC-efficient if θ*¼ 1, and if there exists at least one optimal solution
(u*, q*), for which u*W0 and q*W0, otherwise, the DMU in question is considered to
be BCC-inefficient. A Solution (u*, q*) from BCC-inefficient units (θ*o1), must
necessarily involve at least one DMU (known as a peer group) within the given set that
manages to yield weighted outputs that are equivalent to its weighted inputs. The set
of peer groups is specified as: E0

0 ¼ fr :Pm
j¼1 qjyrj

obs ¼Pv
i¼1 uiRrig

2.3 Specific consumption matrix Tj and specific covariance matrix Sj
Specific consumption matrix, Tj, for any jth output, is a column matrix, filled with all
specific consumptions of resources. A positive definite covariance matrix Sj (having
with a non-zero determinant) derived from Tj is defined as follows:

Sj ¼ Tj
T :Tj ¼ sij

� �
vxv where sij40; Tj ¼ tijr

� �
cxv and tijr ¼

Rri

yrj
(1)

Tj
T ¼ T1j T2j ; . . .; Tcj

h i
where Trj

T ¼ t1jr t2jr ; . . .; tvjr
h i

sij ¼

Xc
r¼1

Rri

yrj

� �2

i ¼ i0

Xc
r¼1

Rri

yrj

� �
Rri

0

yri0

 !
ia i0

0
BBBBB@

1
CCCCCA (2)

tij is known as the specific usage of the ith input of the rth DMU.

2.4 A non-central PCA and its application on specific covariance matrix Sj
Economic use of resources of a DMU should be tested from the origin and not from any
mean vector derived from a group of DMUs. To observe the mutually independent
underlying characteristics of resource utilization the specific consumption matrix is
projected on a unit vector so that the directions of maximum variance (from the origin
vector and not from their mean vector) can be explored. This leads to the following
optimization problem to be solved:

Max z ¼ gT :Tj
T :Tj:g ¼ gT :Sj:g; subjected to: gTg ¼ 1;

The optimal solution of this problem gives rise to eigenvectors of Sj which are
orthogonal to each other. Appendices 1 and 2 can be referred here, to display the
properties of these eigenvectors.

This problem is similar to a non-central PCA. According to Rencher (2002), PCA
deals with a single sample of n observation vectors y1, y2,…, yn that form an
ellipsoidal swarm of points in a p-dimensional space. If the variables y1, y2,…, yp in y
are correlated, the natural axes of the swarm of points become identical to with the axes
of the ellipsoid having an origin at the mean vector (y*) of y1, y2,…, yn. The resulting
natural axes of the ellipsoid, yield the new uncorrelated variables called
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(principal components). These resulting axes will be similar to the eigenvectors (Er)
derived from the covariance matrix [S]pxp (or the correlation matrix ([R]pxp) of the
observed variables which also minimizes the mean squared distance between the data
points and their projections (shown below):

S:Er ¼ gr:Er for r ¼ 1; 2; . . .; p such that g14g24 . . .4gp

But, unlike PCA, the proposed model determines the covariance matrix from the origin.

2.5 Economic interpretation of principal components of the matrix Sj
Being a square matrix of size (v x v), Sj, has v number of eigenvectors (and
eigenvalues). These vectors carry significant information about the usage of all
ingredients. Other than the first vector none of the remaining ones assume all positive
elements (shown in the Appendices 1 and 2). The first eigenvector acknowledges the
cost consciousness of a firm as less projected value on this vector implies the lower
combined consumption of inputs. The reason of calling it “cost” or “combined
spending” is that, the firm in view of acquiring future benefits would like to
concentrate on the current collective expenditure. Remaining dimensions (which
reflect unique capacity of a firm) are indeed essential to gain various competitive
advantages. Each of these vectors has its own priority level (equivalent to the
corresponding eigenvalue) set by the industry. Baring this, they contain one negative
element which is indicative of the worth of a particular resource over the rest for
reducing the cost due to that dimension. Therefore, the firm has to be more decisive in
managing the cost and the right dimension to sustain in the market. Therefore, the
proposed model lies on the balance between first, reduction of “cost” (which focusses
on decreasing the utilization of resources) and second, reduction of cost from the
remaining dimensions (by manipulating proper resources).

2.6 Derivation of scores under various dimensions
Each eigenvector derived from a specific covariance matrix, due to any output, is
assumed to be representing important orthogonal traits or dimensions to produce the
same. Therefore, for any v number of inputs andm number of outputs, there will bemv
number of traits (shown in Table II with their priority levels).

