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Abstract: In this study, the authors propose four algorithms for directions of arrival (DoAs) estimation of multiple incoming
narrowband plane waves onto electronically steerable parasitic array radiator antennas. The constraints on the proposed
algorithms are the same as those imposed onto the classic subspace methods allowing superior high-resolution and
localisation capabilities even for correlated sources scenarios but with more reduced computations load and processing time
than existing schemes. We also demonstrate that estimating the propagator operator through both introduced real-valued
orthogonal decompositions techniques not only yields to a faster DoAs estimation with a reduced computational complexity,
but also it improves the robustness of the developed algorithms to noise as compared with the classic propagator algorithm.
The Cramér–Rao bound on the variance of the estimated DoAs by the proposed algorithms is analysed. The achieved
performance by the developed methods is studied and compared with conventional antenna arrays. The simulation results
confirm that high-resolution DoAs estimation can be achieved with the developed algorithms and prove the validity of the
proposed approach.

1 Introduction

Reducing both energetic consumption and calculation
complexity is a challenging topic that has attracted
considerable attentions in wireless communication systems.
Recently, researchers have developed various
high-resolution directions of arrival (DoAs) estimators
based on the eigendecomposition of the array covariance
matrix (CM) such as multiple signal classification
(MUSIC), estimation of signal parameters via rotational
invariance techniques (ESPRIT) and propagator [1–4].
Particularly, based on the reactance domain (RD) technique,
a great deal of efforts and literatures [5–8] has been focused
on taking advantages from electronically steerable parasitic
antennas radiator (ESPAR) to improve performances of
localisation systems via high-resolution methods such as
unitary RD-MUSIC [5], RD-MUSIC [6] and RD-ESPRIT
[7]. This kind of antennas arrays is composed of one active
(fed) element surrounded by some parasitic elements.
Fundamentally based on the mutual coupling, ESPAR
antenna arrays are free from the negative influences of this
phenomenon, which allows us to have smaller array-size. In
addition, other advantages over conventional arrays include
the low-power consumption (only the active element is fed),
a low cost (only one receiver chain placed in the output of
the active element) and an easy fabrication. All these
advantages make the ESPAR antennas very suitable for
wireless applications such as mobile user terminals in

ad-hoc networks because of the reduced energy
consumption usually demanded in such applications. In
order to ensure high DoAs estimation accuracy with a low
computational complexity, this paper proposes four
algorithms that were not applied to an ESPAR antenna
before. The first algorithm, namely the Reactance Domain
propagator algorithm (RD-PM), is a direct formulation of
the standard propagator method (PM) to the ESPAR
antennas systems and has the advantage of requiring only
linear operations to perform an accurate DoAs estimation.
However, the second algorithm, namely the unitary RD PM
(Unit-RD-PM), is a real-valued formulation of the RD-PM
algorithm by means of unitary transformation of the
estimated RD-CM. Therefore the computational efforts are
saved because all tasks can be accomplished by real
computations and both calculation cost and complexity are
reduced by at least a factor of four since the cost of real
multiplication is four times lesser than complex
multiplication. Moreover, since the unitary transformation
of the RD-CM incorporates forward–backward averaging,
that effectively doubles the number of snapshots (samples),
the resolution capability of the DoAs estimator is further
improved. To further reduce the calculation cost and
complexity without sacrificing DoAs estimation accuracy,
we also propose two other algorithms, in this paper, namely
the unitary LU-RD-propagator algorithm and the unitary
QR-RD-propagator algorithm. These two algorithms are
based on two real-valued orthogonal decompositions
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(RVOD) techniques to estimate the real-valued propagator
operator and both are very efficient in noisy situations. The
key idea is to apply one of the RVOD techniques, such as
the QR decomposition or the LU decomposition, to
estimate the real-valued propagator operator from the
estimated real-valued sample covariance matrices. These
orthogonal decomposition techniques [9–11] are useful
tools commonly used in linear algebra to find solutions for
linear equations. On the other hand, because both
algorithms also use real-valued covariance matrices, the
necessary information about the propagator operator is
obtained through real-valued QR orthogonal decomposition
or real-valued Lower triangular matrix and Upper triangular
matrix (LU) orthogonal decomposition without loss of the
unit-RD-PM algorithm advantages aforementioned.
The paper outline is as follows. In Section 2, we describe

