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Abstract
Purpose – Robot selection is a critical decision-making task frequently experienced in almost every
industries. It has become increasingly complex due to availability of large variety of robotic system in
the present market with varying configuration, specification and flexibility. Improper selection may
yield loss for the company in terms of potential profit as well as productivity. Hence, selection of an
appropriate robot to suit a particular industrial application is definitely a challenging task. The paper
aims to discuss these issues.
Design/methodology/approach – During robot selection, different criteria-attributes need to be
taken under consideration. Criteria may be subjective or objective or a combination of both, depending
on the situation. Criteria many be conflicting, in the sense that some criteria may require to be of higher
value (higher-is-better), i.e. beneficial; while, others should correspond to lower values (lower-is-better),
i.e. adverse or non-beneficial. Hence, the situation can be articulated as a multi-criteria decision-making
problem. The specialty of Tomada de Decisión Inerativa Multicritero (TODIM) method is that it
explores a global measurement of value calculable by the application of the paradigm of non-linear
cumulative prospect theory. The method is based on a description, proved by empirical evidence, of
how decision makers’ effectively make decisions in the face of risk.
Findings – Hence, the present work has aimed to explore the TODIM approach for industrial robot
selection. Assuming all criteria have been quantitative in nature; the paper utilizes two different numeric
data sets from available literature resource in perspectives of robot selection. Procedural hierarchy and
application potential of the TODIM approach has been illustrated in detail in this reporting.
Originality/value – Variety of tools and techniques have already been documented in literature to
solve different kinds of industrial decision-making problems; however, it seems that application of
TODIM has got limited usage. Hence, application potential of TODIM has been demonstrated here in
light of a robot selection problem.
Keywords Benchmarking, Multi-criteria decision making (MCDM), Decision support systems,
Robot selection, TODIM (Tomada de Decisión Inerativa Multicritero)
Paper type Research paper

1. Introduction and state of art
The word ROBOT was first stated in 1920 by the Czech author K. Capek in his play
Rossum’s Universal Robots; it was derived from the Czech word robota, meaning
worker. A robot is a power-driven self-controlled programmable device made with
mechanical, microelectronic and electrical attachments which repeatedly performs
complicated (often monotonous) tasks. According to the American Robots
Association, a robot can be defined as a multi-functional operator, which can beBenchmarking: An International
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controlled by programs (Mondal and Chakraborty, 2013). During the last decades, the
application of robotic system in industries has been increased substantially to ensure
timely and economic utilization of the resources for improving product quality as well
as business performance.

Now-a-days, different robotic systems capable of performing repetitive, hazardous
and difficult tasks readily are available in the marketplace with a variety of features
and specifications. Applications of industrial robots include loading and unloading,
assembly, material handling, welding, spray painting, etc. (Kumar and Garg, 2010;
Chatterjee et al., 2010). Hence, selection of an appropriate robot in pursuit of a
particular area of application is indeed a challenging task. It can, therefore, be viewed
as a multi-criteria decision-making (MCDM) problem in which maximum possible
criteria (both subjective and objective) should be considered for authentic decision
making, failing which a company’s competitiveness (in terms of productivity) may be
affected adversely.

Goh et al. (1996) applied a revised weighted sum model that incorporated different
values assigned by a group of experts on different factors in selecting robots. Parkan
and Wu (1999) demonstrated exploration aspects of multi-attribute decision making
(MADM) and performance measurement methods through a robot selection problem.
Particular emphasis was placed on a performance measurement procedure called
operational competitiveness rating (OCRA) and an MADM tool called technique for
order preference by similarity to ideal solution (TOPSIS). A rank-correlation test
showed that the methods could produce similar rankings for the robots. The final
selection was made on the basis of the rankings as obtained by averaging the results of
OCRA, TOPSIS, and a utility model. Braglia and Petroni (1999) proposed an efficient
methodology for the selection of industrial robots using data envelopment analysis
(DEA). The study aimed at the identification, in a cost/benefit perspective, of the
optimal robot, by measuring, for each robot, the relative efficiency through the
resolution of linear programming problems.

Bhangale et al. (2004) attempted to generate and maintain reliable and exhaustive
database of robot manipulators based on their different pertinent attributes. This
database could be used to standardize the robot selection procedure for a particular
operation. Rao and Padmanabhan (2006) developed a methodology based on digraph
and matrices methods for evaluation of alternative industrial robots. A robot
selection index was proposed that evaluated and ranked robots for a given industrial
application. Kumar and Garg (2010) developed a deterministic quantitative
model based on distance-based approach method for evaluation and selection of
alternative robots. Sensitivity analysis was also performed to analyze the critical and
non-critical performance attributes for a robot. Athawale et al. (2010) focussed on
solving the robot selection problem using VIKOR (Vlse Kriterijumska Optimizacija
Kompromisno Resenje) method. Chatterjee et al. (2010) solved the robot
selection problem using two most appropriate MCDM methods and compared their
relative performance for a given industrial application. The first MCDM approach is
“VIsekriterijumsko KOmpromisno Rangiranje” (VIKOR), a compromise ranking
method and the other one is “ELimination and Et Choice Translating Reality”
(ELECTRE), an outranking method. Two real time examples were cited in order
to demonstrate and validate the applicability and potentiality of both these
MCDM methods.