If the weight of any output j is assumed to be wj, then the total score obtained by any
rth DMU at any ith priority level due to its current consumption of resources (Rr) is
given below:

SCOREri ¼
Xm
j¼1

Xv
i¼1

wj:Rr
T :Eij

Eigenvector Priority level Output 1 Output 2 … Output m

Eigenvector 1 1 (top) E11 E12 – E1m
Eigenvector 2 2 E21 E22 – E2m
… Eij
Eigenvector v v (least) Ev1 Ev2 – Evm
Output weight w1 w2 – wm

Table II.
Weight vector
of output set
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Assigning equal weights to all outputs, a total score of an rth DMU on any ith
dimension (or priority level) is determined by the following expression:

SCOREri ¼
Xm
j¼1

Xv
i¼1

Rri
T :Eij ¼

Xm
j¼1

Xv
i¼1

PROJrij

3. Correspondence between an output-oriented BCC DEA on both data file
and the translated derived score matrix

Theorem. The radial efficiencies resulting from an output-oriented BCC DEA on the
given data and the translated derived score matrix, are same.

Proof. Assuming θ0, Si, Sj, Rri and λr as radial efficiency, slack variables due to ith input
and jth output, ith input resource consumed by any rth DMU and weights ascribed on
any rth DMU, respectively, the envelopment form of the BCC model is shown below.

Envelopment form:

Max ¼ y0þE
Xv
i¼1

Siþ
Xm
j¼1

Sj

 !

Subjected to:

RriþSi ¼
Xc
r¼1

lr:Rri; Si; lrX0

For any jth input i¼ 1,2,…, v:

y0:yrj
obs ¼ Sjþ

Xc
r¼1

lr:yrj
obs for j ¼ 1; 2; . . .; m

Xc
r¼1

lr ¼ 1; SiX0 for j ¼ 1; 2; . . .; m

The constraints pertaining to inputs in the envelopment form of banker’s BCC model
(shown in Section 2.1) is further multiplied with various eigenvectors signifying key
dimensions of resource handling (shown below). The entire multiplication process gives
rise to same number of constraints as before:

Xm
j¼1

Ej
T

h i
vxv

Roi½ �vx1þ
Xm
j¼1

Ej
T

h i
vxv

S½ �vx1i ¼
Xm
j¼1

Ej
T

h i
vxv

RT
h i

vxc
: l½ �cx1;

The properties defined in the Appendix 2 clarifies that there can be one solution or
which at any value of j, the ith column of [Ej] contains a negative element at (i –1)th row.
Thus, the first and the third element of the above equation can contain few non-positive
values. Apart from that, the new slacks originated from the second term now remain
unrestricted (barring the first one). Being aware of the difficulties of handling the
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negative data shown by Portela et al. (2004), a translational process is carried out in
order to turn all negative numbers into positive (applied only on inputs). Since, the
input slacks present in the objective function (shown below) are of unrestricted type
(barring the first one), the maximization process on the strictly non-negative data will
force these negative slacks Si

0� 	
to take zero values (since, according to the property of

translational invariance, an output-oriented BCC DEA remains unchanged when
subjected to a translational change on the input side):

Max ¼ y0þE
Xv
i¼1

Si�Si
0� 	þXm

j¼1

Sj

 !
such that S�S

0h i
¼
Xm
j¼1

Ej
T

h i
vxv

S½ �vx1

and S ¼ Si½ �vx1; S
0 ¼ Si

0� �
vx1 where Si; Si

0
X0

Hence, it is proved that in spite of adopting a combined process of transformation and
translation the output-oriented BCC DEA will give identical results for the previously
mentioned two cases. ■

4. A mathematical example
The research was initiated from a very fundamental question “How does one verify the
cost leadership perspective of a primary school among many other primary schools.”
Performances of six schools are analyzed based on the effort given to the students
(spending per student (I1) and the financial condition of a student represented in terms
of average percent that he or she does not belong to low income group (I2)) and results
of two tests taken on them (average writing score per student (O1) and average science
score per student (O2)) (Table III). The objective of this study is to identify the list of
efficient schools which remain competitive by cost minimization. Any economic
performance is inclined to producing more output scores by spending lower amount per
pupil and also giving more opportunities to the poor.

