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Abstract: Central force optimisation (CFO) is a new deterministic multi-dimensional search evolutionary algorithm
(EA) inspired by gravitational kinematics. CFO is a simple technique that is still in its infancy. This study evaluates
CFO’s performance and provides further examples of its effectiveness by applying it to a set of ‘real-world’
antenna benchmarks and to pattern synthesis for linear and circular array antennas. A new selection scheme
is introduced that enhances CFO’s global search ability while maintaining its simplicity. The improved CFO
algorithm is applied to the design of a circular array with very good results. CFO’s performance on the
antenna benchmarks and the synthesis problems is compared to that of other EAs.

1 Introduction
Central force optimisation (CFO) is an optimisation algorithm
analogising gravitational kinematics [1, 2]. Many nature
inspired metaheuristics are based on biological metaphors, for
example, particle swarm optimisation (PSO) [3] (swarming
behaviour of bees, fish and birds), or ant colony optimisation
(ACO) [4] (foraging behaviour of ants). These EAs are
inherently stochastic, unlike CFO which is deterministic.

This paper applies CFO to the design of a set of ‘real-
world’ antenna benchmarks (proposed in [5]) and to the
design of linear and circular antenna arrays. To enhance its
global search ability while keeping its simplicity, a new
selection scheme also is introduced in this paper, which
then is applied to the design of a circular antenna array.
This paper is divided as follows: Section 2 briefly describes
the CFO algorithm. Section 3 presents the CFO results for
the antenna benchmarks compared to those obtained using
other optimisation techniques. Section 4 applies CFO to
the design of a linear antenna array. In Section 5, a new
selection scheme is introduced which then is applied to the
design of a circular array in Section 6.

2 CFO algorithm
CFO locates the maxima of an objective function
f (xi , . . . , xNd

) by ‘flying’ a set of ‘probes’ through the

decision space (DS) along trajectories computed using the
gravitational analogy. In an Nd-dimensional real-valued
decision space (DS), each ‘probe’ p (‘particle’ in PSO
terminology) with position vector R

p
j�1 [ RNd experiences an

acceleration A
p
j�1 at the discrete time step ( j 2 1) given by [1]
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where Np is the total number of probes; p ¼ 1, . . . , Np, the
probe number; j ¼ 0, . . . , Nt the time step; G the
‘gravitational constant’; A

p
j�1 the acceleration of probe p

at step j 2 1; R
p
j�1 the position vector of p at step j 2 1;

M
p
j�1 ¼ f (R

p
j�1) the fitness at probe p at step j 2 1; U( ) the

unit step; and b, a the ‘CFO exponents.’

CFO ‘mass’ is defined as the difference of fitnesses raised
to the power a multiplied by the unit step; it is not the
value of the objective function. The user defines mass in
CFO space, and other functions could be used instead. But
including the unit step U( ) is an essential element because
it creates positive mass thereby insuring that CFO’s ‘gravity’
is attractive. Each probe’s position vector at step j is
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updated according to the second equation of motion

R
p
j ¼ R

p
j�1 þ

1

2
A

p
j�1Dt2, j � 1 (2)

Dt in (2) is the time step increment (unity in this paper).
CFO starts with user-specified initial probe position and
acceleration distributions, which may be deterministic or
random. The initial acceleration vectors are zero in this paper.

Probes may fly outside the DS, and should be returned if
they do. There are many possible probe retrieval methods.
A useful one is the reposition factor Frep, which can play
an important role in CFO’s convergence [2, 6]. It is shown
schematically in Fig. 1.

Frep is usually set to 0.5 or 0.9, or it may be variable. Rmin
k

and Rmax
k are the minimum and maximum values of the kth

spatial dimension corresponding to the optimisation
problem constraints, or they are chosen to define the DS so
as to include expected global optima.

Because CFO is inherently deterministic, it provides
reproducibility and control over computed results. However,
in this paper, local trapping is mitigated by adding a
stochastic component. Algorithms that are inherently
stochastic, PSO or ACO, for example, fail if randomness is
removed. But, if randomness is added to CFO, it does not
fail. The hybrid deterministic–stochastic approach is adopted
for the array synthesis problems with very good results, while
the benchmark (‘BM’) problems are treated deterministically.
The CFO algorithm flowchart appears in Fig. 2.

