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Abstract. Active stub tuning with a fast ferrite tuner (FFT) allows for the system to respond dynamically to changes in
the plasma impedance such as during the L-H transition or edge localized modes (ELMs), and has greatly increased the
effectiveness of fusion ion cyclotron range of frequency systems. A high power waveguide double-stub tuner is under
development for use with the Alcator C-Mod lower hybrid current drive (LHCD) system. Exact impedance matching with
a double-stub is possible for a single radiating element under most load conditions, with the reflection coefficient reduced
from Γ to Γ2 in the “forbidden region.” The relative phase shift between adjacent columns of a LHCD antenna is critical
for control of the launched n|| spectrum. Adding a double-stub tuning network will perturb the phase of the forward wave
particularly if the unmatched reflection coefficient is high. This effect can be compensated by adjusting the phase of the low
power microwave drive for each klystron amplifier. Cross-coupling of the reflected power between columns of the launcher
must also be considered. The problem is simulated by cascading a scattering matrix for the plasma provided by a linear
coupling model with the measured launcher scattering matrix and that of the FFTs. The solution is advanced in an iterative
manner similar to the time-dependent behavior of the real system. System performance is presented under a range of edge
density conditions from under-dense to over-dense and a range of launched n||.
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INTRODUCTION

Stub tuning networks have been used to reduce power reflected from the plasma on many fusion experiments in the ion
cyclotron range of frequencies (<∼ 100 MHz) [1, 2] but have not yet been deployed at higher frequencies. A double
stub matching network with electronically controlled tuning stubs is under development for the lower hybrid current
drive (LHCD) system on Alcator C-Mod [3, 4]. The multijunction concept employed in many LHCD experiments
reduces reflected power passively through destructive interference of the reflected waves, but at the cost of n|| spectrum
flexibility and control. An active matching network like a double stub tuner allows for complete control of the n||
spectrum, in either the co- or counter-current direction, while reducing reflection coefficients to near zero.

The behavior of a single double-stub FFT connected in series with a mismatched load, ZL, is well known. The
matching network will reduce the input reflection coefficient, Γin, to zero for any load impedance outside the “forbid-
den region”, and from Γin to Γ2

in for load impedances inside the forbidden region. The problem is more complicated
for a phased array LHCD antenna with strong cross-coupling between elements. The effective reflection coefficient
for each element, Γn, is a function not only of the plasma density profile but also of the relative phase and amplitude
of other nearby radiating elements. Mathematically, this can be expressed in terms of a series of matrix multiplication
operations involving the scattering parameters of the plasma, antenna, and individual FFT elements.

SYSTEM DESCRIPTION

The plasma scattering matrix, Sp, is determined by the geometry of the antenna (primarily the waveguide height and
septum thickness) and plasma (electron density, density gradient, and thickness of evanescent region). Sp is an n× n
symmetric matrix, where n is the number of radiating elements in the antenna. The (n,n) elements are of order 0.2,
while the (n,n± 1) elements are of order 0.5. The magnitude of matrix elements decreases farther away from the
diagonal since radiating elements spaced farther apart have weaker cross-coupling.
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FIGURE 1. A block diagram of the network connections between the plasma scattering matrix, Sp, the FFT scattering matrix,
SFFT , and the input voltage vector, Vin.

The 2-port scattering matrix for a single FFT can be calculated given the reactive admittance of the two stubs, B1 and
B2, the wave propagation constant of the waveguide, β , and the distance between the stubs, l. The most straightforward
way to determine this scattering matrix is to first cascade a series of three ABCD matrices representing the two stubs
and the transmission line between the stubs. The S-matrix for the kth FFT can then be calculated based on the four
elements of the cascaded ABCD matrix. The individual S-matrices for the n FFTs are then combined into a larger
2n×2n S-matrix.

At this point, the two scattering matrices, Sp and SFFT , can be cascaded [5] to get the total scattering matrix, Stotal .
Figure 1 shows a block diagram of the network connections between SFFT and Sp to create Stotal . Multiplying Stotal
by the driving waveform voltage vector Vin (e.g. {1, i,−1,−i, . . .} for 90◦ phasing) gives the reflected wave for each
input port of the combined FFT/plasma system. Since it is convenient to solve for the FFT stub lengths based on the
reflection coefficient on the unmatched side of the FFT network, rather than the matched side, the unmatched reflection
coefficient, Γu, must be calculated:

Γu = SpVout �Vout (1)

where � represents the element-wise division of the column vector SpVout by the column vector Vout and

Vout = [Incol −SFFT (1 : ncol ,1 : ncol)Sp]−1SFFT (1 : ncol ,ncol +1 : 2ncol)Vin (2)

Once Γu is calculated, the necessary reactive admittance of the two FFT stubs can be determined analytically [6]:

B1k = −BL +
Y0 ±

√
(1+ t2)GLY0 −G2

Lt2

t
,B2k =

±Y0

√
Y0GL(1+ t2)−G2

Lt2 +GLY0

GLt
(3)

Here, Yk = GL + iBL is the normalized unmatched load admittance corresponding to the kth element of Γu, and
t = tan(β l). These new values for B1 and B2 are then inserted into SFFT , and the process must be repeated. At each
iteration Γu may change based on the new values of B1 and B2 for each column.

