
practice

DOI:10.1145/2428556.2428571

Article development led by aCdlllUfiüB
queue.acm.org

It is easy to do amazing things, sucii as
rendering the classic teapot in HTiVIL and CSS.

BY BRIAN BECKMAN AND ERIK MEIJER

The story
of the Teapot
in DHTML

BEFORE THERE WAS Scalable Vector GrapMcs (SVG), Web
Graphics Library (WebGL), Canvas, or much of anything
for graphics in the browser, it was possible to do quite
a lot more than was initially obvious. To demonstrate,
we created a JavaScript program that renders polygonal
3D graphics using nothing more than HTML and CSS.
Our proof-of-concept is fast enough to support physics-
based small-game content, but we started with the iconic
3D "Utah teapot" (Figure 1) as it tells the whole story in
one picture. (For background, see http://bit.ly/KQK9a.) It
is feasible to render this classic object usingjust regular
<div> elements, CSS styles, and a bit of JavaScript code
(Figure 2). This tiny graphics pipeline serves as a timeless
demonstration of doing a lot with very little.

The inspiration for this project came from Web
developer Jeff Lau, who on his blog UselessPicldes
implemented a textbook graphics pipeline in handwrit-
ten JavaScript (http://www.uselesspickles.com/triangles/)

5 0 COMMUNICATIONS OF THE ACM MARCH 2013 ' VOL. 56 NO. 3

Lau's demo embodies a glorious hack for
efficiently rendering triangles in HTML,
shown in Figure 3.

The glorious hack is explained later,
but, to spoil the punch line, once you
have arbitrary triangles, you can eas-
ily render arbitrary polygons, and thus
arbitrary polygon-based models. The
only remaining issues for game-com-
petent 3D graphics are texture map-
ping, bump mapping, reflection map-
ping, and performance. These various
kinds of mappings all require pixel-
based primitives: the ability to render
individual pixels efficiently. Though it
is possible to render individual pixels
using just the <div> element with a
CSS style to shrink the element to pixel
size, this obviously does not provide
sufficient performance for classic scan
conversion of 3D models. The work to
render individual pixels is quadratic in



the linear size of a 2D figure, meaning
that doubling the size of a figure re-
quires roughly four times the work.

The <div> elements, however, also
begnidgingly provide a way to draw ver-
tical and horizontal lines, if, for no other
reason, than for borders around text.
Several other bloggers (including David
Betz and the late Walter Zorn) noted
that by decomposing a figure into paral-
lel "raster lines" instead of pixels, work
is linear in the linear size of the figure,
meaning that doubling the size only
doubles the work. They created JavaS-
cript 2D graphics libraries with reason-
able performance by combining pixel
drawing where necessary and line drawing
where possible in <div>s.

The following is an HTML page that
illustrates the linear method by drawing
a right triangle of eight vertical raster
lines of linearly increasing height:

<style>div{ backgroundtBlack;
position:absolute; width:9px; }
</style>
<div style="left:10px;
height :10px;"></div>
<div style="left:20px;
height :20px;"></div>
<div style="left:30px;
height: 3 Opx;"></div>

<div style="left:80px;
height : 80px;"></div>

The CSS style sheet and the inline po-
sition and height declarations create
eight instances of <div> with linearly
increasing left coordinate and linearly
increasing height. This HTML page ren-
ders as shown in Figure 4.

The linear pattern of coordinate
and height values in HTML should be
obvious. It should also be obvious how

to write a program to generate a simi-
lar HTML page that renders not only
right triangles with a scheme like this:
just arrange the coordinate and di-
mension values to be linearly increas-
ing or decreasing in appropriate ways.
The following program dynamically
generates <div> elements exactly as
the static markup:

<script>
for{var i = 1; i < 9;

with (document)
with(body.appendChild(
createElement("div")).
style)

left = i * 10;
height = i * 10;

</script>

MARCH 2013 VOL. 56 NO. 3 COMMUNICATIONS OF THE ACM 5 1



practice

Figure 1. The "Utah Teapot" (from "Fast Ray Tracing by Ray Classification," by James Arvo
and David Kirk, 1987).

Figure 2. The teapot rendered in HTML, CSS, and JavaScript.

Figure 3. Lau's DHTML demo.

Standard rasterizer algorithms such as
Bresenham's permit drawing all kinds
of figures. Any programmer who has
taken Computer Graphics 101 has seen
enough now to create an entire work-
able 2D graphics library in HTML.

Logarithmic Performance
It is possible to achieve quadratic
performance from pixels and linear
performance from rasters. Can we do
better than linear? Lau found loga-
rithmic performance, meaning that
doubling the linear size of a figure
requires only a constant amount of
more work, usually just one or two
more calls to primitives. Logarithmic
is much more efficient than linear.
The difference is the same as that
between binary search and linear
search. Lau noticed that <div> -i- CSS
has a subtly hidden primitive right
triangle, if you know where to look.
Then he presented a beautiful way to
decompose an arbitrary triangle into
a logarithmic number of right trian-
gles: his glorious hack.