3 CFO performance on the PBM
antenna benchmarks
This section describes CFO’s performance on the ‘real-world’
antenna benchmarks developed in [5] (‘PBM’, the 5-problem
antenna benchmark suite, developed by Pantoja, Bretones
and Martin). Two performance measures are used to
evaluate how good an evolutionary algorithm (EA) is:
effectiveness (accurately locating maxima) and efficiency

(minimum computational effort). Algorithms that do not
locate global maxima are ineffective; and any algorithm’s
utility is inversely proportional to how many calculations it
requires. These measures are used to compare CFO to the
four EAs in [5].

3.1 Overview of the PBM problems

There are five problems in the PBM suite whose properties
appear in Table 1. Nd is the problem dimensionality, while x1

and x2, respectively, are the abscissa and ordinate in the two-
dimensional (2D) DSs. For BM #5, the di are the array’s
centre-to-centre element spacing. l is the wavelength. In each
case the optimisation objective is to maximise the antenna’s
directivity. The first four problems are 2D, where the last one
is (Nel21)D, where Nel is the number of array elements.
Antenna details, and the nature and complexity of the 2D
DSs’ topologies (‘landscapes’), are described in [5]. Unimodal
BM #1 and BM #4 have one global maximum, but the first
landscape is ‘lumpy’ with strong local maxima, whereas the
second one is ‘smooth.’ BM #2 adds noise to an already
complex topology with large amplitude local maxima close to a
single global maximum. BM #3 is extremely multimodal with
four global maxima. BM #5 is unimodal with a dimensionality
determined by the number of elements in a collinear dipole array.

3.2 NEC4 validation

The PBM suite in [5] was solved numerically using NEC
(numerical electromagnetics code). To validate CFO’s
NEC implementation, the PBM antennas were modelled
using NEC4 [7] (which may be different than the one
used in [5]). The segmentation, wire radii and coordinates
for the maxima reported in [5] were used; but in several
cases, coordinates were estimated from graphical data, so
that they are necessarily approximate. Tables 2a and b
summarise the validation results. DPBM

max and DNEC4
max ,

respectively, are the maximum directivities reported by
PBM and computed by NEC4.

Although NEC4 effectively replicates PBM, there are
some important differences. For BM #1, NEC4’s

Figure 1 Errant probe retrieval scheme

a Errant probe reposition factor retrieval
b Illustration of probe repositioning in 2-D DS
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computed directivity of 3.2 is slightly less than PBMs of 3.32.
The same is true for BM #2, but to a lesser degree, 18.3
(PBM) against 18.11 (NEC4). For BM #3 and BM #4,

the NEC4-computed directivities are lower than PBMs by
a much wider margin. On BM #3, NEC4 returned a value
of 6.15 compared to 7.05 from PBM. On BM #4, the
NEC4 value was 4.8 compared to 5.8. The best agreement
between PBM and NEC4 by far is on the last problem for
which the maximum difference in directivity is only 0.1
against a value of about 19. The reasons for these

Figure 2 Flowchart of the main steps of CFO algorithm

Table 2a Comparison of PBM and NEC4 results,
benchmarks #1–4

BM # PBM NEC4

x1 x2 Dmax
PBM Dmax

NEC4

1 2.58l 0.63 3.32 3.2

2 �5.85la p/2 �18.3 18.11

3 0.5, 1.5, 2.5, 3.5 p/2 �7.05 6.15

4 1.5l 0.834 �5.8 4.8

aValues marked with � are estimated from Figs. 6,
9 or 11 in [5]

Table 2b Comparison of PBM and NEC4 results, benchmark #5

BM # # Dipoles Nd PBM di8i Dmax
PBM Dmax

NEC4

5 6 5 0.99l �11.25a 11.22

5 10 9 0.99l �19 19.10

5 16 15 0.99l �31 30.97

5 24 23 0.99l �47 46.88

aValues marked with � are estimated from Fig. 13
in [5]

Table 1 Properties of the PBM benchmark problems

PBM
BM #

Problem characteristics Nd x1 x2 Maximise
directivity

1 variable length centre fed dipole. Unimodal, single
global maximum with strong local maxima

2 0.5l� L� 3l 0� u� p/2 D(L, u)

2 uniform ten-element array of centre fed l/2-dipoles.
Added Gaussian noise, single global maximum with

multiple strong local maxima

2 5l � d � 15l 0 � u � p D(d, u)

3 eight-element circular array of centre fed l/2-dipoles.
Highly multimodal, four global maxima

2 0 � b � 4 0 � u � p D(b, u)

4 Vee dipole. Uni-modal, single global maximum,
‘smooth’ landscape

2 0.5l � Ltotal

� 1.5l

p

18
� a �

p

2
D(Ltotal, a)

5 Collinear Nel-element array of centre fed l/2-dipoles.
Uni-modal, single global maximum

(Nel 2 1) 0.5l � di � 1.5l
1 � i � Nel 2 1

D(di)
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discrepancies are not clear, and there are many plausible
explanations that are not discussed here.