the ESPAR antennas signal model. Section 3 presents the
development of the proposed algorithms. In Section 4, the
performances of the proposed methods are analysed and
discussed via computer simulations. In Section 5, we draw
our conclusions.
The superscripts (.)T, (.)*(.)H, (.)−1 and (.)† are the matrix

transpose, conjugate, Hermitian, inverse and the Moore–
Penrose pseudo-inverse operators, respectively. However, ℜ
(·) is the real-part extraction operators and IM is the M-order
identity matrix.

2 Problem formulation

The ESPAR antennas configuration is composed of one fed
active element (#0) surrounded by M = 6 parasitic radiating
elements (#1–#6) of length l = λ/4 placed in the near-field
of the active radiator as illustrated in Fig. 1. The six
parasitic elements are connected to the ground plane via
some variable reactances {xm}

M
m=1 used to modify the

radiation patterns of the ESPAR antennas by adjusting their
values. We take the active element as the reference and we
denote by r = λ/4 its radius, where the sources wavelength
is denoted by λ. In the presence of K narrowband
uncorrelated signals (i.e. ∀i≠ j, E[sis

∗
j ] = 0) from K distinct

DoAs (u1, u2, . . . , uK ) the steering matrix is given as

A = [a(u1), a(u2), . . . , a(uK )] (1)

where a(uk) = [1, e j
p
2 cos (uk−w1), . . . , e j

p
2 cos (uk−wM )]T and

cm = 2p/M (m− 1), for m = 1 to M.
Since the data are available only in the output of the active

element, an additional assumption about sources is required to
estimate the RD-CM. Indeed, the K incident sources are
assumed to be sent periodically from the far-field. Therefore
the spatial diversity of conventional arrays is recreated by
periodically changing the reactance value and, thus, the
radiation patterns of the ESPAR antennas. While the signals
are periodically sent, as many times as the used directional
radiation patterns (e.g. M + 1 times), the received signals
from the output of the active element y(tm) is saved into a
vector Y. The assumption of periodic signals allows us to
write

Sk (t1) = Sk (t2) = · · · = Sk (tM+1) (2)

where Sk(tm) is the complex magnitude of the kth incoming
periodic signal at instant time tm.
By changing the reactances value of parasitic elements

under M + 1 periods (accordingly we change the radiation
patterns of the ESPAR antennas M + 1 times), we can get
our data vector Y(t) [ C

(M+1)×(1). Thus, we can have
several observations of the same radiated field but with
different ESPAR antennas radiation patterns. This technique
is known in signal processing as the RD technique [6].
The received signal vector Y(t) from the ESPAR antennas

can be written as

Y(t) = [y(t1), y(t2), . . . , y(tM+1)]
T (3)

where y(tm) =
∑K

k=1 w
T
ma(uk)Sk (tm)+ n(tm).

The frequency-weighted matrix W is given as

W = [wT
1 , w

T
2 , . . . , w

T
M+1]

T (4)

Each component of W is computed as

wm = 2Zs(Z+ X(m))(−1)u (5)

with Zs is the receiver’s input impedance,
u = [1, 0, 0, . . . , 0]T, Z [ C

(M+1)×(M+1) is the mutual
impedances matrix and X(m) is a diagonal matrix containing
the mth set of reactance (m = 1 to M + 1) given as

X(m) = diag{Zs, jx
(m)
1 , jx(m)2 , · · · , jx(m)M } (6)

As in conventional arrays, the received data vector in matrix
notation is written as

Y(t) = WTAS(t)+ N(t) (7)