Kentli and Kar (2011) presented a MCDM model for a robot selection problem.
The proposed model used satisfaction function to convert various robot attributes
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into a unified scale. Further, a distance measure technique was used to ascertain the
highest ranked candidate robot. Rao et al. (2011) proposed a subjective and objective
integrated MADM method for the purpose of robot selection. The method considered
the objective weights of importance of the attributes as well as the subjective
preferences of the decision maker to decide the integrated weights of importance of the
attributes. Furthermore, the method used fuzzy logic to convert the qualitative
attributes into the quantitative attributes. Chakraborty (2011) explored the application
of an efficient multi-objective decision-making method, i.e., the multi-objective
optimization on the basis of ratio analysis (MOORA) method to solve different decision-
making problems as frequently encountered in the real time manufacturing
environment. Here, the author cited an example of industrial robot selection.

In another reporting, Mondal and Chakraborty (2013) applied four models of DEA,
i.e. Charnes, Cooper and Rhodes, Banker, Charnes and Cooper, additive, and cone-ratio
models to identify feasible robots having the optimal performance measures,
simultaneously satisfying the organizational objectives with respect to cost and
process optimization. Furthermore, the weighted overall efficiency ranking method of
MADM theory was also employed for arriving at the best robot selection decision from
the short listed competent alternatives. In order to demonstrate the relevancy and
distinctiveness of the adopted DEA-based approach, two real time industrial robot
selection problems were also solved.

Selection of industrial robot has long been viewed as a MCDM problem. Literature
depicts that a number of decision-making tools and techniques have been explored in
facilitating appropriate robot selection. However, it has been noted that most of the
existing MCDM tools are unable to capture or take into account the risk attitude/
preferences of the decision maker. Prospect theory developed by Kahneman and
Tversky (1979) is a descriptive model of individual decision making under condition of
risk. Later, Tversky and Kahneman (1992) developed the cumulative prospect theory
(CPT), which captures psychological aspects of decision making under risk. In the
prospect theory, the outcomes are expressed by means of gains and losses with respect
to a reference alternative (Salminen, 1994). The value function in prospect theory
assumes the S-shape concave above the reference alternative, which reflects the
aversion of risk in face of gains; and the convex part below the reference alternative
reflects the propensity to risk in case of losses (Krohling and Souza, 2012). In Tomada
de Decisión Inerativa Multicritero (TODIM), first, each shape characteristic of the value
function models psychological processes; the concavity for gains describes a risk
aversion attitude, the convexity describes a risk seeking attitude; second, the
assumption that losses carry more weight than gains is represented by a steeper
negative function side (Gomes et al., 2013).

CPT is a model for descriptive decisions under risk. As ordinary prospect theory
(OPT), CPT treats gains and losses, separately. Basically CPT considers: first, the
evaluation of possible outcomes relative to a certain reference point (often the status
quo); second, different risk attitudes toward gains (i.e. outcomes above the reference
point) and losses (i.e. outcomes below the reference point) and care generally
more about potential losses than potential gains (loss aversion); and third, a tendency
to overweight extreme, but unlikely events, but underweight “average” events
(Gomes et al., 2013).

Existing literature supports that the prospect theory has successfully been used as
behavioral model of decision making under risk mainly in economics and finance
(Dhami and Al-Nowaihi, 2007; Gurevich et al., 2009). Unfortunately, the application of
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prospect theory to MCDM problems has been rarely attempted. The first MCDM
method based on prospect theory was proposed by Gomes and Lima (1992).

In the original mathematical formulation of TODIM (an acronym in Portuguese for
iterative MCDM), the rating of alternatives, which composes the decision matrix, is
represented by crisp values with the assumption that all criterions are beneficial. The
TODIM method has many similarities with the PROMETHEE method; whereas, the
preference function as computed in PROMETHEE is replaced by the prospect
function. The TODIM method has been applied to rental evaluation of residential
properties (Gomes and Rangel, 2009). In another reporting, Gomes et al. (2009)
reported application of the TODIM-based MCDM approach for natural gas
destination in Brazil.

Motivated by the application potential of TODIM approach; in the present reporting,
MCDM problem toward selection of industrial robots has been articulated to examine
decision outcome through logical exploration of TODIM approach.

