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Abstract: Owing to the curvature of the conformal carrier, the polarisation diversity of element patterns is one of the most distinct
characteristics of conformal array manifolds. Consequently, direction-of-arrival (DOA) estimation with conformal array antennas
always couples with the estimation of the polarisation. Based on the fourth-order cumulants of the array outputs and an elaborately
designed array structure, an estimation of signal parameters via rotational invariance techniques-based blind DOA estimation
algorithm with respect to polarisation diversity is proposed for conformal array antennas, in which the displacement vectors
required by ESPRIT are acquired by utilising ‘virtual array elements’ derived from actual array elements by ‘virtual cross-
correlation computation’. Owing to the fact that these distance vectors used in algorithm implementation are not affected by
element patterns and source polarisation, the 2D DOA estimates are decoupled from polarisation and obtained with no need
for exact knowledge of array element polarised patterns. The proposed method achieves high-resolution 2D DOA estimation
and is applicable to cylindrical, conical and spherical conformal carriers. The array set-up examples of conical, cylindrical
and spherical carriers are presented for demonstration and the Monte-Carlo simulation results of DOA estimation with
cylindrical conformal array are also provided to illustrate the effectiveness of the proposed algorithm.

1 Introduction

Conformal array antennas [1] will find promising applications in
a variety of fields ranging from space-borne, airborne, ship-
borne, missile-borne radar, space vehicles and wireless
communications to sonar. Their benefits include reduction of
aerodynamic drag, wide-angle coverage, reduced space,
potential increase in available aperture, reduction of radar
cross-section, elimination of radome-induced bore-sight error
and so on. There is an increasing demand for implementing
fast and precise direction-of-arrival (DOA) estimation with
conformal array antennas. Owing to the varying normal of the
carrier, the polarisation diversity of array element patterns is
one of the most distinct characteristics of conformal array
manifolds [2]. This leads to an intractable problem for DOA
estimation with conformal array antennas: the estimation of
the source polarisation is always accompanied by the DOA
estimation because the source polarisation is necessary for
precise modelling of the conformal array. This means that the
polarisation parameters and DOA of incident sources are
required to be estimated jointly. Considering this troublesome
coupling between DOA and polarisation, the most
conventional algorithms [3–7] and their performance analysis
approaches [8–12] for classical array structure cannot be
directly applied to conformal arrays.

Among the high-resolution DOA estimation methods for
conformal array reported recently [13–19], the conventional
DOA estimation method is extended to joint polarisation and

DOA estimation in [13], but the different local Cartesian
coordinates of different array elements are not considered at
all. Performance analysis of classical algorithms for
conformal arrays is discussed in [14], but the polarisation
diversity of conformal array manifolds is ignored. With the
aim to transform conformal manifold into classical uniform
linear array manifold, array transform techniques are used in
[15, 16]. Based on the manifold transformation, the adverse
effect of element pattern on DOA estimation performance is
somewhat mitigated, but the algorithm is limited by the
field-of-view (FOV) and is sensitive to the error in manifold
transformation. A generic modelling method for conformal
array manifold is proposed in [2, 17], in which a spatial
rotation transformation is exploited to describe the different
local Cartesian coordinates for the element-polarised pattern.
Performance analysis of multiple signal classification [3] for
conformal array antennas is presented in [18], which
investigates the effect of element pattern on the performance
of DOA estimation, but prior knowledge of the source
polarisation is assumed.

In the simplified array data model assumed in almost all the
papers mentioned above, the polarisation diversity is not
considered at all, which is unrealistic in practical
applications. Recently, a blind DOA estimation method
with respect to polarisation diversity was proposed for
conical conformal array antenna [19], in which three pairs
of special subarrays are exploited and 2D DOA estimation
are achieved without knowing the polarisation parameters.
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However, this algorithm was developed for conical arrays
only, and cannot be extended to the case of other conformal
array geometries. Based on the fourth-order (FO) cumulants
of array measurements and an elaborately designed array
structure, a blind DOA estimation algorithm for conformal
array antenna is proposed in this paper. The new algorithm
is applicable to cylindrical, conical and spherical carriers
and achieves high-resolution DOA estimation without exact
knowledge of the signal polarisation. The array design
examples of conical, cylindrical and spherical carriers are
presented for demonstration. Monte-Carlo simulation results
of DOA estimation with cylindrical conformal array are also
provided to illustrate the effectiveness of the proposed
algorithm.