However, the CM is given as

Ryy = E[YYH] = WTARsA
HW∗ + Rn (8)

where Rs = E[SSH] denotes the signals CM,
N(t) = [n(t1), n(t2), . . . , n(tM+1)]

T refers to an additive
Gaussian noise assumed to be spatially white, uncorrelated
and zero mean, E[NNH ] = Rn = s2I is the noise CM and
s2 is the noise power. We also assume that the noise andFig. 1 Seven-element ESPAR antennas
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the signals are uncorrelated with each other (e.g. ∀i, j;
E[sin

∗
j ] = 0). In practice case, only an estimate of the

RD-CM is available, which can be obtained through Ns

snapshots as

R̂yy =
1

Ns

∑Ns

i=1
YYH (9)

3 Development of the proposed methods

Based on the standard propagator methods [3], we present in
this section four non-eigenvector algorithms for DoAs
estimation with ESPAR antennas. Hereinafter, the
frequency-weighted matrix W is assumed full rank for the
chosen reactance sets and perfectly known or obtained
through experimental measurement or calculated using (5)
jointly with a mutual impedance extraction technique [8].
The sources number K is assumed to be known or has been
perfectly estimated by the AIC or MDL criteria addressed
in [12].

3.1 RD-propagator algorithm

The propagator method is based on the partition of the
steering matrix A. As in common subspace methods, we
assume that the RD-steering matrix ARD = WTA is full rank
(i.e. rank(ARD) =K ) for the chosen reactances sets and that
its first rows are linearly independent. In this case, there
exists an (M + 1− K ) ×K matrix P called the propagator
operator [3] such that

�A2 = P�A1 (10)

where �A1 and �A2 are the (K ×K ) and the (M + 1− K ) ×K
sized block matrices, respectively, obtained by partitioning
the RD steering matrix as ARD = [�A

T
1
�A
T
2 ]

T.
If we define the (M + 1) ×K matrix Ep as

Ep = [PT − IM+1−K ]
T, we have EH

p ARD = P�A1 − �A2 = 0.
In other words, the (M + 1) ×K columns of matrix Ep are
orthogonal to the columns of steering matrix ARD. This
means that the subspace spanned by the columns of the
matrix Ep is the same as the subspace spanned by the noise
subspace obtained through an eigendecomposition of the
data CM R̂yy. It follows that the DoAs can be taken as the
directions that minimise the so-called spatial spectrum
function given as

û k = minu‖ÊpW
Ta(u)‖2 (11)

Note that the introduced RD-PM is based on the noise
subspace spanned by the columns of matrix Êp, where its
computation requires a-prior knowledge of matrix ARD that
is usually unknown. However, matrix Êp can be estimated
only from the received data using the least-square solution
as will be more explained in Section 3.3.

3.2 Real-valued RD-CM

To take more advantages from the Centro-symmetric
geometry of the ESPAR antennas and enhance DoAs
estimation capabilities, we transform the estimated RD-CM
(9) to a real-valued representation that virtually doubles the
snapshots number and decorrelates possible correlated

sources. To achieve this goal, the Centro-Hermitian
property of the resulting RD-CM (9) is forced by means of
the so-called forward–backward averaging (FBA) technique
[13]. However, because of the specific geometry of our
ESPAR antennas, components of R̂yy must first be arranged
to have Centro-Hermitian form (linear order) as follows

R̂a = TR̂yyT
T [ C

(M+1)×(M+1) (12)

with T is an (M + 1)-order square transform matrix composed
of zeros and ones satisfying TTT = I and given as

T =

0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 0 0 1
1 0 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 1 0
0 0 0 0 1 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(13)

Then, instead of the conventional (forward-only) RD-CM, the
FBA-RD-CM can be obtained as