As an initial step of making discrimination, productivity scores from BCC DEA
(Table IV) effectively isolate the Farrell inefficient schools B and D from the Farrell
efficient schools A, C, E and F (considering the local scale of operation). The inefficient
ones are dominated by respective hypothetical firms made from various linear
compositions of A and E, C and E.

Table V reveals an important fact that being efficient schools (like A, C, E and F), the
weight vectors (weight vector, (u*, q*), for any school is denoted by W (name of
the school, input/output) and derived from running the Primal BCC DEA model on the
corresponding school) do possess few zeroes. However, in reality all of them are more
than non-Archimedean values.

Schools Input 1 (I1) Input 2 (I2) Output 1 (O1) Output 2 (O2)

A 8,939 64.3 25.2 223
B 8,625 99 28.2 287
C 10,813 99.6 29.4 317
D 10,638 96 26.4 291
E 6,240 96.2 27.2 295
F 4,719 79.9 25.5 222

Table III.
Data
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For testing of the mix inefficiencies among these DMUs, the output (Table VI) of a
simple slack-based DEA model is analyzed. Owing to the zero scores of slacks for
schools like A, C, E and F, they are classified under BCC (or technically efficient
(locally)) efficient schools.

But, to fulfill the present need of the problem, the collective practice of schools is
illustrated here from the covariance matrix, eigenvalues and eigenvectors, pertaining to the
embedded PCA, (Table VII). These vectors are representative of two important dimensions
and are used to generate scores (as described in Section 2.7) on them (Table VIII). The first

Composition of the hypothetical peer firm
Productivity Value A B C D E F

Score (A) 1 1 0 0 0 0 0
Score (B) 0.9948 0 0 0.5215 0 0.4785 0
Score (C) 1 0 0 1 0 0 0
Score (D) 0.9466 0.1020 0 0 0 0.8980 0
Score (E) 1 0 0 0 0 1 0
Score (F) 1 0 0 0 0 0 1

Table IV.
BCC DEA output

Weights W(A,I1) W(A,I2) W(A,O1) W(A,O2) W(B,I1) W(B,I2) W(B,O1) W(B,O2)
Value 0 0.00472 0.03968 0 1.70597E–05 0 0.03546 0
Reduced
cost 0 0 0 0 0 1.02677 0 17.9739
Weights W(C,I1) W(C,I2) W(C,O1) W(C,O2) W(D,I1) W(D,I2) W(D,O1) W(D,O2)
Value 0 0 0.03401 0 0 0.00915 0 0.00344
Reduced
cost 0 0 0 0 16.11615 0 1.0826 0
Weights W(E,I1) W(E,I2) W(E,O1) W(E,O2) W(F,I1) W(F,I2) W(F,O1) W(F,O2)
Value 1.76869E–05 0 0.03676 0 1.7E–05 0.0025 0.03922 0
Reduced
cost 0 0 0 0 0 0 0 0

Table V.
Results of ratio

model of BCC (input
and output weights)

Slacks A B C D E F

S1 for Input 1 0 0.0028 0 16.128 0 0
S2 for Input 2 0 1.0267 0 0 0 0
S3 for Output 1 0 0 0 1.0826 0 0
S4 for Output 2 0 17.974 0 0 0 0

Table VI.
Output of slack-

based DEA

Type (eigenvalue) From Output 1 (603,951.6945) From Output 2 (5,909.7949)

S Matrix 603,890.4534 6,081.332298 5,909.2 59.2503
6,081.332298 65.86168651 59.25 0.6455

Eigenvector 1 0.9999493 0.010069824 0.9999 0.01
Eigenvector 2 −0.01006982 0.9999493 −0.01 0.9999

Table VII.
The eigenvalue and
eigenvector of the
covariance matrix
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one is referred to as cost (since it bears all positive elements) whereas uniqueness is termed
for the second one (as it accepts one negative element). The dimension termed as “cost” (on
both occasions) claims near about 100 times of spending per student than its counterpart.
This fact points out the societal practice of paying more preference to spending than
educating the poor people. A successful DMU may spend less and focus on the students
from the richer-section. On the contrary, “uniqueness” points out those schools which may
be pleased to impart education to poorer section while spending more. As a result, Score 1
has all positive values and few DMUs find negative values for Score 2. A negative value
implies for more focus on the uniqueness dimension than the standard mark (mentioned as
zero here).