3.3 CFO performance summary

All CFO runs were made with the following empirically
determined parameters: a ¼ 2, b ¼ 2, G ¼ 2, with Nt and
Np varying run to run. The repositioning factor, Frep, was
variable following the procedure in [6]. Initial probes for
BMs #1–#4 are shown in Fig. 3, while for BM #5 they
were on the DS diagonal at R

p
0 ¼

PNd
i¼1 (0:5þ (p=3)) êi ,

1 � p � N p with Np ¼ 2Nd.

Effectiveness: The measure of CFO’s effectiveness is how
accurately it locates the PBM maxima, both coordinates
and fitnesses. Table 3 provides a summary, whereas
Tables 4 and 5 contain details. The fractional error in

Table 3 is computed as a percentage of the PBM value
which is used as the reference. For BM #1, the coordinates
agree to better than 2%, while the error in directivity is
somewhat higher at 3.43%. BM #2 exhibits the best
agreement with a maximum error of 1.26% in the abscissa.
For BM #3 the directivities differ by nearly 28%, but the
results in Table 2 raise questions as to how accurate the
PBM directivity is. Using the PBM coordinates for the
maximum, NEC4 computes a directivity nearly 13% lower
than PBMs. In this case, the abscissas disagree by about
4%, which may be a result of error in the visual estimation.

For BM #4, CFO and PBM are in very good agreement
on the abscissa and directivity, but not the ordinate for
which the error is nearly 15%. As with BM #3, this result
alone might be troubling. The data in Table 2, however,
suggest that the PBM ordinate may be incorrect, which

Figure 3 Initial probes for 2D benchmarks #1–4
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would account for the disagreement. Using PBM’s coordinates,
the NEC4 validation returned a directivity of 4.8 compared to
PBM’s value of 5.8. This discrepancy is significant because
NEC’s directivity values are generally in good agreement
with PBMs when the same coordinates are used. An error in
the PBM ordinate also is suggested by the fact that CFO’s
directivity agrees with PBMs to within less than 1.5%, but
only at the substantially different ordinate. For BM #5, the
agreement between CFO and PBM is very good. The array
element centre-to-centre spacings di, all of which should be
0.99l, differ at most by 1.01%. The directivities agree to
within 0.52% or better across all array sizes.

Coordinate data appear in Table 4. As pointed out above,
substantial differences between PBM and CFO appear in the

abscissas for BM #3 and the ordinates for BM #4. For BM
#3, the global maximum’s location at b ¼ 0.5, u ¼ p/2 is
known analytically. But because no computed value was
reported in [5], the true degree of agreement cannot be
known. For BM #4, the discrepancy in the inner angle a

may be a result of modelling differences, or possibly the use
of different versions of NEC. All the other data in Table 4
show very good agreement.

Table 5 compares the difference of PBMs and CFO’s
computed directivities (fitnesses), DPBM

max �DCFO
max . The

agreement is very good in all cases except BM #3. NEC4
returned a directivity 6.15 at (b, u) ¼ (i 2 0.5, p/2), i ¼ 1,
. . . , 4, instead of 7.05 as reported in [5]. If, in fact, 6.15 is
the correct value, which appears to be the case, then the
difference decreases to a more modest 5.47%. It seems
reasonable to conclude that CFO did accurately locate the
first global maximum for BM #3 after all. On BM #5 the
directivity values are in excellent agreement across all array
sizes.

The reasonable conclusion drawn from these data is that
CFO accurately recovered the global maxima across the
entire PBM benchmark suite, with the caveat that only one
of the four maxima for BM #3 was located. By
comparison, CFO performed better than the four
algorithms described in [5]. No algorithm was 100%
effective, so that CFO’s effectiveness is noteworthy in view
of its inchoate status as an optimisation metaheuristic.

