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Abstract: This study proposes three algorithms, requiring only real-valued operations, to estimate the directions of arrival (DoAs)
of correlated sources impinging onto electronically steerable parasitic array radiator (ESPAR) antennas. The constraints on the
proposed algorithms are the same as those imposed onto the reactance domains-MUSIC (RD-MUSIC) algorithm allowing
superior high-resolution localisation capabilities even for correlated sources scenarios with reduced computational cost as well
as a low processing time compared with existing schemes. The first of the three proposed algorithms is a real-valued
formulation of the standard MUSIC algorithm for ESPAR antennas that reduces significantly the computational complexity in
the eigen-analysis stage. However, the other two algorithms are based on real-valued orthogonal decompositions (RVOD)
techniques to estimate the noise subspace of the covariance matrices. We demonstrate that both the RVOD techniques can
efficiently replace the requirement of singular value decomposition or eigenvalue decomposition which reduces further the
computational complexity and makes the DoAs estimation faster. The Cramer Rao bound on the variance of DoAs estimated
by the three proposed algorithms is analysed. The asymptotic performance of the developed methods is studied and compared
with conventional antenna arrays. The simulation results confirm that the developed methods achieve superior precision and
accuracy in DoAs estimation compared to RD-MUSIC even for correlated signals and prove the validity of our approach.

1 Introduction

Reducing the calculation complexity and the processing time
of direction-of-arrivals (DoAs) estimators without sacrificing
performance is a challenging topic that has attracted
considerable attention. In recent years, researchers have
developed various high-resolution DoAs estimators based
on eigen-decomposition of the array covariance matrix,
such as multiple signal classification (MUSIC), estimation
of signal parameters via rotational invariance techniques
(ESPRITs) and propagator [1–4] along with some of their
variants such as extended-MUSIC [3, 4]. Particularly, over
the last decade, a great deal of effort [5–10] has been
focused on taking advantages of eletronically steerable
parasitic array radiator (ESPAR) antennas to improve the
performance of localisation systems. Unlike conventional
antennas arrays, ESPAR antennas are free from the negative
influences of the mutual coupling because they are
fundamentally based on this phenomenon. Therefore there
is no need to use any antenna arrays calibration process. In
addition, ESPAR antennas offer many other advantages
over conventional arrays such as a low-power consumption
(only the active element is fed), low cost (only one receiver

chain placed in the output of active element), small size and
ease of fabrication. Specifically, ESPAR antennas first
developed for applications in wireless ad-hoc networks and
they are consciously used to reduce energy consumption.
Furthermore, the low-power consumption, in comparison
with conventional arrays, makes ESPAR antennas very
suitable for mobile applications and allows them to ensure
more energetic autonomy which is always demanded in
such applications.

For uncorrelated sources DoAs estimation, many high-
resolution methods are adapted to the ESPAR antenna
systems such as RD-MUSIC [5] and RD-ESPRIT [7, 8] and
their performances are considered sufficient for DoAs
estimation applications. Unfortunately, in fully or partially
correlated sources situation, which is very common in
communication systems (e.g. in multipath phenomenon),
these methods have poor performances and their accuracy
degrades severely when the rank of the data covariance
matrices is affected. On the other hand, since the
RD-MUSIC algorithm operates on complex baseband data,
complex computation has to be executed all over the entire
algorithm. Consequently, the processing time and the
computational load of the DoAs estimator will be very
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costly since the main computational cost of spectral MUSIC
is because of the exhaustive spectral search rather than the
eigen-decomposition.