2. MCDM based on prospect theory
2.1 Preliminaries on prospect theory
The value function used in the prospect theory is described in form of a power law
according to the following expression (Kahneman and Tversky, 1979):

v xð Þ ¼
xa If xX0

�y �xð Þb If xo0

(
(1)

Here α and β are parameters related to gains and losses, respectively. The parameter θ
represents a characteristic of being steeper for losses than for gains. In case of risk
aversion θW1. Figure 1 shows a prospect value function with a concave and convex
S-shaped for gains and losses, respectively. Kahneman and Tversky (1979) experimentally
determined the values of α¼ β¼ 0.88, and θ¼ 2.25, which are consistent with empirical
data. Further, they suggest that the value of θ is between 2.0 and 2.5.

Value

Losses Gains

Source: Gomes and Rangel (2009)

Figure 1.
Value function of the

prospect theory
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2.2 MCDM: the TODIM method
Let us consider the decision matrix A which consists of alternatives and criteria,
described by:

A ¼
A1

. . .

Am

x11 . . . x1n
. . . . . . . . .

xm1 . . . xmn

2
64

3
75

C1 . . . Cn

Here A1,A2,…,Am are viable alternatives, and C1,C2,…, Cn are criteria, xij indicates
the rating of the alternative Ai according to criteria Cj. The weight vector W¼
(w1,w2,… , wn) composed of the individual weights wj( j¼ 1,2,…, n) for each criterion
Cj satisfying

Pn
j¼1 wj ¼ 1: The data of the decision matrix A come from different

sources, so it is necessary to normalize it in order to transform it into a dimensionless
matrix, which allow the comparison of the various criteria. Assume that the
normalized decision matrix is R¼ [rij]m×n with i¼ 1,2,…,m and j¼ 1,2,…, n. After
normalizing the decision matrix and the weight vector, TODIM begins with the
calculation of the partial dominance matrices and the final dominance matrix. For
such calculations the decision makers need to define first a reference criterion, which
usually is the criterion with the height importance weight. So wrc indicates the weight
of the criterion c divided by the reference criterion r. Here, wrc is also called the trade-
off rate (or trade-off weighting factor).

Basically, TODIM is described in the following steps (Gomes and Lima, 1992; Gomes
and Rangel, 2009).

Step 1: calculate the final measure of dominance of each alternative Ai over each
alternative Aj using the following expression:

d Ai;Aj
� � ¼ Xm

C¼1

fc Ai;Aj
� � 8 i; jð Þ (2)

Here:

fc Ai;Aj
� � ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wrc ric�rjcð ÞPm

c¼1
wrc

r
If ric�rjc
� �

40

0 If ric�rjc
� � ¼ 0

�1
y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm

c¼1
wrc

� �
rjc�ricð Þ

wrc

r
If ric�rjc
� �

o0

8>>>>>><
>>>>>>:

(3)

Here ric and rjc are, respectively, the performances (normalized) of the alternatives
Ai and Aj in relation to the particular criterion c. The term ϕC(Ai,Aj) is a reference
function and it represents the contribution of the criterion c to the function δ(Ai,Aj)
when comparing the alternative i with alternative j. The parameter θ represents the
attenuation factor of the losses, which can be tuned according to the problem at hand.
In the present reporting θ value has been assumed 1.

Different kinds of decision makers can be understood in terms of their risk and loss
attitude. Although the TODIM method does not deal with risk directly, the way the
decision maker evaluates the outcomes of any decision can be expressed by their risk
attitude: for instance, a cautious decision maker will under value a superior result more
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than a braver one (Gomes et al., 2013). The attenuation factor θ in the TODIM method
represents the risk aversion or propensity of the decision maker. It has been verified
that fact that the three different values for θ led essentially to the same ranking order
indicate robustness of the results (Gomes et al., 2009).

In Equation (3), it can occur three cases: first, if the value (ric−rjc) is positive, it
represents a gain; second, if the value (ric−rjc) is 0, it represents neither gain nor loss;
third, if the value (ric−rjc) is negative, it represents a loss. The final matrix of dominance
is obtained by summing up the partial matrices of dominance for each criterion. The
relative measure of dominance of one alternative over another is found for each pair of
alternatives. This measure is computed as the sum over all criteria of both relative gain/
loss values for these alternatives. The parts in this sum will be either gains, losses or
zeros, depending on the performance of each alternative with respect to every criterion
(Gomes et al., 2009).

The function ϕc reproduces the value function of OPT and replicates the most
relevant shape characteristics. That function fulfils the concavity for positive outcomes
(convexity for negative outcomes), and second, it enlarges the perception of negative
values for losses than positive values for gains, both value functions are steeper for
negative outcomes than for positive ones (Gomes et al., 2013).

Step 2: calculate the global value of the alternative i by normalizing the final matrix
of dominance according to the following expression:

xi ¼
P

d i; jð Þ�min
P

d i; jð Þ
max

P
d i; jð Þ�min

P
d i; jð Þ (4)

Ordering the values ξi provides the rank of each alternative. The best alternatives are
those that have higher value ξi.