R̂FBA = 1

2
(R̂a + JR̂∗

aJ) [ C
×(M+1) (14)

where J is the exchange matrix with zeros components except
in its anti-diagonal.
On the other hand, since the inner product between any two

conjugate Centro-symmetric vectors is real-valued, any
matrix of which each row is conjugate Centro-symmetric
may be employed to transform the complex-valued element
into a real-valued one. However, as mentioned by numerous
authors [14, 15], the simplest matrices for accomplishing
that are Qn and Q2n + 1 defined as follows

QM =
1��
2

√
I(M−1/2) 0(M−1/2) jI(M−1/2)

0T(M−1/2)

��
2

√
0T(M−1/2)

J(M−1/2) 0(M−1/2) −jJ(M−1/2)

⎡⎢⎣
⎤⎥⎦ for odd M

1��
2

√ I(M/2) jI(M/2)
J(M/2) −jJ(M/2)

[ ]
for evenM

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(15)

where IM denotes the M-order identity matrix and 0M is the
M-order zero vector.
We introduce the real-valued RD-CM defined [16] as

Ru = QH
M+1R

FBAQM+1 (16)

However, the estimated one can be given as

R̂u =
1

2
(QH

M+1R̂aQM+1 + QH
M+1JR̂

∗
aJQM+1) (17)

Using the fact that JQ∗
M+1 = QM+1 and JH = J, (17) becomes

R̂u =
1

2
(QH

M+1R̂aQM+1 + (QH∗
M+1)

HR̂∗
aQM+1) (18)
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From (18), we show that matrix R̂u can be directly estimated
from the arranged forward-only RD-CM (12) as

R̂u = <{QH
M+1R̂aQM+1} [ R(M+1)×(M+1) (19)

From (19), we show that all computations can now be done
with real-valued matrices, which form the basis of our
proposed unit-RD-PM algorithm. Based on (18) and (19), it
can be readily shown that the FBA is achieved by
transforming the complex components data CM R̂yy into a
real-valued matrix R̂u after arrangement of their components
into linear form according to (12). Moreover, since (19)
proves that the real-valued RD-CM estimated from the
forward-only RD-CM is equivalent to those estimated from
the FBA-RD-CM (14), our proposed algorithms can be
applied to coherent sources scenarios. In addition,
estimating the real-valued RD-CM through the forward-only
RD-CM not only yields to a very low computational cost
methodology with a reduced data storage requirements, but
also, it avoids certain degradations of asymptotic
performances caused by the FBA technique [16].

3.3 Unit-RD-propagator algorithm

Our development starts with the definition of a new
real-valued RD-steering matrix as

Ae = QH
M+1TW

TA =
A1
· · ·
A2

⎡⎣ ⎤⎦ }K
}M+1−K

(20)

As in common subspace methods, we assume that this new
steering matrix Ae has full rank (i.e. rank(Ae) =K ), which
means that it has K-independent rows. Let A1 be a square
submatrix containing these K-independent rows. The
real-valued propagator operator Pu [ RK×M+1−K is defined
as the unique real-valued linear operator [3] satisfying

PH
u A1 = A2 (21)

However, since our data model include noisy situations, we
first partition the real-valued RD-CM (19) as

R̂u =
Ĝ1 Ĥ1

Ĝ2 Ĥ2

[ ]
(22)

where

Ĝ1 = A1RsA
H
1 + ŝ2IK ; [ RK×K

Ĥ2 = A2RsA
H
2 + ŝ2IM+1−K ; [ RM+1−K×M+1−K

Ĝ2 = A2RsA
H
1 ; [ RM+1−K×K

Ĥ1 = A1RsA
H
2 ; [ RK×M+1−K

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ (23)

After that, an estimation of the noise power can be made as

ŝ2 = < tr(P̂2P̂)

tr(P̂)

( )
(24)

where P̂ = IM+1−K − Ĝ2Ĝ
†
2 and tr{.} denotes the trace

operator.
Once the noise power ŝ2 is estimated, the noise CM

R̂n = ŝ2I can be retrenched from the estimated real-valued
RD-CM, which allows us also to eliminate the mutual
coupling effects as

R̂e = (QH
M+1TW

T)−1(R̂u − R̂n)(Q
H
M+1TW

T)H−1 (25)

From (25), it is clear that the resulting data CM R̂e resembles
the data CM obtained in the noise-free case without mutual
coupling. Thus, as in conventional antennas arrays, we can
apply the formula of the partitioned inverse [16].