Efficiency: The measure of an EA’s efficiency is the total
number of calculations required to locate global maxima,
typically marked by saturation of the best fitness. This
metric was applied to four algorithms in [5]: GA-FPC,
mGA, GA-RC, and PSO. As their names imply, the first
three are genetic algorithm variants, and the fourth is a
particle swarm. Table 6 compares CFO’s efficiency against
the results in [5] (best values in bold italics and second best
in italics).

Table 3 CFO effectiveness (% difference, CFO-PBM)

PBM BM # jDj (%)

x1 x2 Dmax

1 1.12 1.9 3.43

2a (without noise) 1.26 0.89 0.36

2b (with noise) nra nr nr

3 3.95 0.16 27.74

4 0.03 14.75 1.47

– di, i ¼ 1, . . . , Nel 2 1 —

5 (6 el) 0.11 0.26

5 (7 el) 0.70 nr

5 (10 el) 0.43 0.52

5 (13 el) 0.64 nr

5 (16 el) 0.04 0.08

5 (24 el) 1.01 0.25

anr – not reported in [5]

Table 4 Comparison of PBM and CFO coordinates for maxima

PBM BM # PBM coordinates CFO coordinates D

x1 x2 x1 x2 x1
PBM 2 x1

CFO x2
PBM 2 x2

CFO

1 2.58l 0.63 2.55088l 0.61805 0.02912l 0.01195

2a (no noise) �5.85l p/2 5.92359l 1.55685 20.07359l 0.01395

2b (noise) nra nr 6.93601l 1.54721 – –

3 0.5 p/2 0.48024 1.57327 0.01976 20.00247

4 1.5l 0.834 1.49520l 0.71098 0.00048l 0.12302

– di, i ¼ 1, . . . , Nel 2 1 di, i ¼ 1, . . . , Nel 2 1 MAX(di
PBM 2 di

CFO)

5 0.99l 0.98310l 2 1l 0.01l

aNot reported in [5]
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On BM #1 CFO performed much better than all the
others, requiring only 60 calculations compared to 1530 for
PSO, the next best. On BM #2 CFO did not perform as
well as GA-FPC and mGA, with and without noise, by a
factor of about 2–3. Its performance was comparable to
GA-RCs, and CFO did quite a bit better than PSO. On

BM #3, PSO was about 17% better than CFO, but CFO
out-performed the others. For BM #4, two different CFO
initial probe distributions were used with the result that its
performance was comparable to GA-FPCs, and quite a bit
better than mGAs and GA-RCs, by at least a factor of
2. However, PSO performed better than CFO by a factor
of about 3. In [5, Table 2] BM #5a and 5b are 7 and 13
element collinear arrays, respectively. For BM #5a and 5b,
respectively, CFO was nearly 15 and 12 times more
efficient than the next most efficient algorithm, PSO.

In terms of computational efficiency, CFO performs quite
well in comparison to the EAs studied in [5]. CFO turned in
the best performance on three benchmarks, and it was better
by a wide margin. CFO turned in the second best result on

Table 5 Comparison of PBM and CFO best fitnesses

PBM BM # CFO results Dmax
PBM DDmax

PBM 2 Dmax
CFO

x1 x2 Dmax
CFO

1 2.55088l 0.61805 3.20627 3.32 0.11373

2a (without noise) 5.92359l 1.55685 18.3654 18.3a 20.0654

2b (with noise) 6.93601l 1.54721 18.6880 nrb nr

3 0.48024 1.57327 6.48634 7.05a 0.56366

4 1.49520l 0.71098 5.71479 5.8b 0.08521

– di,i ¼ 1, . . . , Nel 2 1 – – –

5 (6 el) 0.99105l 11.2202 �11.25c 0.0298

5 (7 el) 0.98310l 13.1826 nr –

5 (10 el) 0.99421l 19.0985 �19b 20.0985

5 (13 el) 0.99629l 25.0611 nr –

5 (16 el) 0.98958l 30.9742 �31b 0.0258

5 (24 el) 1.00000l 46.8813 �47b 0.1187

aValues marked with are estimated from the figures in [5]
bnr – not reported in [5]
cValues marked with � are estimated from Fig. 13 in [5]

Table 6 CFO efficiency (# function evaluations)

PBM BM # CFO Neval Results from PBM paper [5],
Table 2 (mean hit

time � population)