In order to yield high DoAs estimation accuracy with a low
computational complexity, this paper proposes three
algorithms that, to the best of the authors’ knowledge, have
not been applied to an ESPAR antenna before. These
algorithms are, respectively, the unitary RD-MUSIC
algorithm, the unitary LU-RD-MUSIC algorithm and
unitary QR-RD-MUSIC algorithm and are all based on real-
valued representations of the estimated complex sample
covariance matrices. Furthermore, since the computations of
performing the unitary transformation are much less than
those performing the eigen-decomposition and the search
function is evaluated via real-valued matrices, the proposed
unitary RD-MUSIC algorithm saves a significant amount of
required computations. Therefore, the advantage is 2-fold:
on the level of computation and on the level of
performance. First, the computational efforts are saved
because all tasks can be accomplished by real-valued
computations. Thus, the calculation loads as well as the
algorithm complexity are reduced by at least a factor of four
since the cost of real multiplication is four times less than
complex multiplication. Second, the unitary transformation
improves estimator performances by an incorporated
forward–backward averaging (FBA) that effectively
doubles the number of samples and therefore enhances the
resolution capability of DoAs estimators. As a result, two
coherent or highly correlated signals can be resolved. We
also demonstrate analytically and through computer
simulations that, under uncorrelated signals situations, the
asymptotic performances of the unitary RD-MUSIC and the
FBA-RD-MUSIC algorithms are identical. Otherwise, we
prove the exact equivalence of the asymptotic performance
of the unitary RD-MUSIC and FBA-RD-MUSIC for
uncorrelated sources situations. On the other hand, to
further reduce the calculation cost and complexity without
sacrificing DoAs estimation accuracy, we propose two other
algorithms, namely the unitary LU-RD-MUSIC algorithm
and the unitary QR-RD-MUSIC algorithm. Both of these
algorithms have the advantage of requiring only linear
operations and do not involve any eigen-decomposition or
singular value decomposition as in common subspace-based
methods. The key idea is to apply one of the real-valued
orthogonal decomposition (RVOD) techniques, such as the
QR decomposition or the LU decomposition, to estimate
the null space basis (the noise subspace) from the estimated
real-valued sample covariance matrices. These orthogonal
decomposition techniques [11–13] are useful tools
commonly used in linear algebra to find solutions for linear
equations. Nevertheless, because both algorithms also use
real-valued covariance matrices, the necessary information
about the noise subspace is obtained through real-valued
QR orthogonal decomposition or real-valued LU orthogonal
decomposition without the loss of the advantages of the
unitary RD-MUSIC algorithm mentioned above.

The outline of the paper is as follows. In Section 1, after
briefly describing the ESPAR antennas signal model, we
review the reactance domains (RD) technique that allows an
estimation of the covariance matrix from the data available
only in the output of the active element. Then, in Section 2,
we explain how we can transform the complex data
covariance matrix to a real-valued one. In Section 3, we
develop our three proposed algorithms and we explain how
we can extract the noise subspace using RVOD instead of
an eigen value decomposition (EVD). The performances of

the proposed methods are analysed and discussed via
computer simulations in Section 4. Finally, the paper ends
with some concluding comments.

In this paper, the superscripts (.)T, (.)∗, (.)H and (.)21 are the
matrix transpose, conjugate, hermitian and the inverse
operators, respectively. <(.) and =m(.) denote the real-part
and the imaginary-part extraction operators, respectively.

2 Problem formulation

The ESPAR antenna arrays consist of one fed active element
(#0) surrounded by some parasitic radiating elements (#1 to
#6) placed in the near field of the active radiator as shown in
Fig. 1. The six parasitic elements are connected to the
ground plane via some variable reactances {xm}M

m=1 whereby
the radiation patterns of the ESPAR antennas can be
modified by adjusting their values. We take the active
element as the reference and we denote by r = l/4 its radius
and by M ¼ 6 the number of the uniformly distributed
parasitic elements with length l ¼ l/4. In the presence of K
narrowband uncorrelated signals from K distinct DoAs
(u1, u2, . . . , uk) the steering matrix can be written as

A = [a(u1), a(u2), . . . , a(uk )] (1)

where

a(uk) = 1, e j(p/2) cos(uk−c1),..., e j(p/2) cos(uk−cM )
[ ]T

and

cm = 2p

M
(m − 1); for m = 1 to M .

Since the data are available only in the output of the active
element, an additional assumption about sources is required
to form our data covariance matrix. Indeed, the K incident
sources are assumed to be sent periodically from the far
field. Therefore, the spatial diversity of conventional arrays is
recreated by periodically changing the reactance values and,
thus, the radiation patterns of the ESPAR antennas: this
diversity is also called the angular diversity. While the
signals are periodically sent as many times as the number of
the used directional radiation patterns (e.g. M + 1 times), the
received scalar output signal from the active element y(tm)

Fig. 1 Seven elements ESPAR antennas array
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can be stocked into a vector Y. By changing the reactance
values of the parasitic elements under M + 1 periods
(accordingly we change the radiation pattern of the ESPAR
antennas M + 1 times), we obtain our data vector
Y (t) [ C

(M+1)×(1). Thus, we can have several observations
of the same radiated field but with different radiation
patterns. This technique is known, in signal processing, as
the RD technique [5].

The assumption of periodic signals allows us to write

Sk (t1) = Sk (t2) = · · · = Sk (tM+1) (2)

where Sk(tm) is the complex magnitude of the kth incoming
periodic signal at the instant time tm.