SIMULATION RESULTS

The system will be perfectly matched if the off-diagonal terms of Sp are zero and the load does not lie within the
forbidden region. For an LHCD launcher the cross-coupling between waveguides is significant (higher, in fact, than
the diagonal elements of Sp in most cases). In many cases the system converges quickly to a solution with very low
reflection coefficients on the matched side, particularly when the off-diagonal terms of Sp are weak or ncol ≤∼ 4.
For larger, more coupled antenna arrays the system can be unstable if each FFT matching solution is calculated
independently.

The behavior of the FFT/plasma system is studied here with a variety of plasma edge densities (nco,2nco,5nco where
nco = 2.7× 1017 [m−3] is the cutoff density for 4.6 GHz LH waves), density gradients (4.7× 1020,1.2× 1021,2.4×
1021 [m−4]) and launched n|| (1.63, 1.95, 2.60, 3.9; or 75◦,90◦,120◦,180◦ phasing). The plasma S-matrices used here
are generated by the linear coupling code ALOHA [7]. Figure 2 shows the average matched reflection coefficient as
a function of iteration number for a set of representative plasma conditions and phasings. The lowest and highest
phasings exhibit unstable behavior under some conditions, while the reflection coefficient for moderate phasings drop
quickly to very low levels.
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FIGURE 2. Overall power reflection coefficient Γ2 of the LH FFT system for a single grill comprised of 16 columns. No spectrum
compensation is used in this simulation. The gain, G, is 1 for this simulation.
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FIGURE 3. Overall power reflection coefficient Γ2 of the LH FFT system for a single grill comprised of 16 columns. The phase
and amplitude are compensated at every other iteration step. The gain, G, is 1 for this simulation.

The launched n|| spectrum is also perturbed by the matching network. This effect can be compensated by adjusting
Vin such that the magnitude and phase of Vout matches that of the desired drive waveform. This adjustment can also
introduce instability in some circumstances. Figure 3 shows the same information as in Figure 2 but with the addition
of phase and amplitude compensation for the forward wave of each column. This technique prevents distortion of the
launched n|| spectrum by adjusting Vin to achieve a constant amplitude and linear phase progression. The compensation
process introduces additional instability for 75◦ and 90◦ phasings across a range of plasma loading scenarios.

Reducing the “gain” of the FFT control system can help to stabilize the response. Here, the gain, G, is defined as:

G = (Bn+1 −Bn)/(Bcalc −Bn) (4)

where Bn is the stub reactive admittance at the nth iteration, Bn+1 is the programmed reactive admittance for the
subsequent iteration, and Bcalc is the calculated “ideal” reactive admittance for the subsequent iteration. The value of
G represents the fractional amount of correction applied to the stub lengths between successive iterations. Figure 4
shows the effect of reducing the gain with spectrum compensation. Only 180◦ “heating” phasing shows instability with
the gain reduced, while all other phasings exhibit stable behavior with average reflection coefficients less than 10−2.
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FIGURE 4. Overall power reflection coefficient Γ2 of the LH FFT system for a single grill comprised of 16 columns. The phase
and amplitude are compensated at every other iteration step. The gain, G, is 0.75 for this simulation.

DISCUSSION AND CONCLUSIONS

Decreasing the control system gain, G, is effectively equivalent to reducing the slew rate of the control coil current,
or alternatively increasing the update rate of the reflection coefficient measurement/stub length calculation, with other
parameters held constant. Effort has been expended to increase the slew rate of the electromagnet coil currents and
decrease the penetration time for the resulting magnetic fields into the ferrite [8]. The simulations in this paper show
that it may be necessary to slow down the response of the coils to avoid instability in the matching network.

Decreasing the gain has some negative impact on the final matched value of the reflection coefficient with an
asymptote just under Γ2 = 10−2. With a gain of 1 and no spectrum compensation Γ2 < 10−4 in most cases. In practice
a value of 10−2 is sufficiently low that the reflected power is negligible.

Uncertainty remains for the case of a time-varying plasma load. Future work will focus on this aspect of the FFT
control system. The behavior of the FFT system with a time varying plasma load will set constraints on the necessary
response time of the control system.
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