Notice in Figure 5 that HTML allows
rendering the four borders of a <div>
completely independently by setting
the border-XXX colors. Setting the
width ofthe <div> to zero removes the
text, leaving just four triangles, as in
Figure 6.

Is it possible to get rid of two of
the triangles? This is straightforward:
make the width of the right (yellow)
border zero as in the "animation" in
Figure 7, and similarly shrink the bot-
tom (blue) border to make it disappear
as well, as in Figure 8; this leaves just a
green and a red right triangle.

Figure 4. Render of linear method.

5 2 COMMUNICATIONS OF THE ACM MARCH 2013 VOL. 56 NO. 3



practice

Figure 5. HTML border colors. Figure 6. Triangles in HTML.

My borders are bigger than yours

Figure 7. Shriniiing the first triangle.

Figure 8. Shrinking the second triangle.

Now, setting one of the remaining
border colors to "transparent" renders
a single right triangle at the native effi-
ciency of the underlying browser's ren-
dering engine, presumably very high
(Figure 9).

Setting the left and bottom borders'
width to zero and making the other
appropriate borders transparent—
straightforward extensions of Lau's
method—produces HTML primitives
for all four kinds of right triangles, as
in Figure 10.

Assume at this point a JavaScript
function drawRightTriangle{Pl,
P2, P3) that can render any of these
right triangles given the (coordinates
of the) three vertices. The details are te-
dious and unenlightening, but suffice
it to say that each of the four branches
in the implementation must set the
proper attributes of an underlying
<div> tag, either directly or through
CSS style classes.

Now we have really fast right tri-

Figure 9. Making the third triangle
transparent.

Figure 10. HTML primitives for alt four
kinds of right triangles.

(a)

(b)

angles, but where are the arbitrary
triangles with logarithmic perfor-
mance, where doubling the triangle
size means just one or two extra calls
to the right-triangle primitive? Lau's
original code is iterative in style, but

the underlying recursive description
is elegant, as follows:

Consider an arbitrary triangle; by
definition of a triangle, the three verti-
ces are not all on the same line. There
are just two cases to consider: either

MARCH 2013 VOL.56 NO 3 COMMUNICATIONS OF THE ACM 5 3



practice

there is one horizontal leg, or there is
not (Figure 11). If there is one hori-
zontal leg, then skip to the next para-
graph. If there is not one horizontal
leg, then cut the triangle with one
horizontal line into two triangles,
each with one horizontal leg. Cutting
the triangle means computing the
coordinates of a new point, P4, as in
Figure 12.

The y coordinate of the new point
P4 is the same as the y coordinate of
the middle-in-y point, P2—that is,
P4.y == P2.y—and the x coordinate
of the new point is proportionately as
far from the x coordinate of the bot-
tom point as the y coordinate of the
new point is from the y coordinate of
the bottom point:

Figure 11. Two types of triangle.

P4.X == P3.x+(Pl.x-P3.x)((P4.y-P3.y)/
(Pl.y-P3.y))

The pseudocode, assuming that Pi,
P2, and P3 are in downward, increas-
ing-y order, is:

function
drawTriangleWithoutHorizont
alLeg(Pl, P2, P3)
{ ... compute P4 according

to equations above ... ;
drawTriangleWithOneHori
zontalLeg(Pl, P2, P4);
drawTriangleWithOneHori
zontalLeg(P3, P2, P4);

There is one final function to write:

Triangle with one horizontal leg

Figure 13. Forcing a vertical side of the triangle.

Triangle without one horizontal leg

drawTriangleWithOneHorizon-
t a l L e g . Recall that the two kinds of
triangles-with-one-horizontal-leg are
hanging-down and standing-up. They
are completely symmetric, so let us
work out the final steps only for the
standing-up triangle. There are three
possible cases:

• The tip is between the two base ver-
tices—an acute triangle.

• The tip is exactly over one of the
two base vertices—a right triangle.

>• The tip is either to the right or the
left of the base segment—an obtuse tri-
angle.

If acwie, cut the triangle vertically into
two right triangles and call it a day! If
right, well, it is a right triangle and done!
If obtuse, then cut the triangle vertically

Figure 12. Forcing a horizontal side of the
triangle.

P2

Acute

Figure 15. A smalt improvement.

Right Obtuse

Set my height to zero

Set my color
transparent

Figure 14. The decomposition of a triangle.

Acute

Obtuse

5 4 COMMUNICATIONS OF THE ACM MARCH 2013 VOL. 56 NO 3



practice

into one right triangle (done) and one
obtuse triangle (recurse on drawTri-
angle). Beautiful! (See Figure 13.)

To avoid infinite recursion in the
third case, you must also stop if a trian-
gle is too small—say, smaller than one
pixel. From this description, all the cor-
ner cases are covered and any program-
mer should be able to write a correct
implementation that performs well.
When all the recursion has bottomed
out, the decomposition of a triangle
looks like Figure 14, which is what Lau
drew in the first place.