The received signal vector Y (t) from an ESPAR antenna
system can be written as

Y (t) = [y(t1), y(t2), . . . , y(tM + 1)]T (3)

where y(tm) =
∑K

k=1 wT
M a(uk )Sk (tm) + n(tm)

The frequency weighted matrix W is given as

W = [wT
1 , wT

2 , . . . , wT
M+1]T (4)

Each component of W is computed as

wm = 2Zs(Z + X (m))−1u (5)

with Zs is the receiver’s input impedance,
u = [1, 0, 0, . . . , 0]T, Z [ C

(M+1)×(M+1) is the mutual
impedances matrix and X (m) is a diagonal matrix that
contains the mtth set of reactance (for m ¼ 1 to M + 1)
given as

X (m) = diag{Zs, jx(m)
1 , jx(m)

2 , . . . , jx(m)
M } (6)

As in conventional arrays, the received data vector by the
ESPAR antennas can be given in matrix notation as

Y (t) = W TAS(t) + N(t) (7)

The covariance matrix can be written as

Ryy = E[YY H] = W TARsA
HW ∗ + Rn (8)

where N(t) = [n(t1), n(t2), . . . , n(tM+1)]T refers to an additive
Gaussian noise vector assumed to be spatially white,
uncorrelated and zero mean, that is, E[NNH] = Rn = s2I .
The noise and the signals are assumed to be uncorrelated
with each other (e.g. for ∀ i, j; E[sin

∗
j ] = 0 and ∀ i = j,

E[sis
∗
j ] = 0).

With Rs = E[SSH] denoting the signals covariance matrix,
Rn is the noise correlation matrix and s2 is the noise power.

The eigen-decomposition of the estimated (sample)
complex covariance matrix R̂yy, obtained through Ns
snapshots, can be written as

R̂yy =
1

Ns

∑Ns

i=1
YY H = ÊsL̂sÊ

H
s + ÊnL̂nÊH

n (9)

where Ês = [̂e1, ê2, . . . , êk] is the estimated complex signal

subspace, Ên = [̂ek=1, êk+2, . . . , êM+1] is the estimated

complex noise subspace and both L̂n = diag{l̂k+1,

l̂k+2, . . . , l̂M+1} and L̂s = diag{l̂1, l̂2, . . . , l̂k} are
diagonal matrices formed by the estimated eigenvalues

[l̂1, l̂2, . . . , l̂M+1] from the forward-only complex
covariance matrix (9).

3 Real-valued covariance matrices

The unitary variants of subspace methods are applicable to any
centro-symmetric [A simple geometrical definition is that an
array is centro-symmetric if it is identical before and after
rotating 1808 over its centre of mass. For example, a uniform
linear array is a centro-symmetric array.] array configuration.
Since the ESPAR antennas shape in Fig. 1 fits this criterion,
in this section we develop the unitary RD-MUSIC algorithm
to benefit more advantages from ESPAR antenna systems.
Hereinafter, the number of sources K is assumed to be
known or has been perfectly estimated by the AIC or MDL
criteria [14]. The frequency weighed matrix W is assumed
full rank for the chosen reactance sets and perfectly known
or obtained through experimental measurement or calculated
using (5) jointly with a mutual impedance extraction
technique [7]. To further simplify the exposition, some
notations and definitions must be reviewed first.

We denote by 0n the (n × 1) zero vector and we call
QM [ C

M×M the left-real matrix satisfying JQ∗
M = QM .

However, we denote by J the exchange matrix, composed
of ones on its anti-diagonal and zero elsewhere, given as

J =

0 . . . 0 1
0 . . . 1 0

..

. ..
.

0 ..
.

1 0 . . . 0

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦ (10)

† An array geometry comprising sensors is called centro-
symmetric if its element locations are symmetric with
respect to the centre [15] and the complex radiation
characteristics of paired elements are the same.
† We call the matrix R Centro-symmetric if it is symmetric
about its centre. More precisely, a square matrix R is
centro-symmetric when it satisfies RJ = JR.
† We can say that R is a centro-Hermitian matrix if it satisfies
JR∗J = R.

