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Abstract: Arrays of circular, double-loops are treated via a semi-analytical technique, on the basis of a Method of
Moments formulation. A Pocklington-type integral equation for the current is derived and discretised via a
suitable set of basis functions. The matrix corresponding to the pertinent linear system is found to consist of
circulant blocks. The system is therefore analytically solvable, and hence, potential ill-conditioning,
encountered in large geometry cases, cannot possibly introduce any numerical instabilities to the calculations.
Introduction of a delta gap source as excitation facilitates very efficient computation of the current and input
admittance. The algorithm exploits almost exclusively elementary functions and yields results in terms of a set
of rapidly convergent series, applicable to extremely large loops. Data for such loops are presented for the
first time in literature. The method is expected to lead in the future to very efficient designs of multi-loop arrays.

1 Introduction
Circular-loop antennas are applicable to various types of
wireless links and therefore have been studied extensively in
the literature. Loop arrays have also been proposed, and
their analysis has been presented in several pioneering
papers [1, 2]. In these works, the current distribution and
the input admittance are computed via integral equation
modelling and subsequent Fourier analysis, which is an
extension of a similar technique, having been applied earlier
to single loops [3, 4]. This method is elegant and
theoretically exact, however, it is prone to limitations,
because of difficulties in the computation related to the
special functions it requires. Accurate calculations are time-
consuming and inefficient, and the procedure is hence not
easily applicable to electrically large configurations.

The approach of the problem in this paper is based on the
Method of Moments (MoM) and the overall methodology is
strongly related to [5, 6], where single-loop antennas were
addressed. The pertinent integral equation for the currents is
derived, in a way similar to [1], and finally discretised via

step-pulse (pulse triplet) basis functions [5, 6] with point
matching. To simplify calculations at this stage, a delta gap
source is used as an excitation, which may feed either one of
the two loops, or even both of them. The resulting linear
system consists of a 2 � 2 block square matrix, comprising
of four circulant sub-matrices of half the overall size. Such a
matrix is analytically invertible as shown in [7] and therefore
the discrete approximations of the current, the impedance
and the admittance can be given by explicit mathematical
expressions. Furthermore, almost all mathematical expressions
involved invoke merely elementary functions. Extraction of
numerically stable results is therefore possible, and their
accuracy is validated through comparisons with reference
solutions and measurements [1]. Novel data for very large
arrays are finally presented for the first time in literature.
This paper is an expanded version of [8], which briefly
describes the highlights of the method. The algorithm is
ideal for the efficient design of double-loop antenna arrays,
as it is significantly less time-consuming than standard,
analytical or numerical schemes, yet being immune to
inaccuracies, possibly caused by calculation instabilities
and/or matrix ill-conditioning. Future, analogous work
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may relate to the use of magnetic frill current excitations, to
avoid numerical instabilities near the feeding point [9], as
well as multi-loop arrays.

2 Analytical formulation
The geometry of the problem consists of parallel, coaxial
loops, with radii b1 and b2 and wire radii a1 and a2,
respectively (Fig. 1). Assume that b1 � b2 and a1,2� b1,2,
that is, the loop wires are supposed to fulfil the thin wire
approximation. In the general case, the loops do not
necessarily lie on the same plane, but are separated by a
vertical distance D (along the z-axis). The co-ordinate
system is defined as in Fig. 1, that is, the large loop lies in
the z ¼ 0 plane and the small loop in the z ¼ D plane (D
may also be negative). As an excitation, a delta gap feed is
invoked, located anywhere on either one, or even both of the
loops. In Fig. 1, feeds are both positioned at f ¼ 0, but this
is not restrictive for the analysis, that is, the excitations may
occur at any, even different points. Using a standard
formulation, similar to [5], resulting from the
pertinent boundary condition for the electric field, and
assuming a ejvt time dependence, the integral equation for
the currents I1,2(f) on the two loops can be compactly cast.
Explicitly,

Ei(r, f) � bf ¼ jvmr01

ð2p

0
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þ jvmr02

ð2p

0

G(r, r02) cos (f� f0)I2(f0) df0

�
1

jv1r

ð2p

0

@

@f
G(r, r01)

dI1(f0)

df0
df0

�
1

jv1r

ð2p

0

@

@f
G(r, r02)

dI2(f0)

df0
df0 (1)

where G is the standard free-space scalar Green’s function
given by

G(r, r0) ;
e�jkjr�r0 j

4pjr � r0j
(2)

where k is the wavenumber, m, 1 are the surrounding medium’s
permeability and permittivity, respectively, and Ei the incident
electric field (because of the excitation). Also, r(r, f), r0(r0, f0 )
are observation and current source points, respectively and f̂ is
the unit vector along the azimuth direction. Index (1,2)
corresponds to the loop number. Obviously, under the thin
wire approximation, r1