The post translational values of Score 2 is fed to the output-oriented BCC DEA
model. no significant discrepancy is observed while measuring radial output-oriented
efficiency mentioned in the Tables IV and IX. There is no alteration found in the
efficient list too.

To confirm that their strongly efficient position the slack-based model is run. Quite
interestingly, the so called efficient DMUs scored zero slack values but the rests came
up with slack values different from Table V (Table X).

5. Conclusion
The current model has few added advantages as well. Like a regular BCC DEAmodel it
is capable of generating identical radial efficiency scores. Apart from that, it is

Schools A B C D E F

PROJ 11 8,939.19 8,625.56 10,813.5 10,638.4 6,240.65 4,719.57
PROJ 12 8,938.75 8,625.13 10,812.9 10,637.9 6,240.34 4,719.33
PROJ 21 −25.717 12.1428 −9.29 −11.128 33.3594 32.3765
PROJ 22 −25.096 12.7401 −8.54 −10.39 33.7904 32.702
Score 1 17,877.9 17,250.7 21,626.4 21,276.3 12,481 9,438.89
Score 2 −50.814 24.8829 −17.83 −21.517 67.1498 65.0785

Table VIII.
Projection in the
direction of principal
components

Slacks A B C D E F

S1 for Input 1 0 0.0077 0 69.105 0 0
S2 for Input 2 0 2.0529 0 0 0 0
S3 for Output 1 0 0 0 1.1251 0 0
S4 for Output 2 0 17.974 0 0 0 0

Table X.
Output of slack-
based DEA

Productivity Value A B C D E F

Score(A) 1 1 0 0 0 0 0
Score(B) 0.9948 0 0 0.5215 0 0.4785 0
Score(C) 1 0 0 1 0 0 0
Score(D) 0.9494 0.1118 0 0 0 0.8882 0
Score(E) 1 0 0 0 0 1 0
Score(F) 1 0 0 0 0 0 1

Table IX.
BCC DEA on
translated data
(composition of the
hypothetical firm)
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beneficial for detecting weakly efficient and truly inefficient DMUs. The proposed
model strives to explore few underlying dimensions emerging out of the industry
practice. The first dimension, regarded as “cost,” decides the position of a school
according to the current industrial trend for the collective spending of inputs for a
better society. A group of schools would like to minimize the “cost” (combined
consumption) by reducing spending per student and taking inputs from the rich
section. As a whole, they accept the fact that the spending has more weight than its
counterpart. As a result, Score 1 values will be much low for them. On the contrary, the
other group ensures their inclination toward educating more students from the poorer
sections and spends more to educate them to protect from an immense societal loss in
future. These schools would like to minimize Score 2.
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Appendix 1. The highest eigenvalue of a positive definite matrix that contains
entirely positive elements will always be greater than the highest diagonal
element of that matrix
Let A be a positive definite matrix with all non-negative elements, and let x be the eigenvector
corresponding to the eigenvalue, γ, then, from the definition of an eigenvalue, [Ax− γ.Ix]¼ 0 and
therefore det |A− γ.I|¼ 0; must hold:

A�g:I


 

 ¼

a11�g a12 . . . a1n
a12 a22�g . . . a2n
a1n a2n . . . ann�g

2
64

3
75 ¼ 0; (A1)
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Thus, the linearized form of the first (n−1) rows and n columns are as follows:

a11�gð Þ:x1 a12x2 . . . a1n�1xn�1 ¼ �a1nxn
a12:x1 a22�gð Þ:x2 . . . a2n�1xn�1 ¼ �a2nxn

a1n�1x1 a2n:x2 an�1n�1�gð Þxn�1 ¼�an�1nxn

This can also be expressed as follows:

gV 1 ¼ g
x1
X 1

" #
¼

a11 a1p
ap1 A1

" #
x1
X 1

" #
(A2)

The first set of linear equation represents (γ−a11).x1¼ a1p.X1W0; which essentially refers to two
conditions; (γWa11) when x1W0 and (γoa11) when x1o0. As a result, it can be interpreted that
any ith element of an eigenvector will be positive if the corresponding eigenvalue is more than the
ith diagonal element. Therefore, if an eigenvector contains all positive elements then the
relationship (γWmax(a11,a22,…, ann)) must be true.