In real world decision-making scenario, an important aspect is the criteria conflict.
That is why criteria can be classified as benefit and adverse criteria. Benefit criteria
are those whose higher values are always preferred (higher-is-better, HB type). On the
contrary, adverse criteria corresponds to (lower-is-better, LB) type; whose lower
values are always preferred. Before, applying any MCDM tool it is necessary to
normalize criteria values (decision-making data) to avoid effect of different
dimensions (units) of different criteria and to avoid criteria conflict. However, the
formula for linear normalization (Equation (5)) as proposed by Gomes and Rangel
(2009), Gomes et al. (2009) can overcome dimensional effects of criteria but it does not
take care of criteria conflict:

rij ¼
xijPm
i¼1 xij

; i ¼ 1; 2; :::;m; j ¼ 1; 2; :::; n: (5)

Here, rij is the normalized value of ith alternative for jth criterion.
The formula was found suitable to solve the decision-making problem as attempted

by Gomes and Rangel (2009), Gomes et al. (2009), because all criteria were beneficial in
nature. In presence of criteria conflict, aforesaid normalization procedure does not
work. Hence, in this paper, the following linear normalization formulae have been
explored to the decision-making problem containing benefit as well as adverse criteria
both. The normalized data lies in the interval [0, 1] and its maximum value is 1. Upon
normalization, the normalized criteria values become beneficial in nature, i.e. HB
characteristic.

1823

Application
of TODIM

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 0
0:

35
 1

4 
N

ov
em

be
r 

20
16

 (
PT

)



The formulae for normalization for benefit and adverse criteria have been in
Equations (6) and (7), respectively:

rij ¼
xij

Max
i

xij
� � ; i ¼ 1; 2; :::;m; j ¼ 1; 2; :::; n: For benefit criteriað Þ (6)

rij ¼
Min
i

xij
� �
xij

; i ¼ 1; 2; :::;m; j ¼ 1; 2; :::; n: For adverse criteriað Þ (7)

Here, rij is the normalized value of ith alternative for jth criterion.

3. Numerical illustrations
In this section, two numerical case studies have been attempted exploring robot
selection data set collected from the past literature. Application potential of TODIM
approach has been compared to that of other existing MCDM approaches.

3.1 Case 1
Considering the data set (Table I) adapted from the reporting of Bhangale et al. (2004),
Chatterjee et al. (2010) in relation to industrial robot selection; the same problem has
been solved herewith through TODIM. Among various robot selection criteria (namely,
load capacity, LC; repeatability, RE; maximum tip speed, MTS; memory capacity, MC;
and manipulator reach, MR); only repeatability has been considered as a non-beneficial
criterion while rests as beneficial ones.

The criteria weights as used by Chatterjee et al. (2010) have also been explored here.
Criteria weights have been given as follows:WLC¼ 0.036,WRE¼ 0.192,WMTS¼ 0.326,
WMC¼ 0.326 and WMR¼ 0.120.

The objective data, as furnished in Table I, have been normalized using Equations
(6-7) and the normalized data have been furnished in Table II.

The initial decision-making matrix as shown in Table I has been normalized
as follows.

By using Equation (6) for beneficial attributes: r11 ¼ xic=Max
i

xicð Þ ¼ 60=60 ¼ 1,
and similar for all alternatives with respect to the particular criterion; while Equation
(7) has been used to normalize non-beneficial criterion values (repeatability, in the
present case). r12 ¼ Min

i
xicð Þ=xic ¼ 0:08=0:4 ¼ 0:2, and similar for all alternatives

with respect to the particular criterion.

Robot
(s)

Load capacity
(LC) (kg)

Repeatability
(RE) (mm)

Maxim tip speed
(MTS) (mm/sec)

Memory capacity (MC)
(points or steps)

Manipulator
reach (MR) (mm)

A1 60 0.4 2,540 500 990
A2 6.35 0.15 1,016 3,000 1,041
A3 6.8 0.10 1,727.2 1,500 1,676
A4 10 0.2 1,000 2,000 965
A5 2.5 0.10 560 500 915
A6 4.5 0.08 1,016 350 508
A7 3 0.1 1,778 1,000 920

Table I.
Numeric data set
for robot selection
(case 1)
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Now, the values of wrc have been determined as follows:

wr1 ¼ 0:036=0:326 ¼ 0:11; wr2 ¼ 0:192=0:326 ¼ 0:589; wr3 ¼ 0:326=0:326 ¼ 1:0;

wr4 ¼ 0:326=0:326 ¼ 1:0 wr5 ¼ 0:120=0:326 ¼ 0:368

Here, wr¼ 0.326 is the maximum weight in the group and:Xn

c¼1
wrc ¼ 0:11þ0:589þ1þ1þ0:368 ¼ 3:07

Now, from Table II, the evaluative difference (ric−rjc)|i¼ 1,2,…,m of ith alternative
with respect to jth alternative has been computed (as shown in Table III) as discussed
earlier in the procedural steps of TODIM.

For example, pair (A1,A2)¼ 1−0.106¼ 0.89, and similar for all individual alternative
with respect to other alternatives.