The outline of this paper is as follows. Section 2 presents
the conformal array data model and a discussion on the
distinct characteristics of DOA estimation with conformal
arrays. A simple review of the application of FO cumulants
to aperture extension is addressed in Section 3, in which the
mechanism of ‘virtual cross-correlation computation’ (VC3)
[20] is emphasised for the theoretical preparation of the
proposed method. The array element deployments on
conical, cylindrical and spherical carriers are described in
Section 4. A blind DOA estimation algorithm with respect
to polarisation diversity is proposed in Section 5. To
illustrate the effectiveness of the proposed algorithm,
computer simulations are presented in Section 6. Finally,
Section 7 concludes this paper.

2 Conformal array data model

Consider an array of m array elements that conforms to the
arbitrary 3D geometry in Fig. 1 and is impinged by a plane
wave from far-field sources with elevation u and azimuth f.
For the scenario that the normals of element patterns are
identical, the corresponding array steering vector can be
expressed as follows

aclassical(u, f) = [e−j2p(P1 u/l), e−j2p(P2 u/l), . . . , e−j2p(Pm u/l)]T

(1)

u = sin(u) cos(f)X + sin(u) sin(f)Y + cos(u)Z (2)

where u denotes the propagation vector, l is the wavelength
and Pi is the position vector of the ith element.

However, conformal arrays manifest themselves with
different element patterns and orientations because of the
varying curvature of carriers. Hence, the effect of element
patterns must be taken into account in the establishment of
the array data model for the conformal array antennas and

this leads to the polarisation diversity of the conformal
array manifold. As the element pattern is always defined in
its local coordinate system, a spatial rotation transformation
is necessary to find the element pattern in the global
coordinate system. The generic modelling method for an
arbitrary conformal array is presented by exploiting the
spatial rotation transform of element pattern in [2, 17]. On
this basis, the steering vector of conformal array illuminated
by far-field narrowband signals takes the form

aconformal(u, f) = r1e−j2p
P1 u
l , r2e−j2p

P2 u
l , . . . , rme−j2p

Pm u
l

[ ]T

(3)

ri = (g2
iu+g2

if)1/2(k2
u+k2

f)1/2 cos(uigk)

= |gi||pl| cos(uigk) = gi pl = giuku + gifkf (4)

where uu and uf are unit vectors [2], ku, kf are the
polarisation parameters of signal, gi denotes the pattern of
the ith element, pi is the direction of electric field and ri is
the response of unit signal by the ith element in a global
coordinate system as in Fig. 2. uigk denotes the angle
between vector gi and vector pi. If there are n sources and
m array elements, the snapshot model can be expressed as
follows

X = AS + N = (AuKu + AfKf)S + N (5)

S = [s1, s2, . . . , sn]T (6)

N = [n1, n2, . . . , nn]T (7)

Au = [au(u1, f1), au(u2, f2), . . . , au(un, fn)] (8)

Af = [af(u1, f1), af(u2, f2), . . . , af(un, fn)] (9)

Ku = diag(k1u, k2u, . . . , knu) (10)

Kf = diag(k1f, k2f, . . . , knf) (11)

au(ui, fi)

= [g1u e−j2p(P1 ui/l), g2u e−j2p(P2 ui/l), . . . , gmu e−j2p(Pm ui/l)]T

(12)

af(ui, fi)

= [g1f e−j2p(P1 ui/l), g2f e−j2p(P2 ui/l), . . . , gmf e−j2p(Pm ui/l)]T

(13)

where A is the full-rank steering matrix, s denotes the source
waveforms and N is the noise contribution. K ¼ diag(k1,
k2, . . . , kn) is a diagonal matrix with the diagonal entries as

Fig. 1 Arbitrary 3D array antenna Fig. 2 Response of the ith element in the global coordinate system
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k1, k2, . . . , kn. ui, fi are the 2D DOA of the ith signal
illuminating the array. kiu, kif are the polarisation
parameters of the ith signal. They are the components of the
electromagnetic wave along the unit vectors uu and uf.

It can be observed from (3)–(13) that both DOA and
polarisation parameters are embedded in parameterisation of
the outputs of conformal array antennas. Therefore the
primary difficulties and characteristics of DOA estimation
with conformal array can be concluded as follows:

1. Owing to the different element orientations, polarisation
diversity occurs in the conformal array manifold.
2. Both DOA and polarisation parameters are contained in
formulations of the snapshots of the conformal array.
3. DOA and polarisation should be estimated jointly or
decoupled with each other.