R̂e = [Ĝ : Ĥ] (26)

According to the propagator definition, given in (21), we can
write

Ĥ = ĜP̂u (27)

However, relation (27) may not be satisfied in practice case
since the actual RD-CM is estimated from a finite number
of snapshots according to (9). Nevertheless, a least-square
solution can be used to estimate P̂u by minimisation of the
following cost function

J (̂P) = ‖Ĥ − ĜP̂u‖2F (28)

where ‖.‖F denotes the Frobenius norm.
The cost function J (̂Pu) given in (28) seems to be quadratic

function of P̂u and may be minimised to give the unique
least-square solution for P̂u as

P̂u = Ĝ†Ĥ (29)

Based on (29), we define the matrix Ê as

Ê W [̂Pu, − IM+1−K ]
T (30)

According to Marcos et al. [3], the subspace spanned by the
columns of matrix Ê is orthogonal to those of the RD-steering
matrix Ae which allow us to write

AH
e Ê = 0 (31)

To ensure more DoAs estimation accuracy and enhance
resolution capabilities of the proposed unit-RD-PM, Ê
matrix components must be orthonormalised as

Ên = Ê(ÊHÊ)−1/2 (32)

Finally, the estimated DoAs are taken as the directions that
minimise the following cost function
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û k = minu‖ÊnQ
H
M+1Ta(u)‖2 (33)

We report here that since the unit-RD-PM algorithm search
function operates with real-valued data, the calculation
complexity and the processing time are four times lower
than the RD-MUSIC [6]. Moreover, the particularity of
using only linear operations on the estimated RD-CM
(instead of an eigendecomposition), as well as the
possibility of adaptive implementation give our
unit-RD-PM a potential interest for real-time
implementations.

3.4 Improved unitary-RD propagator algorithms

In practice case, the signal-to-noise-ratio (SNR) value is not
always high which involves that the performance of the
propagator method will strongly depend on the signal
information contained in the block matrix Ĝ1 with respect
to the noise and its linear dependency with the block Ĥ1.
To improve its robustness to noise, we propose to insert an
orthogonal decomposition step within the unitary RD-PM
algorithm described above. The key idea is to use the LU or
the QR orthogonal decomposition as well as the properties
of the upper triangular matrix to estimate the real-valued
propagator operator. According to the QR decomposition
theorem, the real-valued RD-CM (19) can be expressed as

Ru = qr = q11 0

q21 IM+1−K

[ ]
r11 r12

0 r22

[ ]
= q11r11 q11r12

q21r11 q21r12 + r22

[ ]
(34)

where r11 [ RK×K , r22 [ R(M−K+1)×(M−K+1) are both
real-valued upper triangular matrices and r12 [ R(K)×(M−K+1)

is a real-valued matrix.
From (21)–(23) and (34), we can write

q11r11 = A1rs A
H
1 + s2IK ; [ RK×K

q21r12 + r22 = A2rs A
H
2 + s2IM+1−K ; [ RM+1−K×M+1−K

q21r11 = A2rsA
H
1 ; [ RM+1−K×K

q11r12 = A1rsA
H
2 ;

[ RK×M+1−K

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(35)

Substituting (21) into (35) yields to

q11r11 = q11r12PQR (36)

According to (36), the novel estimate of the propagator
operator using the QR decomposition is given as

PQR = r−1
11 r12 (37)

From (37) we show that the useful signal components are
concentrated in matrices r11 and r12. In other words, it
concentrates the signal information, which is scattered in all
the RD-CM elements. This concentration improves the
robustness to noise of both proposed unitary RVOD-based

propagator algorithms compared with the case where the
classic propagator method is applied.
Following the similar formulation, using the LU

decomposition, with the same partitioning in matrices L and
U, instead of matrices q and r, we obtain the estimate
propagator operator using the LU decomposition as