Robot(s) LC RE MTS MC MR

A1 1.000 0.200 1.000 0.167 0.591
A2 0.106 0.533 0.400 1.000 0.621
A3 0.113 0.800 0.680 0.500 1.000
A4 0.167 0.400 0.394 0.667 0.576
A5 0.042 0.800 0.220 0.167 0.546
A6 0.075 1.000 0.400 0.117 0.303
A7 0.050 0.800 0.700 0.333 0.549

Table II.
Normalized

decision matrix

Pair LC RE MTS MC MR Pair LC RE MTS MC MR

(A1, A2) 0.89 −0.33 0.60 −0.83 −0.03 (A4, A5) 0.13 −0.40 0.17 0.50 0.03
(A1, A3) 0.89 −0.60 0.32 −0.33 −0.41 (A4, A6) 0.09 −0.60 −0.01 0.55 0.27
(A1, A4) 0.83 −0.20 0.61 −0.50 0.01 (A4, A7) 0.12 −0.40 −0.31 0.33 0.03
(A1, A5) 0.96 −0.60 0.78 0.00 0.04 (A5, A1) −0.96 0.60 −0.78 0.00 −0.04
(A1, A6) 0.93 −0.80 0.60 0.05 0.29 (A5, A2) −0.06 0.27 −0.18 −0.83 −0.08
(A1, A7) 0.95 −0.60 0.30 −0.17 0.04 (A5, A3) −0.07 0.00 −0.46 −0.33 −0.45
(A2, A1) −0.89 0.33 −0.60 0.83 0.03 (A5, A4) −0.13 0.40 −0.17 −0.50 −0.03
(A2, A3) −0.01 −0.27 −0.28 0.50 −0.38 (A5, A6) −0.03 −0.20 −0.18 0.05 0.24
(A2, A4) −0.06 0.13 0.01 0.33 0.05 (A5, A7) −0.01 0.00 −0.48 −0.17 0.00
(A2, A5) 0.06 −0.27 0.18 0.83 0.08 (A6, A1) −0.93 0.80 −0.60 −0.05 −0.29
(A2, A6) 0.03 −0.47 0.00 0.88 0.32 (A6, A2) −0.03 0.47 0.00 −0.88 −0.32
(A2, A7) 0.06 −0.27 −0.30 0.67 0.07 (A6, A3) −0.04 0.20 −0.28 −0.38 −0.70
(A3, A1) −0.89 0.60 −0.32 0.33 0.41 (A6, A4) −0.09 0.60 0.01 −0.55 −0.27
(A3, A2) 0.01 0.27 0.28 −0.50 0.38 (A6, A5) 0.03 0.20 0.18 −0.05 −0.24
(A3, A4) −0.05 0.40 0.29 −0.17 0.42 (A6, A7) 0.03 0.20 −0.30 −0.22 −0.25
(A3, A5) 0.07 0.00 0.46 0.33 0.45 (A7, A1) −0.95 0.60 −0.30 0.17 −0.04
(A3, A6) 0.04 −0.20 0.28 0.38 0.70 (A7, A2) −0.06 0.27 0.30 −0.67 −0.07
(A3, A7) 0.06 0.00 −0.02 0.17 0.45 (A7, A3) −0.06 0.00 0.02 −0.17 −0.45
(A4, A1) −0.83 0.20 −0.61 0.50 −0.01 (A7, A4) −0.12 0.40 0.31 −0.33 −0.03
(A4, A2) 0.06 −0.13 −0.01 −0.33 −0.05 (A7, A5) 0.01 0.00 0.48 0.17 0.00
(A4, A3) 0.05 −0.40 −0.29 0.17 −0.42 (A7, A6) −0.03 −0.20 0.30 0.22 0.25

Table III.
Evaluative

differences (ric−rjc)
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After determining evaluative differences, preference function Φc(Ai,Aj) has been
calculated by using Equation (3). Table IV shows the partial matrices of dominance for
all pairs of alternatives.

For example, partial dominance for the pair (A1,A2) ¼ 0.89, which is W0; so
preference functions must be calculated as follows:

FcðAi;AjÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wrcðric�rjcÞPm

c¼1 wrc

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:11� 0:89ð Þ=3:07

p
¼ 0:18

Here i¼ 1 and c¼ 1 (for load capacity).
Now using Equation (2), the measurement of dominance of alternative Ai

over alternative Aj has been computed. Next, the final dominance matrix has been
constructed. Table V exhibits final dominance matrix for all paired alternatives.