In light of the above characteristics of conformal arrays,
the main aim of this paper is to propose a polarisation-
decoupled DOA estimation algorithm for conformal array
antennas. When the snapshots are assumed to be
composed of non-Gaussian signals and additive Gaussian
noise component, the estimation of signal parameters via
rotational invariance techniques (ESPRIT) algorithm [6]
and FO cumulants calculation of array measurements
are explored to decouple DOA estimation from the
polarisation estimation.

3 Application of FO cumulants to aperture
extension

In order to find the source DOA using the ESPRIT algorithm,
the paired subarrays with displacement vector and identical
set-up are necessary. When there are n parameters to be
estimated, n pairs subarrays with different displacement
vectors are required by the ESPRIT algorithm. The
information necessary to estimate parameters is all
embedded in the phases in the displacement vectors. If
there are enough paired subarrays in the conformal array
and the corresponding displacement vectors are independent
of element patterns, the DOA of sources can be found
blindly with respect to polarisation diversity. However, the
special array configuration required by the ESPRIT
algorithm is not always available in general conformal
arrays because of their arbitrary geometries and different
element patterns.

When independent far-field sources emit non-Gaussian
plane signals and the noise contribution is additive
Gaussian random processes (spatial-white or coloured), FO
cumulants calculation of conformal array measurements can
be exploited to implement the high-resolution DOA
estimation. An interpretation for the use of FO cumulants in
narrowband array-processing problems is presented in [20],
where it is shown how FO cumulants of observations
increase the effective aperture of array. With the help of
virtual array elements derived from VC3 presented in [20],
it is possible to implant the ESPRIT algorithm to conformal
array antennas. The cross-correlation between actual and
virtual array element outputs can be computed by FO
cumulants of actual array element outputs, because the FO
cumulants can be interpreted as a vector addition. In other
words, the array element number increases because of the
usage of higher-order statistics (HOS), and the ‘extended
steering vector’ consists of actual and virtual array elements
can be established accordingly. The details of the ‘extended
steering vector’ can be formulated as follows.

Given an array of m array elements, and u being the
propagation vector, the steering vector takes the form

a(u, f) = [r1 exp(−jk0p1 · u), . . . , rm exp(−jk0pm · u)] (14)

where k0 ¼ 2p/l. The ‘extended steering vector’ is the
Kronecker product between the original steering vector and
its conjugated operation

b(u, f) = a(u, f)⊗ a∗(u, f)

= [r1 exp(−jk0p1 · u), . . . , rm exp(−jk0pm · u)]

⊗ [r1 exp(jk0p1 · u), . . . , rm exp(jk0pm · u)]

= [r2
1, r1r2 exp{−jk0(p1 − p2) · u}, . . . ,

r1rm exp{−jk0(p1 − pm) · u}

r2r1 exp{−jk0(p2 − p1) · u}, g2
2, . . . ,

r2rm exp{−jk0(p2 − pm) · u}

..

.

rmr1 exp{−jk0(pm − p1) · u}, . . . ,

rmrm−1 exp{−jk0(pm − pm−1) · u, r2
m}] (15)

where ⊗ denotes the Kronecker product, and (.)∗ denotes the
conjugated operation. When the array element outputs consist
of narrowband far-field independent non-Gaussian signals
and additive Gaussian noise, FO cumulants can suppress
Gaussian components and the covariance matrix of
extended array outputs can be expressed as follows [21]

Rcum4((k1 − 1)2m+ k3, (k2 − 1)2m+ k4)

= cum{xk1
(t), xk2

(t), xH
k3

(t), xH
k4

(t)}

= B(u, f)C4BH(u, f) (16)

B(u, f) = [A(u, f)⊗A∗(u, f)]

= [a(u1, f1)⊗ a∗(u1, f1), a(u1, f1)

⊗ a∗(u2, f2), . . . , a(u1, f1)⊗ a∗(un, fn)

a(u2, f2)⊗ a∗(u1, f1), a(u2, f2)

⊗ a∗(u2, f2), . . . , a(u2, f2)⊗ a∗(un, fn)

..