If another eigenvector V2 (which is orthogonal to V1) is considered with a negative
element −x2 where x2W0. Then, the following equations will exist:

gV 2 ¼ g
�x2
X 2

" #
¼

a11 a1p
ap1 A1

" #
�x2
X 2

" #
(A3)

x1 X 1
T

h i �x2
X 2

" #
¼ 0 (A4)

However, this will violate the condition (γWmax(a11, a22,…, ann)). Thus, an eigenvector with all
positive elements can be generated only from the largest eigenvalue.

The second equation is given as (γI−A1).X1¼ ap1.x1. Using the first equation the following
expression can be established:

X 1
T gI�A1ð Þ:X 1 ¼

X 1
T ap1a1p
� 	

:X 1

g�a11ð Þ x1 (A5)

For the largest eigenvalue, γ−a11W0; must be true. The eigenvector, corresponding to it, will
necessarily make X1, x1W0 to happen and as a result it will also impose a positive definiteness to
the (γI−A1) matrix (as a1pW0).

Appendix 2. If A is a positive definite matrix (shown below), then the matrix of
its eigenvectors, Ej, can have a special structure

A½ �pxp ¼
a11 a1p
ap1 A1

" #
¼

a11 a12 . . . a1p
a21 a22 . . . a2p
^ &

ap1 ap2 app

2
66664

3
77775; ai;jXak;l 40 for ipk; jp l;
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Ej
� �

pxp ¼ E1j E2j . . .Eij . . .Epj

h i
¼

e11 �e12 . . .e1i. . . e1p
e21 e22 . . .e2i. . . e2p
^ ^ �ei�1;i&

ep�1;1 ep�1;2 ep�1;i �ep�1;p

ep1 ep2 . . .epi. . . epp

2
6666664

3
7777775

Any ith column of the matrix, [Ej] pxp, which is due to the eigenvalue γi such that for i¼ 1, 2,…, p;
and γiWγi+1, must give a positive value for the sum of its elements or 1TEij ⩾ 0.

Proof. From the property of diagonalization any positive definite matrix can be expressed as
[A]¼ [Ej].[D].[Ej]0 such that the matrix, [Ej], remains orthogonal ([Ej]0.[Ej]¼ [Ej].[Ej]0 ¼ I ).
Moreover, from the Theorem of eigenvalue, [A].[Eij]¼ γi.[Eij] will be satisfied for any ith
eigenvalue, γi. Using these concepts the following three equations can be derived:

a11: �e12ð Þþa12: e22ð Þþ . . .þa1i: ei2ð Þ. . .þa1p: ep2
� 	 ¼ g2: �e12ð Þ (A6)

a11: e13ð Þþa12: �e23ð Þþ . . .þa1i: ei3ð Þ. . .þa1p: ep3
� 	 ¼ g3: e13ð Þ (A7)

Using former two Equations (A6) and (A7) along with the elemental properties ofA, (ai, j⩾ ak, l for
i⩽ k, j⩽ l ), the subsequent relationships can be established:

a12:
e22

e12
�e23

e13

� �
þ . . .þa1i:

ei2

e12
þ ei3

e13

� �
. . .þa1p:

ep2

e12
þep3

e13

� �
¼ g3�g2 (A8)

g2�g3Xa12:
�e12ð Þþ e22ð Þþ . . .þ ei2ð Þ. . .þ ep2

� 	
e12ð Þ þ e13ð Þþ �e23ð Þþ . . .þ ei3ð Þ. . .þ ep3

� 	
e13ð Þ

� �
(A9)

But, to make the relationship of γ2⩾ γ3 to happen in (A9), there must be two inequalities to be
satisfied always (as a12W0):

�e12ð Þþ e22ð Þþ . . .þ ei2ð Þ. . .þ ep2
� 	� �

X0 or e12p e22ð Þþ . . .þ ei2ð Þ. . .þ ep2
� 	� �

e13ð Þþ �e23ð Þþ . . .þ ei3ð Þ. . . ep3
� 	� �

X0 or e23p e13ð Þþ . . .þ ei3ð Þ. . .þ ep3
� 	� �

(A10)

(A10) remains valid if the right hand side of it remains positive (as e12 and e23 are non-negative).
One way of achieving it is by obtaining each term as non-negative values on the right hand side
of (A10). On the contrary, the reversal of inequality signs stated in (A10) remains inconclusive.
This proposition is not only true for all other eigenvectors, which possess one negative element.
The first column of [Ej] can also be categorized under the same set. Conversely, to prove the
proposition, γ2Wγ3, to be true, the conditions shown in (A10) are sufficient. Hence, it is proved
that A can have eigenvectors stated above. ■
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