PLU = U−1
11 U12 (38)

Let ELU = [PLU, − IM+1−K ]
T and EQR = [PQR, −IM+1−K ]

T

be the estimated noise subspace matrices obtained through the
LU decomposition and the QR decomposition respectively. It
follows that the estimated DoAs are given as the directions of
arrival that minimise the following spectrum functions

uk = minu‖ÊQRQ
H
M+1Ta(u)‖2 (39)

uk = minu‖ÊLUQ
H
M+1Ta(u)‖2 (40)

Both proposed unit-RVOD-RD-Propagator algorithms are
based on the LU or QR decomposition which requires
considerably less computations than the standard
eigendecomposition. Moreover, the useful signal
components are concentrated in both upper triangular
submatrices which yields to a better robustness to noise
compared with the classical propagator method. Moreover,
the reduced calculation cost, compared with the unitary
RVOD-RD-MUSIC algorithms developed in [5], as well as
their robustness to noise make the developed algorithms
very interesting in many applications that require large array
size with a few sources such as the case in underwater
acoustic.

3.5 RD Cramer Rao Bound (RD-CRB)

To evaluate the performances on DoAs estimation of the
proposed algorithms through computer simulation, an
analytical CRB expression that takes into account the
ESPAR antennas particularities is required. Since the
frequency-weighted matrix W is independent of the sources
DoAs and assumed to be a constant matrix, it can be
included in the CRB derivations by replacing the
conventional steering matrix A with the new RD-steering
matrix ARD. In [5], an expression for the CRB was derived
for ESPAR antennas array given as

RD− CRB = s2

2Ns
[(Real{(DHP⊥

RDD)⊙ RT
s })

−1]ii (41)

where ⊙ denotes the Hadamard product and P⊥
e is the

orthogonal projector on the null space of ARD expressed as

P⊥
RD = IM+1 − ARD(A

H
RDARD)

−1AH
RD (42)

with D = (∂ARD/∂u) = WT(∂A/∂u).

4 Simulation results

This section reports simulations that have been conducted for
performances verification of the proposed algorithms. In the
first part, it will be of our interest to validate our approach
by studying the precision and the resolution capabilities
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under uncorrelated sources scenarios. After that, we will
perform other simulations under correlated sources
situations to study the behaviour of the proposed algorithms
in such scenario.
For RD-signal processing technique, more data CM

estimation errors are brought by the directive radiation
patterns, which can be viewed as a natural price of
the ESPAR antennas advantages compared with the
conventional antenna systems as already mentioned in
the introduction. Therefore it is very important to verify the
ability of the ESPAR antennas shape to form such directive
radiation patterns to minimise the data CM estimation
errors. An example of the resulting empirical radiation
patterns are plotted as a function of the azimuth direction
angles in Fig. 2. We can clearly see that our ESPAR
antenna is able to form directive radiation patterns that steer
their maximum beam at 60°, 120°, 240° and 300°,
respectively.
Simulation, as shown in Fig. 3, proves the

multiple-signal-resolution capability of the proposed
methods. It depicts the resulting spectrums obtained using
2000 snapshots to compute R̂u from (19) with 500
independent simulation trials. Three uncorrelated sources,
that impinge the ESPAR antennas from 30°, 60° and 90°,
respectively, are considered with a SNR level of 30 dB per
sources. From the illustrated results, it is clearly seen that
all algorithms exhibit selective peaks towards the true
DoAs. Particularly, we show that both introduced RVOD
techniques can efficiently estimate the propagator operator
from the sampled real-valued RD-CM and achieves

satisfactory results in DoAs estimation in multiple signal
scenarios.
Let us now study the precision in DoAs estimation of these

various algorithms. For this purpose we use, as performance
parameter, the root-mean-square error (RMSE) defined as