.

a(un, fn)⊗ a∗(u1, f1), a(un, fn)

⊗ a∗(u2, f2), . . . , a(un, fn)⊗ a∗(un, fn)] (17)

C4((l1 − 1)n+ l3, (l2 − 1)n+ l4)

= cum{sl1
(t), sl2

(t), sH
l3

(t), sH
l4

(t)} (18)

where Rcum4(i, j) denotes the element of matrix Rcum4 in the
ith row and the jth column. C4(i, j) is the element of matrix
C4 in the ith row and the jth column. xki

(t) denotes the
outputs of the kith array element, and ki [ (1,2, . . . ,2m).
sli

(t) is the signal emitted from the lith source, and
li [ (1,2, . . . , n). There are only n non-zero elements in
matrix C4, since signals are zero-mean non-Gaussian
independent random processes and the noise is a zero-mean
Gaussian (spatial-white or coloured) random process. The
non-zero elements multiplied by a(ui,wi) ⊗ a∗(ui,wi) (shown
in (14)) are obtained in the case of l1 ¼ l2 ¼ l3 ¼ l4.
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Observe from (15) that, the difference between elements
rirjexp{2jk0(pi 2 pj) . u} and rjri{exp2jk0(pj 2 pi) . u}(i = j)
in vector b(u, w) is the phase difference, which is not affected
by element patterns and source polarisation. On this basis, the
paired subarrays required by the ESPRIT algorithm can be
constructed through choosing virtual array elements from the
‘extended steering vector’, and the corresponding
displacement vectors are not affected by element patterns (as
shown in the following section in detail). So based on virtual
array element arrays, polarisation-blind DOA estimation can
be implemented for conformal array antennas.

4 Array configurations on conformal carriers

The ESPRIT algorithm requires another identical copy of one
array displaced in space. Given the displacement vector |d|
between paired subarrays, the phase difference caused by d
for narrowband far-field sources with propagation vector ui

can be expressed as exp(2jk0d . ui). Since the period
of exp(2jk0d . ui) is 2p, the phase 2k0d . ui is
2p ≤ 2k0d . ui ≤ p in order to avoid phase ambiguity. The
constant k0 ¼ 2p/l, and 2 |d| ≤ d . ui ≤ |d|, and so it can
be derived that |d| ≤ l/2. On this basis, the displacement
vector d should be limited |d| ≤ l/2. The signal subspaces
US1, US2 of the paired subarrays can be obtained by
eigendecomposition of the covariance matrices of their
measurements. Then the rotation matrix c be derived, and
the diagonal rotation matrix f of the phase difference
exp(2jk0d . ui) can be calculated. On this basis, the DOA
can be estimated from similar matrices c and f. If one
parameter is estimated, one displacement vector is required
by the ESPRIT algorithm. Hence, two different
displacement vectors are necessary when elevation and
azimuth angles all need to be found using the ESPRIT
method. Therefore in order to implement blind DOA
estimation for conformal arrays with respect to polarisation
diversity, the following conditions are required:

1. Two pairs of subarrays with different displacement vectors
should be constructed.
2. Element patterns have no effect on the displacement
vectors provided in (1).
3. Parameter pairing should be implemented for the ESPRIT
algorithm.

The configuration of array elements on a conformal carrier
is changeful because of the varying curvature, and so the
paired subarrays of ESPRIT algorithm are not easily
established by actual array elements. In our work, we
investigate the mechanism of the virtual array elements
from FO cumulants [19], and use subarrays consisting of
virtual array elements to realise high-resolution DOA
estimation for conformal array antennas.

We choose virtual array elements from (15) to form new
steering vectors as follows:

b1(u, f) = [r1r2 exp{−jk0(p1 − p2) u},

r3r4 exp{−jk0(p3 − p4) u} . . . ,

r2k−1r2k exp{−jk0(p2k−1 − p2k) u}] (19)

b2(u, f) = [r2r1 exp{−jk0(p2 − p1) u},

r4r3 exp{−jk0(p4 − p3) u} . . . ,

r2kr2k−1 exp{−jk0(p2k − p2k−1) u}] (20)

where

p1 − p2 = p3 − p4 = · · · = p2k−1 − p2k = Dp (21)

r1r2 = r3r4 = · · · = r2kr2k−1 (22)

r2k−1(ui, fi)r2k (ui, fi) = r2k−1(uj, fj)r2k (uj, fj) (23)

By comparing (19) with (20), we observe that the
displacement vector between b1(u, w) and b2(u, w) is 2Dp
(2Dp ≤ l/2) which is independent of element patterns. So
the DOA can be estimated without any knowledge about
element patterns for conformal array antennas utilising the
ESPRIT algorithm. In order to show the generality of this
method, the array configuration on conformal carriers (such
as conical, cylindrical and spherical carriers) and the virtual
array elements of interest are given as follows.