0 ¼ b1 and r2
0 ¼ b2. The unknown

currents I1,2(f
0 ) will be calculated from (1), after suitable

discretisation and transformation to a linear system of
equations, according to a standard MoM methodology. The
currents on the two loops (1,2) are expanded as

I1,2(f0) ffi
XN

n¼1

I (1,2)
n Fn(f0) (3)

where F(f0 ) are basis functions and N the number of unknowns
on each loop. The key characteristic of the technique presented
herein is the properties of the resulting system matrix, which
will be forced to consist of circulant blocks. Owing this
feature, the matrix will be inverted analytically and will thus
yield the current samples in closed form. Suitable (although
not unique) basis functions, facilitating this attractive
property, are the step-pulses (pulse triplets) (Fig. 2) [5, 6].
Explicitly, these functions are defined as
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and ~f ; 2p=N .

Figure 1 Double-loop antenna array
Figure 2 Step pulse (triplet) basis functions, approximating
a triangular pulse (dotted line)
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After applying point-matching at N points on each loop, that
is, at rm,i ; r(ri, fm), where fm ; (m� 1) ~f, m ¼ 1, . . . , N
and i ¼ 1, 2, then (1) yields the following system:
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After performing the integrations using the properties of pulse
functions, in a way similar to [5], (6) is written in compact
form as

[Z]{I }¼ {V } (7)

where

{I } ; I (1)
1 I (1)

2 � � � I (1)
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1 I (2)
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N

h iT

(8)

which is the column of unknown currents,

{V } ; V (1)
1 V (1)

2 � � � V (1)
N ; V (2)

1 V (2)
2 � � � V (2)

N

h iT

(9)

which is the column of excitation voltages at the matching
points, related to the local incident electric field as follows:

V (p)
n ¼ bpf̂ �Ei((n�1) ~f) (10)

and finally [Z] is the MoM impedance matrix, conveniently
split into four blocks as follows:

[Z]¼ [Z](11) [Z](12)

[Z](21) [Z](22)

� �
(11)

The superscripts (b,g) denote interaction between the b and
the g loop. The important feature of all four blocks is the fact
that they are all circulant, for reasons explained in [5, 6].
Their entries are therefore identified by a single subscript,

and after some lengthy manipulation they are finally given by
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where h is the medium intrinsic impedance, and
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whereas, finally [5]
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It is remarkable that in (12)–(16) mere elementary functions
are employed; the only exception being the elliptic integral.
Nevertheless, even the latter can be efficiently calculated
via standard algorithms implemented in easily accessible
library subroutines [10]. Therefore unlike standard Fourier
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calculations [1], which involve several special functions of
complicated nature, the entries of the impedance matrix in
this paper are trivially computable. However, the most
important property of the impedance matrix is its analytical
invertibility, which is because of its consistence of circulant
blocks. The inversion procedure is described in detail in [7],
and is based on the analytical calculation of the eigenvalues of
each circulant sub-matrix. A complete description of this
process is found in [7] and will not be repeated here in detail.
Very briefly, however, the unknown current is given as a
combination of products and ratios of a set of rapidly
convergent series, involving cylindrical special functions
(Bessel and Hankel). The greater the number of unknowns
N (appearing in the order of the cylindrical functions), the
fewer terms become significant in the series, and therefore
convergence is very rapid, as N increases. Convergence
properties of the overall, series-based expression will be
studied for specific configurations in Section 3. For an
extension to matrices consisting of M �M circulant blocks,
see also [11]. The most important consequence of analytical
inversion is the fact that the discrete approximations of the
current and the impedance/admittance are expressible by
explicit formulae. Therefore very large loops become tractable,
because of two reasons: (a) no numerical instabilities
occur, since no numerical inversion is necessary, and hence
the method is almost immune to ill-conditioning and
(b) equations (12)–(16) are trivially computable, no matter
how high the number of unknowns may become.

3 Numerical results
Validation of the mathematical analysis presented in Section
2 is performed via extraction of several numerical results and
comparison to reference data, whenever available. The
configuration, to be investigated as a first step, consists of a
small loop with kb1 ¼ 1 and of a large one with kb2 ¼ 1.5.
The vertical distance is originally set to D ¼ 0. For both
loops, we assume b1/a1 ¼ b2/a2 ¼ 15. The excitation points
are always assumed to lie at f ¼ 0. To begin with, the
convergence rate of the derived series expression is
examined. In all following plots, the horizontal axis
corresponds to the azimuth angle along the loop
circumference.