RMSE(û k) =
����������������������
1

Ns

∑Ns

n=1
(û k − uk )

2

√
(43)

In Fig. 4, the resulting RMSE on DoAs estimation of two
sources located at 25° and 80°, respectively, are plotted as a
function of the SNR levels. The RMSE results are averaged
over 2000 simulation trials where 5000 snapshots per
pattern are used to compute R̂yy from (9). Fig. 4 shows that
the estimation errors, achieved by the developed algorithms,
decrease quickly and become closer to the RD-CRB curve
as soon as the SNR level increases.
Particularly, this simulation shows that both

unit-QR-RD-PM and unit-LU-RD-PM algorithms achieve
robust DoAs estimation than both RD-PM and unit-RD-PM
algorithms for small SNR levels (noisy situations). This
may be because of the fact that the classic propagator
method is based on a least square solution that is very
sensitive to noise. However, the necessary information of
both RVOD-based unit-PM algorithms that enables an
accurate DoAs estimation is contained in the upper
triangular matrices obtained through LU or QR
decomposition. This leads to some improvement on DoAs

Fig. 2 Example of the directive beam patterns used in the simulation
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estimation accuracy even in noisy environment. Therefore as
Fig. 4 clearly demonstrates, both RVOD techniques can
estimate accurately the propagator operator from these
upper triangular matrices and achieves more robustness to
noise as compared with the classic propagator method.
However, in comparison between these two introduced
RVOD techniques, it is interesting to point out here that the
LU orthogonal decomposition [9] can reduce the calculation
complexity over the QR decomposition by a factor of two.
More precisely, the number of additions and multiplications
required by the QR decomposition is about twice that of
using the LU decomposition. On the other hand, no more
digits are required in inexact arithmetic because the
numerical stability of the QR decomposition is guaranteed,
which reduces the need to a large memory capacity to store
the data.
Simulation shown in Fig. 5 aims at comparing the

performances of the proposed algorithms with both
RD-CRB (41) and conventional arrays. It exhibits the
resulting RMSE on DoAs estimation as a function of the
angular separation Du = |u2 − u1| when two closely
uncorrelated sources impinge the ESPAR antennas with an
SNR of 30 dB. The first source has a DoA at θ1 that

increases from 65° to 80°; however, the second source has
a fixed DoA at θ2 = 60°. Only the RMSE curve of the first
source, obtained with 500 snapshots and averaged over
1000 independent simulation trials, is shown because the
other curve has similar behaviour.
The illustrated results show that both unit-RD-PM and

unit-QR-RD-PM achieve satisfactory estimation accuracy
even for a closely sources’ DoAs (less than 1° for Δθ = 7°).
From Fig. 5, we also show some degradations on the
estimation accuracy of the LU-RD-unit-PM for a closely
sources DoAs scenario. This may be because of the fact
that the LU decomposition has lower numerical stability
than the QR decomposition as mentioned above.
To further validate our approach, it is interesting to

compare the performances on DoAs estimation of our
methods achieved with ESPAR antennas with those
achieved with conventional antennas arrays. The
conventional array is assumed to be perfectly calibrated, so,
mutual coupling effects because of r = l/4 could be
neglected. From Fig. 5, it is clear that conventional array
gives better results than ESPAR antennas. However,
although such results could be expected, performances of
ESPAR antennas can be considered sufficient for DoAs
estimation applications in comparison with conventional
arrays. Moreover, the cost reduction using only a single
active receiver as well as the low-power consumption of the
ESPAR antennas may outweigh their performance loss in
closely sources DoAs scenario compared with conventional
antennas arrays.
Another important criterion for real-time implementation is

the required snapshot number (samples) to achieve good
DoAs estimation. In practice case, we want to decrease the
calculation cost and the time processing as much as
possible by working with a small snapshots number. To
clearly appreciate the influence of the snapshots number on
the performances of the proposed algorithms we summarise,
in Table 1, the DoAs estimation values of two incoming
uncorrelated signals from 55° and 90°, respectively,
obtained through 500 simulation trials with an SNR level of
20 dB per sources. The main goal of those simulations is to
compare the achieved performance by the proposed
algorithms in a few snapshots scenarios.
Results in Table 1 confirm that both unit-RVOD-RD-PM

can perform good DoAs estimation with a small snapshot
number. Indeed, with 500 snapshots the estimation error is