Pair LC RE MTS MC MR Pair LC RE MTS MC MR

(A1, A2) 0.18 −1.32 0.44 −1.60 −0.50 (A4, A5) 0.07 −1.44 0.24 0.40 0.06
(A1, A3) 0.18 −1.77 0.32 −1.01 −1.85 (A4, A6) 0.06 −1.77 −0.14 0.42 0.18
(A1, A4) 0.17 −1.02 0.44 −1.24 0.04 (A4, A7) 0.06 −1.44 −0.97 0.33 0.06
(A1, A5) 0.19 −1.77 0.50 0.00 0.07 (A5, A1) −5.17 0.34 −1.55 0.00 −0.61
(A1, A6) 0.18 −2.04 0.44 0.13 0.19 (A5, A2) −1.34 0.23 −0.74 −1.60 −0.79
(A1, A7) 0.18 −1.77 0.31 −0.72 0.07 (A5, A3) −1.41 0.00 −1.19 −1.01 −1.95
(A2, A1) −5.00 0.25 −1.36 0.52 0.06 (A5, A4) −1.87 0.28 −0.73 −1.24 −0.50
(A2, A3) −0.46 −1.18 −0.93 0.40 −1.78 (A5, A6) −0.96 −1.02 −0.74 0.13 0.17
(A2, A4) −1.30 0.16 0.05 0.33 0.07 (A5, A7) −0.48 0.00 −1.21 −0.72 −0.16
(A2, A5) 0.05 −1.18 0.24 0.52 0.09 (A6, A1) −5.08 0.39 −1.36 −0.39 −1.55
(A2, A6) 0.03 −1.56 0.00 0.54 0.20 (A6, A2) −0.93 0.30 0.00 −1.65 −1.63
(A2, A7) 0.04 −1.18 −0.96 0.47 0.09 (A6, A3) −1.03 0.20 −0.93 −1.08 −2.41
(A3, A1) −4.97 0.34 −0.99 0.33 0.22 (A6, A4) −1.60 0.34 0.05 −1.30 −1.51
(A3, A2) 0.02 0.23 0.30 −1.24 0.21 (A6, A5) 0.03 0.20 0.24 −0.39 −1.42
(A3, A4) −1.22 0.28 0.31 −0.72 0.23 (A6, A7) 0.03 0.20 −0.96 −0.82 −1.43
(A3, A5) 0.05 0.00 0.39 0.33 0.23 (A7, A1) −5.15 0.34 −0.96 0.23 −0.59
(A3, A6) 0.04 −1.02 0.30 0.35 0.29 (A7, A2) −1.25 0.23 0.31 −1.43 −0.78
(A3, A7) 0.05 0.00 −0.25 0.23 0.23 (A7, A3) −1.33 0.00 0.08 −0.72 −1.94
(A4, A1) −4.82 0.20 −1.36 0.40 −0.35 (A7, A4) −1.80 0.28 0.32 −1.01 −0.47
(A4, A2) 0.05 −0.83 −0.14 −1.01 −0.62 (A7, A5) 0.02 0.00 0.40 0.23 0.02
(A4, A3) 0.04 −1.44 −0.94 0.23 −1.88 (A7, A6) −0.84 −1.02 0.31 0.27 0.17

Table IV.
Partial matrices
of dominance

Robot A1 A2 A3 A4 A5 A6 A7

A1 – −2.80 −4.13 −1.60 −1.01 −1.10 −1.92
A2 −5.52 – −3.94 −0.69 −0.27 −0.79 −1.53
A3 −5.08 −0.48 – −1.13 1.00 −0.04 0.27
A4 −5.94 −2.55 −3.99 – −0.68 −1.25 −1.96
A5 −6.99 −4.25 −5.56 −4.06 – −2.43 −2.57
A6 −7.99 −3.90 −5.26 −4.02 −1.34 – −2.98
A7 −6.13 −2.92 −3.90 −2.70 0.66 −1.11 –

Table V.
Final matrices of
dominance for all the
pairs of alternatives
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Measurement of dominance of alternative A1 over alternative A1 δ(A1,A1) has been
calculated as:

dðA1;A2Þ ¼ ð0:18�1:32þ0:44�1:60�0:50Þ ¼ �2:8

dðA1;A3Þ ¼ 0:18�1:77þ0:32�1:01�1:85ð Þ ¼ �4:13 and so on up to

dðA7;A6Þ ¼ �1:11

Now, the global measures (ξi)|i¼ 1,2,…,m of each alternative have been determined
through normalization of the corresponding dominance measurements by using
Equation (4). The value of

Pn
j¼1 dðAi;AjÞ and the value of global measures (ξi)

have been calculated and shown in Table VI. Ranking order has been derived on the
basis of HB criterion:Pn

j¼1 dðAi;AjÞ ¼ �2:80�4:13�1:60�1:01�1:10�1:92ð Þ ¼ �12:55 for i¼ 1 and
j¼ 1… n and so on.

x1 ¼
�12:55ð Þ� �25:85ð Þ� �
ð�5:46Þ� �25:85ð Þ½ � ¼ 0:65

According to TODIM, robot A3 appears at the most appropriate choice; whereas, robot
A5 is the worst. Bhangale et al. (2004) also suggested that robot A3 and robot A5 as the
best and worst choice of selection, respectively, by using coefficient of similarity
approach based on spider diagram. Furthermore, Chakraborty (2011) considered the
same case illustration using MOORA method and recommended that robot A3 as the
wise choice of selection; while robot A5 remains as a worst choice in their approach.
Chatterjee et al. (2010) also reported the same decision data set and found that robot A3
as a most favorable candidate robot and robot A5 as the worst one by using a
compromise ranking and outranking method.