Fig. 3 depicts the convergence behaviour, as N increases, of
the real part of the current RefI(f)g on the small loop, when
the excitation lies on the same loop. Convergence behaviour
for the imaginary part is shown in Fig. 4. Similarly, Fig. 5
depicts the convergence behaviour, as N increases, of the
real part of the current RefI(f)g on the large loop, when
the excitation lies on the small loop.

From all aforementioned plots, it is implied that, for the
given radius ratio, that is, b1/a1 ¼ b2/a2 ¼ 15, convergence
is achieved for a number of unknowns roughly equal to
N ¼ 40, that is, for an element arc length approximately
equal to l/40 for the small loop, or l/27 for the large

loop. It is expected that for thinner wires, convergence will
be slower. Indeed, Fig. 6 depicts the convergence behaviour
of a similar layout, but with b1/a1 ¼ b2/a2 ¼ 150 for the
real part of the current on the small loop, when the
excitation lies on the same loop. It is evident that a higher
number of points are necessary; however, convergence is
still achievable with reasonably coarse discretisation.

In Figs. 3–6, the solution behaviour for exceedingly large
N was also depicted deliberately. As expected from analogous
situations in [5, 6, 9], the use of the delta gap model yields

Figure 3 Convergence of the current’s real part on the
small loop, when the excitation is also on the small loop

For this configuration kb1 ¼ 1, kb2 ¼ 1.5, D ¼ 0, b1/a1 ¼
b2/a2 ¼ 15

Figure 4 Convergence of the current’s imaginary part on
the small loop, when the excitation is also on the small loop

For this configuration kb1 ¼ 1, kb2 ¼ 1.5, D ¼ 0, b1/a1 ¼
b2/a2 ¼ 15
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unphysical oscillations of the current values close to the
feeding point. In the double-loop case, this effect is
discernible for both real and imaginary parts of the current,
but is much more pronounced for the imaginary part, and
for relatively small ratios b/a. This is the reason why
calculation of the input susceptance of the double loop
cannot be performed with high precision under these
conditions. With increasing N, oscillations become more
erratic and ‘propagate’ along the loop. As discussed in [9],
this situation is related to the solvability of the original,
pertinent integral equation for various right-hand sides
(excitation models), and is not because of the algorithmic

structure of the solution. It is expected that these
oscillations will disappear if a magnetic frill model is
invoked instead, and this issue will be investigated in some
near future work.

Comparison with reference data is also possible, since
pertinent measurements are found in [1] and repeated in
Fig. 7 for convenience. The loops are set at different levels,
separated by a vertical distance D. For this computation the
wire radius is assumed to be the same in both the small
and the large loops, that is, a1 ¼ a2. The relationship
between the radius of the small loop b1 and the wire axis a1

is given by V1 ¼ 2 ln(2pb1/a1) ¼ 11 or b1/a1 ¼ 38.94.
The input impedance Yin is clearly the ratio of the current I
to voltage V at the point where the delta source is located.

Calculations were performed for various values of kb2,
specifically for kb2 ¼ 0.9, 1.0 and 1.1 whereas kb1 is fixed at
1.0. Results are depicted in Figs. 8 and 9, which plot the
input conductance G and the input susceptance B,
respectively, against the vertical distance D. The agreement
of our curves with the corresponding plots in [1] is excellent.
Especially, Fig. 8 is evidently identical to Fig. 7 (top) and
also Fig. 9 is very similar to Fig. 7 (bottom), although not
identical. Specifically, there is a small difference of about
0.5 mMho at d/l ¼ 0.2 at the kb2 ¼ 1.0 curve. The rather
insignificant discrepancy is fully explained by the fact that
the input susceptance for a delta gap model cannot be
rigorously defined, since it approaches infinity as the gap
width vanishes. Therefore the susceptance values calculated
with a delta gap source are only good estimates of the actual
ones, and become less reliable for exceedingly large N. It is
mentioned that Fig. 7 also includes measured values for the
input admittance, hence the accuracy of the results is
guaranteed. It is expected that use of the magnetic frill
current model for the excitation can improve the accuracy of
the input susceptance calculations, as shown in [6] for the
case of a single loop.