His algorithm decomposes an arbi-
trary triangle into one or two triangles
with horizontal legs; let's call those
aligned triangles. It decomposes any
acute aligned subtriangle into two
aligned right triangles, and it decom-
poses any aligned obtuse subtriangle
into a recursive number of aligned
right triangles. Mathematically, this
recursive number is infinite. Computa-
tionally, because you can render only a
finite approximation of the mathemat-
ical structure on a screen with a finite
pixel size, the number is logarithmic in
the size of the figure.

Note the following small improve-
ment: an acute aligned triangle can be
rendered directly by setting the border
opposite the aligned leg of the «liv>
to zero width and the borders on either
side of the target triangle to transpar-
ent color, as in Figure 15.

Also note that it seems impossible
to decompose an obtuse aligned tri-
angle into a finite number of acute
aligned triangles. Marc Levy provides
the following argument sketch: if
there were a finite number, then you
could find the smallest one by sorting
them by size. Consider the smallest
one and draw a horizontal cut from
its vertex farthest from the base of the
original triangle. The residue is a tri-
angle similar to the original triangle,
thus leaving a smaller version of the
original problem, in which there are
even smaller acute aligned triangles.
We assumed, however, that we had the
smallest one, so that premise must be
wrong: there does not exist a small-
est one; therefore, there is not a finite
number of them.

From a Teapot to
Triangles and Back
Now that you know how to draw any

Table 1. Original teapot data; 3,751 triaagles too much for good dynamic performance.

1976

-3.0000

-2.98711

-2.98538

... 1976

3 1455

3 1449

3 1462

3751

1.65

1.65

1.56732

vertex-coordinate triplets ...

1469

1455

1449

... 3751 triangle patches as indices into the array

of vertex-coordinate triplets ...

11253

0

-0.098438

-0.049219

1459

1459

1459

Table 2. Teapot data after uniform decimation; 263 triangles with great performance.

166 263

0.000000 0.000000 0.488037

-0.000023 -0.032926

. . . 166 vertex-coordinate triplets . . .

3 57 50

3 50 81

... 263 triangle patches as indices into the array

of vertex-coordinate triplets ...

triangle anywhere on the screen, how
can you get the teapot? First, get some
data from the public domain in a well-
documented format called OFF (http://
segeval.cs.princeton.edu/public/off_
format.html) as seen in Table 1.

Use a free graphics tool to decimate
the data (trim it down to manageable
size) to get the data in Table 2. Then
convert the data into JavaScript via edi-
tor macros or a simple script. The final
ingredients to the graphics pipeline
are backface culling, Z-ordering, orien-
tation by quaternions, and a kinemat-
ics library for spinning the object. Add
a little spring-and-dashpot physics,
and you can make your teapot bounce,
morph, shatter, and unshatter. Code
for all of these examples is available at
https://github.com/gousiosg/teapots.

With the right leverage applied at
exactly the right fulcrum point, it is
relatively easy to do amazing things,
such as rendering the classic teapot
in HTML and CSS. Or, to paraphrase
the Hacker's dictionary, we can ex-
tract great pleasure out of stretching
the capabilities of programmable
systems beyond the original intent of
their designers. Q

D Related articles

on queue.acm.org

Scripting Web Services Prototypes

Christopher Vincent

http://queue,acm,org/detail.cfm?id=640158

A Conversation with Ray Ozzie

http://queue.acm.org/detaiLof m?id=1105674

Mobile Application Development:

Web vs. Native

Andre Charland, Brian LeRoux

http://queue.aonn.org/detaiLofm?id=1968203

Brian Beckman (bbeckman@exchange,microsoft.com) is
working with Bing on Maps and Signals and has held many
positions at Microsoft sinoe 1992, from Crypto (SET) to
Biztalk to research in functional programming. He wrote
the first version of the Time Warp Operating System on
the Caltech Hypercube 1984-1989. He holds a Ph.D. in
Astrophysics from Princeton University (1982] and has
filed over 80 patents with 30 issued.

Erik Meijer (emeijer@microsoft.com) has been working
on "democratizing the cloud" for the past 15 years. He
is perhaps best known for his work on the Haskell, C#,
and Visual Basic languages, targeting JavaScript as
assembly language, and his ccntributions to LINQ and
Rx (Reactive Framework). He is a part-time professor
of cloud programming at TUDelft and runs the cloud
programmability team at Microsoft.

© 2013 ACM 0001-0782/13/03

MAROH 2013 VOL. 56 NO 3 COMMUNICATiONS OF THE ACM 5 5



Copyright of Communications of the ACM is the property of Association for Computing
Machinery and its content may not be copied or emailed to multiple sites or posted to a
listserv without the copyright holder's express written permission. However, users may print,
download, or email articles for individual use.