3.2 Case 2
In this case example, the numeric data set as used by Imany and Shlesinger (1989),
Khouja (1995) has been considered here to solve the robot selection problem through
TODIM method. In this computation, the criteria weights as determined by Khouja
(1995) have been reutilized here. Quantitative decision data have been highlighted in
Table VII; which involves beneficial as well as non-beneficial criteria/attributes.
Among these criteria, cost and repeatability have been treated here as non-beneficial;
while the remaining as beneficial in nature. Khouja (1995) determined the criteria
weights as WVel¼ 0.35, WLC¼ 0.20, WC¼ 0.15, WRE¼ 0.30 for the same robot
selection problem. The same weight set has been reutilized here for computational
part of TODIM approach.

Robot(s)
Pn

j¼1 dðAi;AjÞ ξ Ranking order

A1 −12.55 0.65 2
A2 −12.75 0.64 3
A3 −5.46 1.00 1
A4 −16.36 0.47 4
A5 −25.85 0.00 7
A6 −25.50 0.02 6
A7 −16.09 0.48 5

Table VI.
Global measure
of alternatives
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The objective data, as given in Table VII, have been normalized using Equations
(6-7) and provided in Table VIII. Now, after computing wrc the partial matrices of
dominance has been calculated for all the pairs of alternatives using Equation (3); and
results have been furnished in Table IX.

Now using Equation (2), the measurement of dominance of alternative Ai over
alternative Aj has been evaluated followed by the construction of the final dominance
matrix. Table X exhibits the final matrices of dominance for all the paired alternatives.

Now, the global measure of dominance (ξi)|i¼ 1,2,…,m for the alternative i has been
determined through normalization of the corresponding dominance measurements by
using Equation (4). The computed value of

Pn
j¼1 dðAi;AjÞ and the value of global

measures (ξ) have been shown in Table XI. Alternative ranking order has been
evaluated on the basis of HB.

In aforesaid case illustration, using the TODIM method, 27 robot alternatives have
been ranked by considering criteria weight as proposed by Khouja (1995). The ranking

Robot
(s)

Velocity
(Vel) (m/s)

Load
capacity
(LC) (kg)

Cost
(C) ($)

Repeatability
(RE) (mm)

Robot
(s)

Velocity
(Vel) (m/s)

Load
capacity
(LC) (kg)

Cost
(C) ($)

Repeatability
(RE) (mm)

A1 1.35 60.0 7.20 0.150 A15 1.00 47.0 3.68 1.00
A2 1.10 6.0 4.80 0.050 A16 1.00 80.0 6.88 1.00
A3 1.27 45.0 5.0 1.270 A17 2.00 15.0 8.0 2.00
A4 0.66 1.5 7.20 0.025 A18 1.00 10.0 6.30 0.200
A5 0.05 50.0 9.60 0.250 A19 0.30 10.0 0.94 0.050
A6 0.30 1.0 1.07 0.100 A20 0.80 1.5 0.16 2.00
A7 1.00 5.0 1.76 0.100 A21 1.70 27.0 2.81 2.00
A8 1.00 15.0 3.20 0.100 A22 1.00 0.9 3.80 0.050
A9 1.10 10.0 6.72 0.200 A23 0.50 2.5 1.25 0.100
A10 1.00 6.0 2.40 0.050 A24 0.50 2.5 1.37 0.100
A11 0.90 30.0 2.88 0.500 A25 1.00 10.0 3.63 0.200
A12 0.15 13.6 6.90 1.00 A26 1.25 70.0 5.30 1.270
A13 1.20 10.0 3.20 0.050 A27 0.75 205.0 4.0 2.030
A14 1.20 30.0 4.00 0.050

Table VII.
Numerical
data for robot
selection (case 2)

Robot Vel LC C RE Robot Vel LC C RE

A1 0.675 0.293 0.022 0.167 A15 0.500 0.229 0.043 0.025
A2 0.550 0.029 0.033 0.500 A16 0.500 0.390 0.023 0.025
A3 0.635 0.220 0.032 0.020 A17 1.000 0.073 0.020 0.013
A4 0.330 0.007 0.022 1.000 A18 0.500 0.049 0.025 0.125
A5 0.025 0.244 0.017 0.100 A19 0.150 0.049 0.170 0.500
A6 0.150 0.005 0.150 0.250 A20 0.400 0.007 1.000 0.013
A7 0.500 0.024 0.091 0.250 A21 0.850 0.132 0.057 0.013
A8 0.500 0.073 0.050 0.250 A22 0.500 0.004 0.042 0.500
A9 0.550 0.049 0.024 0.125 A23 0.250 0.012 0.128 0.250
A10 0.500 0.029 0.067 0.500 A24 0.250 0.012 0.117 0.250
A11 0.450 0.146 0.056 0.050 A25 0.500 0.049 0.044 0.125
A12 0.075 0.066 0.023 0.025 A26 0.625 0.341 0.030 0.020
A13 0.600 0.049 0.050 0.500 A27 0.375 1.000 0.040 0.012
A14 0.600 0.146 0.040 0.500