Far-field patterns are shown in Fig. 10, where plots are
given for the f ¼ 0 plane, as a function of u, when
b1/a1,2 ¼ 38.94. In Fig. 10a the dimensions are: kb1 ¼ 1.2,
kb2 ¼ 1, D ¼ 0.5l, and in Fig. 10b the dimensions are:
kb1 ¼ 1.2, kb2 ¼ 1.1, D ¼ 0.3l. Loop 1 is excited only at
f ¼ 0. Comparison with [1, Figure 4] shows excellent
agreement.

After validating the algorithm through convergence checks
and comparisons with measurements, the method will now
be utilised for current computations on very large loops, for
the first time in the literature. Fig. 11 shows the
dependence of the input conductance as a function of the
loop circumference, the latter extending to very large values.
For this calculation, both loop circumferences, small and
large, are increased from 1 to 40 wavelengths
simultaneously, in a sense that kb2 ¼ kb1þ 1 always. The
vertical distance D between the two loops is fixed at 0
(coplanar loops). It is emphasised that the wire radius a1,2

Figure 5 Convergence of the current’s real part on the large
loop, when the excitation is on the small loop

For this configuration kb1 ¼ 1, kb2 ¼ 1.5, D ¼ 0, b1/a1 ¼ b2/a2 ¼ 15

Figure 6 Convergence of the current’s real part on the
small loop, when the excitation is also on the small loop

For this configuration kb1 ¼ 1, kb2 ¼ 1.5, D ¼ 0, b1/a1 ¼
b2/a2 ¼ 150
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remains constant, equal to l/100, to meet the original
assumption of the thin wire requirement. Input susceptance
is not plotted for reasons explained earlier.

All calculations shown herein, including convergence
checks, were performed on a typical laptop computer in a
matter of a few minutes, invoking an elementary
FORTRAN code. Hence, the method presented in this
paper is useful for very large double-loop designs, for
various reasons: it is very simple to formulate, it requires
only low memory and CPU time resources, and avoids
instability problems caused by possible matrix ill-
conditioning, thus guaranteeing high accuracy. Finally, it
may be extended in the future to multi-loop configurations,
by exploiting the results in [11].

Figure 8 Input conductance, computed by this method, as a
function of the ratio D/l for kb2 ¼ 0.9, 1.0, 1.1 and kb1 ¼ 1

Loop 1 is driven and loop 2 is parasitic
Compare with Fig. 7

Figure 7 Reference input conductance (above) and
susceptance (bottom) as a function of the ratio D/l for
kb2 ¼ 0.9, 1.0, 1.1 and kb1 ¼ 1

Loop 1 is driven and loop 2 is parasitic
Copied from [1, Figure 2a]

Figure 9 Input susceptance, computed by this method, as a
function of the ratio D/l for kb2 ¼ 0.9, 1.0, 1.1 and kb1 ¼ 1

Loop 1 is driven and loop 2 is parasitic
Compare with Fig. 7

Figure 10 Radiation field in the f ¼ 0 plane, as a function
of u, when b1/a1,2 ¼ 38.94

a kb1 ¼ 1.2, kb2 ¼ 1, D ¼ 0.5l
b kb1 ¼ 1.2, kb2 ¼ 1.1, D ¼ 0.3l
Loop 1 is excited only at f ¼ 0
Compare with [1, Figure 4]
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4 Summary and conclusions
A semi-analytical formulation was proposed for the current
and far-field characterisation on a double-loop antenna
array. The algorithm is particularly efficient and robust, in a
sense that it is capable of yielding accurate results for loops
of arbitrarily large size. The core of the algorithm was
based on the MoM whose pertinent linear system was
appropriately formulated in such a way that the relevant
impedance matrix comprised circulant blocks. Then the
system was solved analytically [7] with the help of sub-
matrix diagonalisation, yielding exact expressions for the
current and the input admittance. The basis functions
utilised in the MoM were step pulses [5, 6]. For simplicity,
a delta gap excitation was invoked in this work; however,
more sophisticated feeding models should be used for
reliable susceptance calculation [6]. Moreover, only
elementary functions were utilised, thus facilitating easy
computations for arbitrarily high numbers of unknowns. As
a consequence, the results produced were numerically
stable, their accuracy having been validated through
comparisons with reference solutions and measurements
[1]. Furthermore, completely novel data in the literature
were extracted for very large loops. Finally, this work can
be used in the future as a cornerstone for the efficient
design of multi-loop antenna arrays, since the algorithm is
much more time-efficient than standard, analytical or
numerical techniques, yet retaining high accuracy, not

being affected by calculation instabilities and/or matrix ill-
conditioning.
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