To virtually double the snapshots number and decorrelate
possible correlated sources, the Centro-Hermitian property
is sometimes forced by means of the so-called FBA.
However, because of the specific geometry of the ESPAR
antennas, components of R̂yy must first be arranged to have
centro-Hermitian form (linear order) as follows

R̂a = TR̂yyTT [ C
(M+1)×(M+1) (11)

where T is an (M + 1)-by-(M+1)-sized transform matrix
composed of zeros and ones that change the component
order of R̂yy into a linear order. It satisfies T TT ¼ I and is
given as

T =

0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 0 0 1
1 0 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 1 0
0 0 0 0 1 0 0

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(12)
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Then, instead of the conventional (forward-only) sample
covariance matrix, the estimated forward–backward
complex sample covariance matrix can be obtained as

R̂FBA = 1

2
(R̂a + JR̂∗

a J ) [ C
(M+1)×(M+1) (13)

The eigen-decomposition of the estimated FBA-covariance

matrix R̂FBA (13) can be written as

R̂FBA = ÛsĜsÛ
H
s + ÛnĜnÛH

n (14)

with Ûs = [Û1, Û2, . . . , ÛK ] is the estimated complex signal
subspace, Ûn = [ÛK+1, ÛK+2, . . . , ÛM+1] is the estimated
complex noise subspace and both Ĝs =
diag{ĝ1, ĝ2, . . . , ĝK} and Ĝn = diag{ĝK+1, ĝK+2, . . . ,
ĝM+1} are diagonal matrices formed by the estimated
eigenvalues [̂g1, ĝ2, . . . , ĝM+1].

Since the inner product between any two conjugate centro-
symmetric vectors is real valued, any matrix of which each
row is conjugate centro-symmetric may be employed to
transform the complex-valued element into a real-valued
manifold. As noted by numerous authors [16–19], the
simplest matrix for accomplishing that is QM defined as
follows

QM =

1
2

√
I (M−1/2) 0(M−1/2) jI (M−1/2)

0T
(M−1/2)


2

√
0T

(M−1/2)

J (M−1/2) 0(M−1/2) −jJ (M−1/2)

⎡
⎢⎣

⎤
⎥⎦, for odd M

1
2

√ I (M/2) jI (M/2)

J (M/2) −jJ (M/2)

[ ]
, for even M

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(15)

We introduce, then, the real-valued covariance matrix [20] as

Ru =QH
M+1RFBAQM+1 (16)

The real-valued sample covariance matrix can be given as

R̂u =
1

2
(QH

M+1R̂aQM+1 +QH
M+1JR̂∗

a JQM+1) (17)

Using the fact that JQ∗
M+1 =QM+1 and JH = J , (17) becomes

R̂u =
1

2
(QH

M+1R̂aQM+1 + (QH
M+1

∗)HR̂∗
a Q∗

M+1
) (18)

From (18), we show that matrix R̂u can be directly estimated
from the forward-only sample covariance matrix as

R̂u =<{QH
M+1R̂aQM+1} [ R(M+1)×(M+1) (19)

Equation (18) forms the basis for the application of all
our proposed unitary RD-MUSIC algorithms and all
computations can now be done with real-valued matrices.
Based on (18) and (19), it can be readily shown that the FBA
is achieved by transforming the complex components of the
covariance matrix R̂yy into a real-valued one R̂u after the
arrangement of their components into linear form according
to (11). Moreover, since (18) proves that the real-valued
covariance matrix estimated from the forward-only covariance
matrix is equivalent to those estimated from the FBA
covariance matrix (14), our proposed algorithms can be

applied to coherent sources scenarios. In addition, estimating
the real-valued covariance matrix through the forward-only
covariance matrix not only yields to a very low computational
cost with a reduced data storage requirements, but also, it
avoids certain degradations of asymptotic performances
caused by the FBA technique [20].

4 Development of the proposed methods

4.1 Unitary RD-MUSIC algorithm

Let us now formulate the unitary RD-MUSIC algorithm that
is basically related to the centro-symmetry propriety of the
used ESPAR antennas shape. It begins with the estimation
of the sample covariance matrix R̂yy according to (9). Then,
similar to standard MUSIC [1], the real-valued noise
subspace Êr

s can be computed via real-valued eigen-
decomposition of the covariance matrix (19). Therefore the
next step is to estimate the real-valued noise subspace as
the (M + 1 − K) real eigenvectors corresponding to the
(M + 1 − K) smallest real eigenvalues of R̂u as

R̂u = Êr
sL̂

r
sÊ

rH

s + Êr
nL̂

r
nÊrH

n (20)

where Êr
s = [êr

1, êr
2, . . . , êr

K ] is the estimated real-valued

signal subspace, Êr
n = [êr

k+1, êr
k+2, . . . , êr

M+1] is the
estimated real-valued noise subspace and both

L̂r
s = diag{l̂ r

1 , l̂ r
2 , . . . , l̂ r

K} and L̂r
s = diag{l̂ r

k+1, l̂ r
k+2, . . . ,

l̂ r
M+1} are real-valued diagonal matrices formed by the

estimated eigenvalues [l̂ r
1, l̂ r

2 , . . . , l̂ r
M+1].