Conformal array antennas can be divided into several
identical parts along the curved surface to tackle the ‘shadow
effect’ of conformal carriers, so that the signals impinging on
the array in a certain domain can be responded by the array
elements in the same part. The global estimation results for all
FOV can then be acquired by assembling all the local results.
The protocol to tackle the ‘shadow effect’ of conformal
carriers can also be used to ensure that the snapshots from
every subarray consist of signals from front elements. In this
paper, we divide the singly curved conformal array (such as
conical, cylindrical arrays) into three parts, and each of them
takes charge of the 1208 azimuth domain. However, the
doubly curved surface case occurs when the conformal carrier
is spherical, and so the spherical conformal array should be
divided twice along the doubly curved directions. The
spherical conformal array is divided into six parts: three parts
along the azimuth-curved surface and two parts along the
elevation-curved surface. Each of the six parts takes charge of
the 1208 azimuth domain and 908 elevation domain. In this
case, the impinging signals on the spherical array in a certain
domain can be responded by all the array elements in one
part. Since every part of the conformal array has the same
configuration and parameter estimation mechanism, we just
discuss one of them.

4.1 Array configuration on cylindrical carrier

The array structure on a cylindrical carrier is shown in Fig. 3.
The global Cartesian coordinates (X, Y, Z) are given in
Fig. 3a. There are two array elements on every cross section
and the distance vector between them is DP1, |DP1| ¼ l/4 as
shown in Fig. 3b. The distance vector between cross sections
is DP2, |DP2| ¼ l/4 which is explained in Fig. 3c. On the
basis of the configuration in Fig. 3a, the ‘extended steering
vector’ shown as (15) can be obtained using FO cumulants
calculation of array outputs. The paired virtual array elements
v11,v12 derive from paired actual array elements 1 and 2
(shown as in Fig. 3b), and the paired virtual array elements
v21,v22 derive from paired actual array elements 1 and 3
(shown as in Fig. 3c), v11,v12 are counter array elements in the
first paired subarrays, respectively, and v21,v22 are
corresponding array elements in the second paired
subarrays, respectively. According to the same mechanism,
paired virtual array elements (v13, v14), (v15, v16), . . . ,
(v1m21,v1m),(v23, v24), . . . , (v2m21, v2m) can be obtained from
actual array elements. Then two pairs of subarrays can be
provided and their steering vectors [shown as equations
(19)–(23)] consist of virtual array elements chosen from the
‘extended steering vector’. The displacement vectors of the
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two pairs of subarrays are DP1 and DP2, and DP1 ⊥ DP2. Great
convenience is given by the special relationship between DP1

and DP2 when the DOAs of sources are estimated.

4.2 Array configuration on a conical carrier

The array element array structure on a conical carrier is shown
in Fig. 4. The global Cartesian coordinates (X, Y, Z ) are
shown in Fig. 4a. There are three array elements on every
cross section and the interval vector between paired array
elements (such as paired array elements labelled by 1 and 2,
3 and 4, . . . , 2m 2 1 and 2 m) is |DP1| ¼ l/4 illustrated in
Fig. 4b. The distance vector between the middle paired
array elements on different cross sections is |DP2| ¼ l/4,
and the middle array elements are mounted along the
generatrix (shown as in Fig. 4c). On this basis, we can
obtain the paired subarrays by a similar array element
choosing method as used for the cylindrical array in 4.1.
The displacement vectors are DP1 and DP2, and DP1 ⊥ DP2.

4.3 Array configuration on a spherical carrier

The spherical conformal array is shown in Fig. 5. The global
Cartesian coordinates (X, Y, Z) are shown in Fig. 5a. The

array elements on a spherical carrier are divided into two
parts. One part consists of array elements labelled by 1, 2, 3,
4, . . . , 2m 2 1, 2m, and the other part consists of array
elements labelled by 2m + 1, 2m + 2, 1, 3, 2, 4, . . . , 4 m 2 5,
4 m 2 4 (which is shown in Fig. 5a). The interval vector
between array element 1 and array element 2 is |DP1| ¼ l/4
which is equal to the interval vectors between array element 3
and array element 4, array element 5 and array element 6, . . . ,
array element 2 m 2 1 and array element 2 m. The interval
vector between array element 1 and array element 3 is
|DP2| ¼ l/4 which is equal to the vectors between array
element 2 and array element 4, . . . , array element 4m 2 5 and
array element 4m 2 4. On this basis, paired subarrays can
be obtained according to the same mechanism mentioned
above. The displacement vectors are DP1 and DP2, and
DP1 ⊥ DP2.