Table VIII.
Normalized
decision matrix

1828

BIJ
23,7

D
ow

nl
oa

de
d 

by
 T

A
SH

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 O
F 

IN
FO

R
M

A
T

IO
N

 T
E

C
H

N
O

L
O

G
IE

S 
A

t 0
0:

35
 1

4 
N

ov
em

be
r 

20
16

 (
PT

)



order of robot alternatives shows that robot A14 is the highest ranked robot followed by
robotA13; while robotA12 is the worst choice for this particular robot selection problem.
A separate analysis was made through the criteria weight as suggested by Khouja
(1995) who proposed a DEA approach and applied it on the same robot selection data
set; also found robot A14 as the most suitable alternative. In a relatively recent work,
Kentli and Kar (2011) established a decision model for robot selection based on the
concepts of the satisfaction function and distance measure; explored the same data set
and also determined A14 as the best robot. In addition to this, Karsak et al. (2012) used a
fuzzy regression-based decision-making approach and recommended robot A14 as best
choice and robot A20 as the last choice.

4. Conclusion
Aforesaid two case illustration reveals application potential of TODIM in relation to
solve decision-making problems for industrial robot selection. The alternative
ranking order as obtained by TODIM has been compared to that of existing
MCDM approaches. It has been found that in all the case, the most appropriate choice
appears the same. The worst choice is also appeared same for many cases. However,
it has been noticed that apart from best and worst choices, intermediate ranking
orders slightly deferred. This is quite obvious due to fact that different MCDM
approaches explore their own philosophy and also the procedure to normalize raw
data is different.

Industries may adopt this decision making come appraisement module as a test-kit
toward performance assessment and selection of appropriate robot to satisfy specific
functional requirements and suitable for specific area of application. This may also help
in benchmarking of robot manufactures with respect to product variety, reliable and
safe functionality – performance and robustness – flexibility in usage.

In this reporting, it has been assumed that all evaluation criterions are objective
(quantitative) in nature. In many real world decision-making situations, apart from
objective data, subjective attributes need to be considered simultaneously. As
subjective decision-making data invites some kind of ambiguity and vagueness in the

Pair Vel LC C RE Pair Vel LC C RE

(A1, A1) 00 00 00 00 (A1, A17) −0.96 0.21 0.02 0.22
(A1, A2) 0.21 0.23 −0.27 −1.05 (A1, A18) 0.25 0.22 −0.15 0.11
(A1, A3) 0.12 0.12 −0.26 0.21 (A1, A19) 0.43 0.22 −0.99 −1.05
(A1, A4) 0.35 0.24 0.00 −1.66 (A1, A20) 0.31 0.24 −2.55 0.22
(A1, A5) 0.48 0.10 0.03 0.14 (A1, A21) −0.71 0.18 −0.48 0.22
(A1, A6) 0.43 0.24 −0.92 −0.53 (A1, A22) 0.25 0.24 −0.37 −1.05
(A1, A7) 0.25 0.23 −0.68 −0.53 (A1, A23) 0.39 0.24 −0.84 −0.53
(A1, A8) 0.25 0.21 −0.43 −0.53 (A1, A24) 0.39 0.24 −0.79 −0.53
(A1, A9) 0.21 0.22 −0.11 0.11 (A1, A25) 0.25 0.22 −0.38 0.11
(A1, A10) 0.25 0.23 −0.55 −1.05 (A1, A26) 0.13 −0.49 −0.23 0.21
(A1, A11) 0.28 0.17 −0.47 0.19 (A1, A27) 0.32 −1.88 −0.35 0.22
(A1, A12) 0.46 0.21 −0.09 −0.69 (A2, A1) −0.60 −1.15 0.04 0.32
(A1, A13) 0.16 0.22 −0.43 −1.05 – – – – –
(A1, A14) 0.16 0.17 −0.35 −1.05 – – – – –
(A1, A15) 0.25 0.11 −0.38 0.21 (A27, A26) −0.85 0.36 0.04 −0.16
(A1, A16) 0.25 −0.70 −0.09 0.21 (A27, A27) 00 00 00 00

Table IX.
Partial matrices of

dominance for all the
pairs of alternatives
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decision making; application of fuzzy set theory, grey numbers set theory, etc., may be
fruitful in this context. However, crisp-TODIM fails to solve decision-making problems
involving subjective data. Hence, there exists scope for extending traditional TODIM
approach by integrating with fuzzy and grey set theory. Work may be extended in this
particular direction.
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