On the other hand, it can be seen that both eigenvectors and
eigenvalues of matrices (19) and (14) are related to those of
matrix (9) as follows

Êr = QH
M+1TÊ (21)

L̂r = QH
M+1TL̂ (22)

Û = TÊ (23)

Ĝ = TL̂ (24)

Finally, as any MUSIC-type algorithm, the estimated DoAs
are taken as the directions (u) that maximise a spectrum
search function. Starting with the RD-MUSIC algorithm the
search function is given as

PESPAR
MUSIC = ((W Ta(uk))HÊnÊH

n W Ta(uk))−1 (25)

Based on (23) and (24), the FBA-RD-MUSIC search function
can be written as

PESPAR
FBA-MUSIC = ((TW Ta(uk))HÛnÛH

n TW Ta(uk))−1 (26)

By using the fact that QM+1QH
M+1 = I , (26) becomes

PESPAR
FBA-MUSIC = ((TW Ta(uk))HQM+1QH

M+1

× ÛnÛH
n QM+1QH

M+1TW Ta(uk ))−1 (27)

Using (21) and (22) and through some mathematical
manipulations, the unitary RD-MUSIC search function can
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be given as

PESPAR
Unit-MUSIC = (ã(uk )HÊr

nÊrH

n ã(uk ))−1 (28)

Note that the real-valued RD-steering vector given as:
ã(uk) = QH

M+1(TW Ta(uk)) is orthogonal to the columns of
the real-valued noise subspace matrix Er

n and proportional
to the columns of the real-valued signal subspace Er

s. We
stress also that, since the unitary RD-MUSIC algorithm
search function operates on real-valued data and the eigen-
decomposition is computed for real-valued matrices instead
of complex-valued matrices, the calculation complexity and
the processing time of the proposed algorithm are about
four times lower than the RD-MUSIC [5]. Therefore our
unitary RD-MUSIC algorithm can be considered as a good
candidate for real-time implementation.

4.2 Unitary RD-MUSIC algorithm with RVOD

The classic MUSIC algorithm [1] is based on the
orthogonality between the noise and the signal subspaces
estimated through an eigen-decomposition of the data
covariance matrix. In this sub-section, we will demonstrate
that these subspaces can be estimated through only linear
operations. Based on some orthogonal decomposition
techniques, such as the LU decomposition and the QR
decomposition, an estimation of the orthonormal vectors
that span the same subspaces spanned by the columns (e.g.
basis of the noise subspace) of the sample covariance
matrix can be achieved. Therefore the complexity of the
DoAs estimator is further reduced since the use of the
standard EVD technique has been avoided. The LU
decomposition involves that the real-valued matrix Ru in
(20) can be expressed as the product of two real matrices:
an orthogonal (M + 1)-order square matrix L and an
(M + 1)-order square upper triangular matrix U. Thus, the
LU decomposition of Ru can be written as

LU (Ru) = LU = [L1L2]
U11 U12

0M−K+1 U22

[ ]
(29)

where U11 [ RK×K , U22 [ R(M−K+1)×(M−K+1) are both real-
valued upper triangular matrices and U12 [ R(K)×(M−K+1) is
a real-valued matrix.

Furthermore, since the sub-matrix U22 has a small norm,
we can easily extract the basis of the noise sub-space from

Ũ = [U11 U12] (30)

Let p = [p1 p2]T, with p1 [ R(K×1) and p2 [ R((M−K+1)×1),
be any vector belonging to the null subspace of the real-
valued matrix Ũ which is also the null space of the real-
valued covariance matrix Ru. Therefore we can write

R̂u p = 0 (31)

Substituting (29) and (30) in (31) yields to

[L1][U11 U12]
p1

p2

[ ]
= 0 (32)

Equation (32) implies that

U12 p1 + U12 p2 = 0 (33)

Then, since U11 is a non-singular matrix with full rank (i.e.
rank(U11) ¼ K ), p1 can be given as a function of p2 as follows

p1 = −U−1
11 U12 p2 (34)

Based on (34), p can be written as

p = p1

p2

[ ]
= −U−1

11 U12

IM−K+1

[ ]
p2 = ELU p2 (35)