With the above discussions, the paired subarrays can be
provided utilising virtual array elements derived from actual
array elements on singly curved or doubly curved surfaces
by VC3 if the actual array elements can be divided into two
parts, and the paired actual array elements in the same part
have the same spatial displacement DP1 or DP2 (shown in
Figs. 3–5). The paired actual array elements can always be
found on arbitrary singly curved or doubly curved

Fig. 3 Array elements on a cylindrical carrier

a Structure of the cylindrical conformal array
b Planform of the cylindrical conformal array
c Profile of the cylindrical conformal array

Fig. 4 Array elements on a conical carrier

a Structure of the conical conformal array
b Planform of the conical conformal array
c Profile of the conical conformal array
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conformal surfaces by an elaborately designed array
structure. On this basis, two displacement vectors DP1 and
DP2 can be acquired from the two parts consisting of
actual array elements, and the two displacement vectors
DP1 and DP2 can also be designed having the relationship
DP1 ⊥ DP2.

The paired subarrays required by the ESPRIT
algorithm can be provided utilising array elements
applicable to cylindrical, conical and spherical carriers,
and the displacement vectors DP1 and DP2 are independent
of element patterns, thus making the blind DOA
estimation algorithm with respect to polarisation diversity
possible. The scheme and the steps of the blind
DOA estimation method are described in the following
section.

5 Blind DOA estimation algorithm with
respect to polarisation diversity

In this section, with a cylindrical conformal array as an
example, we investigate in detail the mechanism of blind
DOA estimation with respect to polarisation diversity.

The outputs of a cylindrical conformal array (shown in
Fig. 3) are given as (5)–(13). The snapshots consist of a
signal component emitted by independent narrowband non-
Gaussian far-field sources and additive noise components
which are supposed to be Gaussian random processes. In
addition, the noises are independent of signals. The
covariance matrix Rcum4 of extended array measurements
can be computed from (5) and (16), and the steering vectors
of paired subarrays of virtual elements from ‘extended
steering vector’ can be expressed as follows

b11(ui,fi)= [r1r2 exp{−jk0(p1 −p2) ·ui},

r3r4 exp{−jk0(p3 −p4) ·ui} . . . ,

r2m−1r2m exp{−jk0(p2m−1 −p2m) ·ui}]

= [r1r2 exp(−jk0Dp1 ·ui), r3r4 exp(−jk0Dp1 ·ui) . . . ,

r2m−1r2m exp(−jk0Dp1 ·ui)] (24)

b12(ui, fi) = [r2r1 exp{−jk0(p2 − p1) · ui},

r4r3 exp{−jk0(p4 − p3) · ui} . . . ,

r2mr2m−1 exp{−jk0(p2m − p2m−1) · ui}]

= [r2r1 exp(jk0Dp1 · ui), r4r3 exp(jk0Dp1 · ui) . . . ,

r2mr2m−1 exp(jk0Dp1 · ui)] (25)

b21(ui, fi) = [r1r3 exp{−jk0(p1 − p3) · ui}

r3r5 exp{−jk0(p3 − p5) · ui}, . . . ,

r2m−3r2m−1 exp{−jk0(p2m−3 − p2m−1) · ui}

r2r4 exp{−jk0(p2 − p4) · ui}

r4r6 exp{−jk0(p4 − p6) · ui}, . . . ,

r2m−2r2m exp{−jk0(p2m−2 − p2m) · ui}]

= [r1r3 exp(−jk0Dp2 · ui),

r3r5 exp(−jk0Dp2 · ui), . . . ,

r2m−3r2m−1 exp(−jk0Dp2 · ui)

r2r4 exp(−jk0Dp2 · ui),

r4r6 exp(−jk0Dp2 · ui), . . . ,

r2m−2r2m exp(−jk0Dp2 · ui)] (26)

b22(ui, fi) = [r3r1 exp{−jk0(p3 − p1) · ui}

r5r3 exp{−jk0(p5 − p3) · ui}, . . . ,

r2m−1r2m−3 exp{−jk0(p2m−1 − p2m−3) · ui},

r4r2 exp{−jk0(p4 − p2) · ui}

r6r4 exp{−jk0(p6 − p4) · ui}, . . . ,

r2mr2m−2 exp{−jk0(p2m − p2m−2) · ui}]