GA-
FPC

mGA GA-
RC

PSO

1 60 3140 5065 8920 1530

2a (no noise) 1320
360 450 1400 2280

2b (with
noise)

768

3 1050 1940 1685 5040 900

4 1488a

1300 3125 3800 330
1155

5a 72 1220 1700 nrb 1050

5b 144 3480 5695 nr 1770

aDifferent initial probe distributions
bNot reported in [5]

Figure 4 Geometry of a uniform linear antenna array with
2N isotropic radiating elements [9]
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BM #3, and it was close to the best efficiency. On BM #4,
CFO did second best. And on BM #2 it was the third
most efficient. Across all benchmarks, CFO was best on
three and second best on two. PSO performed next best
overall, being first on two problems and second on three.
On the one BM where CFO did not finish in the top two,
it was the third best. Even in its infancy, CFO’s
computational efficiency thus is quite competitive.

4 Linear array antenna
In [1], CFO was applied in the synthesis of a 32 (isotropic)-
element linear array with null controlling, and CFO’s results
were compared with ACOs in [4]. In this paper, CFO is
applied to the same problem, but, significantly, with a different
fitness function that yields better results than those in [1, 4].

4.1 Geometry and array factor

Fig. 4 shows a linear array with 2N isotropic radiators
symmetrically positioned around the origin along the
x-axis. Each element is fed in-phase with equal amplitude
excitation. In this case, the array factor simplifies to [8]

AF(f) ¼ 2
XN

i¼1

cos(kxi cos(f)) (3)

where k ¼ 2p/l and xi, i ¼ 1, . . . , N are the (dimensional)
element coordinates. Here, we only optimise the positions of
the array elements, xi, to meet specific design goals for the
array’s pattern. Thus, in CFO we have Nd ¼ N.

4.2 Problem statement

The specific objective is to achieve deep nulls in prescribed
directions, and minimise the sidelobe level (SLL) in the
spatial regions away from the main lobe. In the context of
CFO, the problem may be stated as follows: determine the
coordinates of each array element xi, i ¼ 1, . . . , N, so as to
maximise a user-defined fitness function

Fitness ¼ �
X

i

ðfui

fli

jAF(f)j2

Dfi

dfþ
X

k

jAF(fnuk)j
2

 !

(4)

where the spatial regions are [fl1
, fu1

] ¼ [08, 878] and
[fl2

, fu2
] ¼ [938, 1808], Dfi ¼ fli

� fui
and the null

directions are fnu1 ¼ 818, fnu2 ¼ 998. CFO optimised the
32-element linear array using 18 pattern resolution with
the following run parameters: Nt ¼ 500, Np ¼ 48,
G ¼ 2, a ¼ 0.3 and b ¼ 1 with negative fitness to be
maximised. Unlike previously described CFO runs, a
random initial probe distribution is used here according
to ~R

p
1(i) ¼ RU(i)þ 0:5r1(�1U (r2�0:5)), where RU is the

uniformly spaced reference array vector RU ¼ (l=2)[0:5,
1:5, 2:5, . . . , 15:5], and r1 and r2 are uniform random
numbers between [0, 1]. The repositioning scheme for
errant probe retrieval is also random as follows

if R
p
j (i) , RU(i)� 0:5(l=2) then

R
p
j (i) ¼ RU(i)� random(l=2)

if R
p
j (i) . RU(i)þ 0:5(l=2) then

R
p
j (i) ¼ RU(i)þ random(l=2)

Figure 5 Normalised radiation pattern for 32-element
symmetric linear array

Table 7 Comparison among three optimisation methods for
the 32-element linear array

Item Uniform QPM PSO CFO

Max. SLL
(dB)

213.29 217.85 219.05 219.32

null level
(dB)

217.82 234.74 262.12 283.49

fitness 233.9 20.789 20.0975 20.0867

Figure 6 Fitness against time step convergence
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where random(†) is a uniform random number between [0,
0.5]. The probes are restricted such that no two adjacent
elements have a separation distance less than l/8 and no
element is positioned beyond (N 2 0.25)l/2 or closer than
l/8 to the origin of the x-axis. Although CFO is an
inherently deterministic algorithm, the user is free to inject
some measure of randomness if the performance is
improved. This example is an illustration of the beneficial
effects of adding a stochastic component to CFO.