Substituting (35) into (31) yields

Ru p = RuELU p2 = 0 (36)

or simply

RuELU = 0 (37)

Finally, the null space of Ru can be estimated as

ELU = −U−1
11 U12

IM−K+1

[ ]
(38)

Equation (37) proves that the necessary information about the
noise subspaces can be extracted using the RVOD. However,
although the null spaces in (38) and in (21) have the same
form and dimensions, the columns of ELU are not
orthonormal as those provided by the standard EVD. To
achieve better results and enhance the numerical stability of
our proposed algorithms, we make the basis of the
estimated null space of ÊLU orthonormal by forming an
orthogonal projection onto this subspace as follows

ÊOD = ÊLU (ÊH
LU ÊLU )−1ÊH

LU (39)

The real-valued QR orthogonal decomposition is done in the
same way as described for the real-valued LU decomposition
derived above. Thus, the search function of both unitary
RD-MUSIC algorithms based on RVOD techniques can be
given as

PESPAR
unit-RVOD-MUSIC = (ã(uk)HÊODã(uk))−1 (40)

In comparison between these two RVOD methods, it is
interesting to point out here that the LU orthogonal
decomposition [11] can reduce the calculation complexity
over the QR decomposition by a factor of two. More
precisely, the number of additions and multiplications
required by the QR decomposition is about twice that of
using the LU decomposition. On the other hand, no
more digits are required in inexact arithmetic because the
numerical stability of the QR decomposition is guaranteed
which reduces the need to a large memory capacity to store
the data.

5 Cramer Rao bound (CRB)

The CRB is defined as the ultimate accuracy achieved by any
unbiased estimator: E(ûi − ui) ≥ CRB(ûi) for the ith signal
where ûi is the estimated value of DoA ui. Thus, to evaluate
performances on DoAs estimation of the proposed
algorithms through computer simulation, an analytical CRB
expression that takes into account such effects is required.
Since the frequency weight matrix W is independent of the
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sources DoAs and assumed to be a constant matrix, it can
be included in the CRB derivations by replacing the
conventional steering matrix A by the new RD-steering
matrix Ae = W TA. In [21], an expression for the CRB was
derived for conventional antennas array systems and can
also be applied to the ESPAR antenna by changing the
steering matrix. This expression is given as

CRB = s2

2Ns

[(Real{(DHP+
e D) ⊙ RT

s })−1]ii (41)

Here, ⊙ denotes the Hadamard product and P+
e is the

orthogonal projector on the null space of Ae expressed as

P+
e = IM+1 − Ae(AH

e Ae)−1AH
e .

where IM+1 is the identity matrix and D = W T ∂A

∂u
.

6 Simulation results

In this sub-section, we conduct computer simulations to
evaluate the performances of our three proposed algorithms
and compare them with both the RD-MUSIC algorithm [5]
and conventional antenna arrays. In the first part, it will be
of our interest to validate our approach by studying the
precision and the resolution capabilities of these algorithms
under uncorrelated sources scenarios. After that, we will
perform other simulations under correlated sources
situations to demonstrate the efficiency of these algorithms
in such a scenario.

6.1 Performances on DoAs estimation under
uncorrelated sources

This first simulation, shown in Fig. 2, proves the multiple-
signal-resolution capability of the proposed methods. It
depicts the resulting MUSIC spectra, these being the unitary
RD-MUSIC (dotted line), the unitary LU-RD-MUSIC
(dashed line) and the RD-MUSIC algorithm (solid line),
obtained through 2000 snapshots to compute R̂u from (19)
and 500 simulation trials when three uncorrelated sources

impinge the ESPAR antennas from 25, 55 and 808,
respectively with an signal to noise ratio (SNR) level of
35 dB. In Fig. 2, the unitary QR-RD-MUSIC spectrum is
not plotted because of the similarity to the unitary LU-RD-
MUSIC spectrum. We can clearly see that, in comparison
with the unitary RD-MUSIC, the unitary LU-RD-MUSIC
spectrum has more selective peaks towards the true DoAs.
Thus, we can say that the RVOD techniques can efficiently
extract the basis of the noise subspace from the real-valued
sample covariance matrices and achieve satisfactory results
in DoAs estimation.

Lets us now study the precision in DoAs estimation of
these various methods. For this purpose we use, as
performance parameters, the root mean square error

(RMSE) defined as RMSE(ûk) =

1

Ns

∑Ns

n=1
(ûk − ûk )2

√
and

the RD-CRB standard deviation given by

StdRD-CRB(û ) =

CRB(ûi)

√
.