= [r3r1 exp(jk0Dp2 · ui),

r5r3 exp(jk0Dp2 · ui), . . . ,

r2m−1r2m−3 exp(jk0Dp2 · ui)

r4r2 exp(jk0Dp2 · ui),

r6r4 exp(jk0Dp2 · ui), . . . ,

r2mr2m−2 exp(jk0Dp2 · ui)] (27)

where Dp1, Dp2 are shown in Fig. 3, and |Dp1| ¼ |Dp2|¼ l/4.
The element patterns satisfy the constraints in (22) and (23),
then the steering vectors of paired subarrays with
displacement vectors 2Dp1 and 2Dp2 are given by (24–27).
The relationships between them take the form

b11(ui, fi) = b12(ui, fi) exp(−jk02DP1 · ui) (28)

b21(ui, fi) = b22(ui, fi) exp(−jk02DP2 · ui) (29)

Observe from (5) that, the outputs of subarray l11 take the
form

X 11 = B11S + N11 = (B11uKu + B11fKf)S + N11 (30)

while the outputs of subarray l12 can be expressed as follows

X 12 = B12S + N12 = (B12uKu + B12fKf)f1S + N12 (31)

f1 = diag[ exp(−jw11), . . . , exp(−jw1n)] (32)

w1i = (2p/l)2DP1 ·ui = 4pDP1 ·ui/l

=p[ sin(uDP1
) cos(fDP1

) sin(ui) cos(fi)

+ sin(uDP1
) sin(fDP1

) sin(ui) sin(fi)+ cos(uDP1
) cos(ui)]

(33)

where B11, B12 consist of (24) and (25) associated with
signals from different bearings. Hence, the following can be
obtained from subarrays l21, l22

f2 = diag[exp(−jw21), . . . , exp(−jw2n)] (34)

w2i = (2p/l)2DP2 ·ui = 4pDP2 ·ui/l

=p[ sin(uDP2
) cos(fDP2

) sin(ui) cos(fi)

+ sin(uDP2
) sin(fDP2

) sin(ui) sin(fi)+ cos(uDP2
) cos(ui)]

(35)

We can obtain the matrix R̂cum4 estimated from the finite
array outputs for the covariance matrix Rcum4. With
eigendecomposition of R̂cum4, the following can be obtained

R̂cum4 = ÛSŜSÛH
S + ÛN ŜN ÛH

N (36)
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ÛS consists of the eigenvectors corresponding to n big
eigenvalues. n is the number of sources and it is known a
priori. ÛN consists of the eigenvectors corresponding

to 4m2 2 n small eigenvalues and theoretically, ÛN = 0. The
range space of ÛS is the signal subspace which is also
spanned by the manifold matrix B(u, w), and therefore the

Fig. 5 Array elements on a spherical carrier

a Strucutre of the spherical conformal array
b Planform of the spherical conformal array
c Profile of the spherical conformal array

Fig. 6 Estimation results when L ¼ 200

a SNR ¼ 20 dB, m ¼ 8
b SNR ¼ 20 dB, m ¼ 16
c SNR ¼ 30 dB, m ¼ 8
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relationship takes the form

ÛS = BT (37)

where T is a non-singular matrix. With the method of selecting
array elements shown in (24)–(27), signal subspaces
ÛS11, ÛS12, ÛS21, ÛS22 can be obtained from ÛS , and they
have the following relationships

span{ÛS11} = span{B11} = span{ÛS12} = span{B12} (38)

span{ÛS21} = span{B21} = span{ÛS22} = span{B22} (39)

where B21, B22 consist of (26) and (27) associated with signals
from different bearings. span{(.)} means the space spanned by
the matrix (.).

Because of these relationships

B12= B11f1 (40)

B22= B21f2 (41)

then

ÛS12 = ÛS11T−1f1T = ÛS11c1 (42)

ÛS22 = ÛS21T−1f2T = ÛS21c2 (43)

Considering the least squares ESPRIT algorithm [6], we have

c1 = (ÛH
S11ÛS11)−1ÛH

S11ÛS12 (44)

c2 = (ÛH
S21ÛS21)−1ÛH

S21ÛS22 (45)

where (.)21 denotes the inverse of matrix (.). The eigenvalues
of c1, c2 are equal to the elements in diagonal matrices f1,
f2. Suppose that the ith eigenvalues of c1, c2 are t1i, t2i,
respectively, then the following can be obtained with the
help of (33) and (35)

exp(−jw1i) = t1i (46)

exp(−jw2i) = t2i (47)

Fig. 7 Estimation results when L ¼ 1000

a SNR ¼ 20 dB, m ¼ 8
b SNR ¼ 20 dB, m ¼ 16
c SNR ¼ 30 dB, m ¼ 8
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Observe from Fig. 2 that, uDP1
= 908, fDP1

= 1808,
uDP2

= 08, fDP2
= 908.With (33), (35), (46) and (47), the

following can be derived

ui = acos[angle(t2i)/p] (48)

fi = acos{angle(t1i)/[ − p sin(ui)]} (49)

where acos(.) denotes arc cosine of (.). angle(.) is used to
obtain the phase angle of the complex number. The
parameters pairing problem can easily be solved because
matrices ci1, c2 have the same eigenvectors shown as in
(42) and (43).