4.3 Results

Fig. 5 compares the radiation patterns for the CFO-
optimised 32-element linear array (solid) and a uniform
array with l/2 spacing (dotted). Table 7 lists key
performance measures for CFO and two other optimisation
methods: PSO [9] and QPM (quadrature programming
method) [10]. CFO met the null objective of 283 dB
while maintaining a maximum SLL of 219.32 dB (an
improvement of 6 dB over the uniform array antenna). By
comparison, the maximum SLL in [1] was 214.84 dB, so
that the CFO implementation reported here achieved a
substantially better result. The fitness evolution is plotted
in Fig. 6. The best fitness increased monotonically through
about step 300, thereafter plateauing with slight increases
through about step 435. Table 7 shows that CFO’s
performance is slightly better than PSOs, and both PSO
and CFO are considerably better than QPM. The array
element coordinates appear in Table 8. None of the EAs
produced a ‘surprise’ design in the sense that all the
coordinates are close in value.

5 CFO with new selection scheme
CFO’s attractive features include its simplicity, efficiency and
its ability to find multiple global optima when the run
parameters (Nt, Np, Frep, G, a and b) are chosen carefully.
However, CFO may become trapped at local optima,
especially in complex optimisation problems, and all the
more so because it is deterministic. This paper introduces a
new, simple ‘selection scheme’ to mitigate trapping as follows

if M
p
j , M

p
j�1 then R

p
j ¼ rand (R

p
j þ R

p
j�1)

where rand is a uniform random number on [0, 1]. This
approach does not guaranty that probes will not fly outside

the DS. But numerical experiments using an ‘invisible wall’
show that the combination of the errant probe retrieval
scheme and this new selection scheme is very effective in
mitigating local trapping.

6 Circular array antenna
CFO with new selection scheme is applied here to optimise a
ten-element circular array. The results are compared to those
obtained using GA [11] and PSO [12].

6.1 Geometry and array factor

We consider a ten (isotropic)-element, non-uniform circular
antenna array of radius a lying in the xy-plane, as shown in
Fig. 7. In the xy-plane, the array factor for this circular
array is given by [8]

AF(f) ¼
XN

n¼1

In exp( j(ka cos(f� fn)þ an)) (5)

where N ¼ 10. The aperture is ka ¼ (2p=l)a ¼
PN

i¼1 di,
and the angular position of the nth element in the xy-plane
is fn ¼ (2p=ka)

Pn
i¼1 di. The nth element excitation

amplitude and phase are In and an, respectively. The arc
length from element n to element n 2 1 normalised to l is

Table 8 Geometry of the 32-element linear array (E16þi ¼ 2Ei), i ¼ 1, . . . , 16, obtained using four different methods

Ei, i ¼ 1, . . . ,16

uniform 0.50, 1.50, 2.50, 3.50, 4.50, 5.50, 6.50, 7.50, 8.50, 9.50, 10.5, 11.50, 12.50, 13.50, 14.50, 15.50

QPM 0.49, 1.45, 2.35, 3.19, 3.96, 4.67, 5.37, 6.11, 6.92, 7.85, 8.89, 10.06, 11.33, 12.65, 14.01, 15.35

PSO 0.53, 1.37, 2.35, 3.11, 3.97, 4.66, 5.33, 6.11, 6.86, 7.80, 8.76, 9.900, 11.10, 12.48, 14.10, 15.51

CFO 0.56, 1.27, 2.34, 3.00, 3.92, 4.68, 5.39, 6.32, 6.97, 7.97, 8.80, 9.900, 11.04, 12.53, 14.23, 15.75

The numbers are normalised with respect to l/2

Figure 7 Geometry of a non-uniform circular antenna array
with ten isotropic radiators
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dn, d1 being the arc length between elements 1 and 2 as
shown. The excitation phase can be adjusted to place the
main lobe in the direction f0, where an ¼ �ka
cos(f0 � fn). Setting f0 ¼ 08 for convenience, the array
factor simplifies to

AF(f) ¼
XN

n¼1

In exp( jka(cos(f� fn)� cos(fn))) (6)

6.2 Problem statement

The design objectives are: minimum sidelobes, and deep
nulls at fnu 1 ¼ �27:9258 and fnu 2 ¼ 27:9258 (first null
beamwidth FNBW ¼ fnu 2 � fnu 1 ¼ 55:858). In the context
of CFO, the problem is: determine di, 0.25 , di , 1.65,
i ¼ 1, . . . , N, and Ii, 0:3 , Ii � 1, i ¼ 1, . . . , N, where
Nd ¼ 2N, so as to maximise the user-defined fitness function