The simulation shown in Fig. 3 aims at investigating the
performances of the proposed methods and comparing it
with the Std-RD-CRB. The angular resolution capabilities
are illustrated against the angular separation Du = |u2 − u1|
between two incoming uncorrelated sources. The first
source has a DoA at u1 that increases from 65 to 908,
however, the second source has a fixed DoA at u2 ¼ 608
and only the first source RMSE curve is shown since the
other curve will behave similarly. As mentioned above, the
exact equivalence between the unitary RD-MUSIC and
FB-RD-MUSIC algorithms is clearly shown in Fig. 3 since
their RMSE curves are identical. Results in Fig. 3 also
show that the unitary LU-RD-MUSIC performs better
DoAs estimation accuracy even for a very close source’
DoAs (Du ¼ 58) and its RMSE curve is closer to the Std-
CRB for a large sources angular separation (Du . 258).
Thus, in comparison with other methods, the unitary
RVOD-RD-MUSIC exhibits better estimation errors and
can perform robust DoAs estimation even when the
incoming sources are closer together.

To further validate our approach, we compare the
performances on DoAs estimation of these methods

Fig. 2 Resulting MUSIC spectrums of the proposed algorithms as
a function of azimuth angles: three uncorrelated sources incoming
from 25, 55 and 808, respectively. Each source has an
SNR ¼ 35 dB where 2000 snapshots are used to compute R̂u from
(19) with 500 simulation trials

Fig. 3 DoAs estimation errors (RMSE) against the angular
separation between two incoming uncorrelated sources from 608
and 608+ Du, respectively. SNR is set to 35 dB, 2000 snapshots
are used to estimate both R̂FBA and R̂u from (13) and (19),
respectively, with 500 independent trials run
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achieved with ESPAR antennas to those obtained with
conventional antennas arrays. The conventional array is
assumed to be perfectly calibrated, so, mutual coupling
effects because of r = l/4 may be neglected. Simulations
in Fig. 3 show that conventional array antenna gives better
results than ESPAR antennas. However, although such
results could be expected, performances of ESPAR
antennas can be considered sufficient for DoAs estimation
applications in comparison with conventional arrays (less
than 0.18 for Du , 208). On the other hand, the cost
reduction using only a single active receiver as well as the
low power consumption of ESPAR antennas, may outweigh
their loss of performances compared to conventional arrays.

Since the number of snapshots (samples) is an important
criterion in real-time implementation, in practice we want to
decrease the calculation cost and the time processing of the
DoAs estimators as much as possible by working with a
small snapshots number. As all proposed algorithms are
based on the unitary transformation, in which the number of
snapshots virtually increases, it yields better results in few
snapshots scenario compared to the RD-MUSIC. To clearly
appreciate the influence of the snapshots number on the
performances of the proposed algorithms we summarise, in
Table 1, the DoAs estimation values of two incoming
uncorrelated signals from 55 and 908, respectively, obtained
through 500 simulation trials with an SNR level of 25 dB.
The main goal of those results is to highlight the
improvement brought by the proposed algorithms over the
RD-MUSIC in few snapshots number scenarios. We can
see from the precision on DoAs estimation that our methods
remain good for a small number of snapshots. By 50
snapshots we reach an estimation error of 0.68 that
decreases to 0.18 when the snapshots number increases to
2000. Therefore our approach can be considered usable for
DoAs estimation even with a reduced number of samples
since it performs better finite sample performance than the
RD-MUSIC algorithm.

6.2 Performances on DoAs estimation of
correlated sources

In the previous part, we have verified that all our proposed
methods can be used for DoAs estimation applications. In
this second part, our interest is to study their DoAs
estimation capabilities against the absolute value of the
sources’ correlation coefficient |r|.

The simulation shown in Fig. 4 aims at demonstrating the
accuracy on DoAs estimation of our proposed algorithm
under correlated sources situation. It depicts the resulting
RMSE of DoAs estimation computed using 1000 snapshots
and averaged over 500 simulation trials against the
correlation coefficient between two correlated sources
impinging the ESPAR antenna from 30 and 808,
respectively, with an SNR ¼ 30 dB. Again, we have not

included the results for the second source because of the
similarity and we focus only on the RMSE of source
incoming from 308. We show that both unitary RD-MUSIC
and unitary LU-RD-MUSIC algorithms can prominently
distinguish the DoAs and perform significant performances
improvement on DoAs estimation over the RD-MUSIC
algorithm. Moreover, Fig. 4 illustrates a sensitive
improvement on DoAs estimation with the unitary LU-RD-
MUSIC for highly correlated sources scenarios (|r| , 0.85)
over the unitary RD-MUSIC.