Based on the above preparation, we can summarise the
polarisation-blind DOA estimation algorithm for conformal
arrays as follows:

Step 1: Compute the covariance matrix R̂cum 4 utilising (5) and
(16).
Step 2: Obtain the signal subspace matrix ÛS through the
eigendecomposition of matrix R̂cum 4.

Step 3: According to (24)–(27), ÛS11, ÛS12, ÛS21, ÛS22 are

constructed from ÛS .
Step 4: Matrices c1, c2 are derived from (44) and (45).
Step 5: Eigenvalues t1i, t2i and matrices T1, T2 are computed
by the eigendecomposition of matrices c1, c2.
Step 6: The DOAs of the sources are estimated from (48)
and (49).

Similarly, we can infer that the blind DOA estimation
algorithm for conical and spherical carriers with respect to
polarisation diversity can be derived according to the same
scheme.

6 Simulations

To demonstrate the performance of the proposed DOA
estimation method, 100 Monte-Carlo experiments are
provided for the case of a cylindrical conformal array.

The configuration of the array is shown in Fig. 3. The number
of array elements is 16 or 32, which corresponds to that m ¼ 8 or
m ¼ 16. The number of snapshots is L ¼ 200, L ¼ 1000
or L ¼ 3000, the source number is n ¼ 2, and the bearings

Fig. 8 Estimation results when L ¼ 3000

a SNR ¼ 20 dB, m ¼ 8
b SNR ¼ 20 dB, m ¼ 16
c SNR ¼ 30 dB, m ¼ 8
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of sources are u1 ¼ 708,f1 ¼ 908, u2 ¼ 758,f2 ¼ 958. Without
loss of generality, k1u ¼ 2, k1f ¼ 3; k2u ¼ 5, k2f ¼ 4. The

element patterns are giu = ksin(u′j−f′
j), gif = kcos(u′j−f′

j), and
k . 1 varied with the different positions of different array
elements in the global coordinate system. The signal-to-noise
ratio is SNR ¼ 20 dB or SNR ¼ 30 dB. The sources are
assumed to be independent broadcast binary phase shift-keyed
waveforms, and the noise component is assumed to be additive
spatial-white Gaussian random process. The estimation results
are shown in Figs. 6–8. The estimation results are improved
along with the increase in array elements, SNR and data
length. When the number of snapshots is L ¼ 200, the mean
of the estimation results is satisfactory but the mean square
error (MSE) of f2 is 10.3926 which is undesirable (shown in
Fig. 6a). When the number of snapshots is L ¼ 1000, the
MSE and the mean of estimation results become better (shown
in Fig. 7a). When the number of snapshots is L ¼ 3000, the
results are desirable (shown in Fig. 8a). The number of array
elements also has great effect on the estimation results. With
increase in the number of array elements, the estimation results
become better (shown in Figs. 6a and b, 7a and b, 8a and b).
SNR also has significant effect on estimation results, and when
SNR ¼ 30 dB the estimation results are better than that of
SNR ¼ 20 dB (shown in Figs. 6a and c, 7a and c, 8a and c).
From the above discussions, it is confirmed that the DOAs of
independent sources can be estimated efficiently by the
proposed algorithm.

7 Conclusions

With the help of VC3 and an elaborately designed array
structure, paired subarrays consisting of virtual array
elements are constructed for the application of ESPRIT for
conformal arrays. Based on these novel paired subarrays
and favourable virtues of the pattern of virtual array
elements, a blind DOA estimation algorithm with respect to
polarisation diversity is proposed for cylindrical, conical
and spherical carriers. Simulations results with a cylindrical
conformal array demonstrate that the proposed algorithm
can achieve favourable DOA estimation with no exact
knowledge of the source polarisation and element patterns.
Compared to the existing method, the presented algorithm
is applicable to different conformal carriers and the trade-
off is an increase in the computational complexity since it
is based on the FO cumulants of array measurements.
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