Fitness ¼ �(0:25(0:75U (�130�sum(RPDB)))

� sum(RPDB)þ 1:5sum(MaxSLL)) (7)

where

sum(RPDB) ¼
X

k

20 log10

AF(fnu k)

AF(08)

����
����

sum(MaxSLL) ¼
X

k

20 log10

AF(fms k)

AF(08)

����
����

and fms1, fms2 are the angles at which the maximum
sidelobes occur in the lower band [2180, fnu1] and in the
upper band [fnu2, 180], respectively. The initial probe
distribution is random with zero acceleration. Errant probes
are retrieved using the reposition factor with Frep ¼ 0.9,
and the new selection scheme of Section 5 is used. Other
run parameters are Nt ¼ 7500, Np ¼ 20, G ¼ a ¼ b ¼ 2
and Nd ¼ 20.

6.3 Results

Fig. 8 compares radiation patterns of the CFO-optimised
circular array (solid) and a uniform circular (dotted).
Table 9 lists key performance measures for CFO and the
other EAs. CFO meets the design goals by using an
objective function that balances the null/SLL
requirements. It achieves null levels around 265 dB and
maximum SLL of about 211 dB. Fig. 9 plots CFO’s
best fitness evolution, which increases monotonically step-
wise through about step 6350 and exhibits the typical
rapid initial increase through step 1000. Thereafter, the
plateaus are longer in duration, although the first three
jumps in fitness are greater than those between about
steps 600 and 1000. As Table 9 shows, while CFO did
return the best overall fitness, its maximum SLL is
1.4 dB greater than that obtained by PSO. However,
CFO produced null levels that were more than 14 dB
deeper. Table 10 lists the optimised di and Ii values. In
what might be considered a somewhat curious but very
beneficial result, CFO returns a design with uniform
amplitude excitation. This result is quite significant
because the circular array with uniform amplitude
excitation is much easier and less expensive to build than
one with non-uniform amplitude and phase.

Figure 9 Fitness against time step convergence
Figure 8 Normalised radiation pattern of ten elements
circular array

Table 9 Comparison among three optimisation methods for
the designed circular array

Item Uniform GA PSO CFO

Max. SLL1
(dB)

23.6 211.15 2 12.31 210.93

Max. SLL2
(dB)

23.6 210.85 2 12.31 210.93

null level1
(dB)

247.6 233.12 250.38 2 64.98

null level2
(dB)

247.6 227.64 250.48 2 64.98

aperture 5 6.09 5.903 5.833

fitness 34.6 48.2 62.15 65.296
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7 Conclusions
CFO is a new optimisation EA whose performance has been
studied on the PBM antenna benchmark suite and on two-
array synthesis problems. This paper also introduces a new
selection scheme for mitigating trapping, and compares
CFO to other EAs. Even though in its infancy, CFO
exhibits robust performance and holds out what appears to
be considerable promise if certain issues can be addressed.
For example, at this point there is no methodology for
choosing CFO run parameters, yet how well CFO works
can be very sensitive to their values. CFO’s deterministic
nature, coupled with its frequently rapid convergence, even
if to a local maximum, may help users to quickly specify
suitable run parameters. These attributes also may make
CFO an excellent candidate for real-time ‘parameter
tuning’ in which run parameters are changed in response to
the algorithm’s behaviour. The examples reported here
suggest that CFO merits consideration by engineers
actively engaged in antenna design, and also by
theoreticians interested in exploring and further developing
new concepts in optimisation.
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In 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0

GA dn 0.3641, 0.4512, 0.2750, 1.6373, 0.6902, 0.9415, 0.4657, 0.2898, 0.6456, 0.3282

In 0.9545, 0.4283, 0.3392, 0.9074, 0.8086, 0.4533, 0.5634, 0.6015, 0.7045, 0.5948

PSO dn 0.3170, 0.9654, 0.3859, 0.9654, 0.3185, 0.3164, 0.9657, 0.3862, 0.9650, 0.3174
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CFO dn 0.3688, 0.7263, 0.7263, 0.7263, 0.3688, 0.3688, 0.7263, 0.7263, 0.7263, 0.3688

In 0.6675, 0.6675, 0.6675, 0.6675, 0.6675, 0.6675, 0.6675, 0.6675, 0.6675, 0.6675
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