Since Fig. 4 clearly indicates that, under correlated sources
situations and for large SNR levels, both unitary RVOD-RD-
MUSIC algorithms can provide better results, it is interesting
to compare their performances in such a scenario. For this
purpose, Fig. 5 illustrates the resulting RMSE on DoAs
estimation computed using 5000 snapshots and averaged
over 2000 simulation trials against the absolute values of
correlation coefficient between two correlated sources that
impinge the ESPAR antenna from the same DoAs as in the
previous simulation but with an SNR ¼ 35 dB.

As with the results given in Fig. 4, only the behaviour of
the incoming source from 308 is shown. Results given in
Fig. 5 will be interpreted with respect to three cases:
uncorrelated sources, moderately correlated sources and
fully correlated sources situations. Under uncorrelated
sources situation, we show that all algorithms can ensure an
accurate DoAs estimation and behave approximately in the
same way. However, as soon as the sources become
moderately correlated (0.2 ≤ |r| ≤ 0.65), in contrast to the
unitary RD-MUSIC that still gives an accurate DoAs
estimation, we show some degradations in the performances
achieved by both unitary RVOD-RD-MUSIC algorithms.

Table 1 Influence of the snapshots number on DoAs estimation

Unitary LU-RD-

MUSIC

Unitary QR-RD-

MUSIC

Unitary RD-

MUSIC

RD-MUSIC

SNR, dB 25 25 25 25 25 25 25 25

true DoAs, DEG 558 908 558 908 558 908 558 908
estimated DoAs for 50 snapshots 54.78 90.68 54.78 90.58 54.88 90.68 54.68 90.88
estimated DoAs for 200 snapshots 54.68 90.38 54.68 90.38 55.28 90.48 55.38 90.58
estimated DoAs for 2000 snapshots 55.18 90.28 55.18 90.28 55.18 90.38 55.28 90.48

Fig. 4 Resulting RMSE of DoAs estimation against the sources
correlation coefficient: sources incoming from 30 and 808,
SNR ¼ 30 dB, 1000 snapshots and 500 simulation trials
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In the last case, where the sources are fully correlated (i.e.
0.9 ≤ |r|), both RVOD-based unitary RD-MUSIC algorithms
have a sensitive failure on DoAs estimation. This may be due
to the fact that the sources correlation affects the data
covariance matrices rank and therefore it becomes difficult
to extract the noise sub-space basis through the RVOD
techniques. This can be further verified by analysing the
behaviour of the unitary RD-MUSIC that is based on the
standard EVD to estimate the noise sub-space. Indeed, as
illustrated in Fig. 5, the unitary RD-MUSIC algorithm
shows acceptable results for DoAs estimation (RMSE less
than 0.88) for an important sources correlation coefficient
(|r| ¼ 0.95), however, an important estimation errors
(RMSE more than 1.58) is shown when the incoming
sources are coherent (|r| ¼ 1). Thus, in comparison with
the standard EVD, Fig. 5 clearly indicates that both
proposed RVOD techniques are unable to achieve an
accurate estimation of the noise sub-space except when the
incoming sources are coherent as it is also the case for the
unitary RD-MUSIC. Nonetheless, the gain in computational
load provided by these techniques, by using only linear
operations, may overcome their performance loss in
coherent sources situation.

7 Concluding comments

Based on unitary formulation of the MUSIC algorithm for
ESPAR antennas, we have proposed three algorithms to
estimate the DoAs of impinging highly correlated signals.
These algorithms are based on real-valued transformation of
the estimated covariance matrices. The real-valued
transformation not only yields higher-resolution capabilities,
but also considerably reduces the estimator computational
complexity, the required capacity to store the data as well
as the processing time which is a challenging criterion for a
real-time implementation of any DoAs estimator (e.g. as on
a DSP chip). To ensure more calculation complexity
reductions, two RVOD techniques are introduced to
estimate the real-valued noise subspaces instead of the
standard EVD ones. From the simulation results, we can see
that, under highly correlated sources, the proposed
algorithms can prominently distinguish the DoAs and
perform significant improvement on DoAs estimation over

the RD-MUSIC algorithm. In the same way, we
demonstrate that the LU decomposition can perform
sensitive improvements on DoAs estimation over the QR
decomposition especially under highly correlated sources
environment.
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