Fig. 4 Resulting estimation errors against the SNR levels

Fig. 3 Resulting spectrums as a function of azimuth angles of the
three proposed algorithms

Unit-LU-RD-PM dotted line, unit-QR-RD-PM solid line and the unit-RD-PM
dashed line

Fig. 5 DoAs estimation errors (RMSE) against the angular
separation Δθ between two incoming uncorrelated sources
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about 0.86° that decreases to 0.1° when the snapshots number
increases to 5000. Therefore our approach can be considered
usable for DoAs estimation since it performs satisfactory
results in finite snapshots number scenario.
The last simulation, shown in Fig. 6, aims at studying the

DoAs estimation of the proposed algorithms under
correlated sources situations. It depicts the resulting RMSE,
computed using 50 000 snapshots and averaged over 1000
simulation trials, against the sources correlation coefficient.
Two correlated sources, with an SNR of 30 dB, that
impinge the ESPAR antenna from 30° and 80°,
respectively, are considered.
Again, because of the similarity, the RMSE curve of the

incoming source from 30° is only shown and the obtained
results are compared with these achieved by the
unit-RD-MUSIC and the unit-QR-RD-MUSIC algorithms
[5]. We can see that both unit-RD-PM and unit-QR-RD-PM
algorithms can prominently distinguish the DoAs of the
incoming correlated sources and perform some
improvements on DoAs estimation over the
unit-LU-RD-PM algorithm for moderately correlated
sources scenarios (0.6 < |ρ| < 0.85). However, as the sources
become fully correlated, (0.94 < |ρ| < 1), the illustrated
results indicate that all RVOD-based algorithms are failure
to estimated the sources’ DoAs as compared with the
unit-RD-MUSIC algorithm and the unit-RD-PM algorithm.
This limitation may be because of the fact that the resulting
algorithms without eigendecomposition are approximation
methods, so that, its numerical stability degrades quickly
when the data CM rank is affected. Nevertheless, Fig. 6
indicates also that all proposed algorithms have
approximately the same behaviour for moderately correlated

sources scenario (0.3 < |ρ| < 0.84). Therefore in comparison
between all proposed RVOD-based algorithms, an accurate
DoAs estimation can be achieved except when the
incoming sources are coherent (|ρ| = 1) as it is also the case
for both unit-RD-MUSIC and unit-RD-PM algorithms.
However, although that may constitute a limitation, the gain
in computational load provided by these techniques by
using only linear operations, may overcomes their
performance loss in coherent sources situations.

5 Concluding comments

Based on the classic propagator method, we have developed
four algorithms for DoAs estimation of highly correlated
signals with an ESPAR antenna. The used real-valued
transformation not only yields to a higher resolution
capabilities, but also, it considerably reduces the estimator
computational complexity, the required data storing capacity
and the processing time, which are challenging criteria for a
real-time implementation of any DoAs estimator.
Furthermore, we also demonstrate that estimating the
propagator operator using both introduced orthogonal
decomposition techniques enables robust DoAs estimation
in noisy environments as compared with the classic
propagator algorithm. Moreover, the performances of the
proposed algorithms are compared with both CRB and
conventional arrays in terms of the angular resolution (Δθ)
and good behaviours are illustrated. In addition, although
that both resulting RVOD-based algorithms are an
approximation methods, the numerical results show its high
accuracy especially for a low SNR levels. On the other
hand, the conducted simulations also show that the
performances of all proposed algorithms are close enough
to the CRB to be considered sufficient for DoAs finding
applications.
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