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Abstract: For synthetic aperture radar (SAR) systems, antenna array which is distributed in flight direction could increase the
equivalent sample frequency in azimuth by a factor of the number of elements of antenna array. With a reconstruction
algorithm, the aliased Doppler spectrum could be recovered. However, the degradation of conventional algorithms for
reconstructing the Doppler spectrum with special pulse repetition frequency (PRF) shows poor robustness and the out-of-band
energy which is caused by the side lobes of the antenna pattern deteriorates the azimuth ambiguity to signal ratio of a
multichannel SAR. In this study, an improved reconstruction algorithm based on antenna pattern is proposed by generating an
ambiguity matrix, which resembles the covariance matrix and could be used to reconstruct in-band signal and minimise the
azimuth ambiguity energy. Aiming at increasing the robustness of the algorithm, the method of diagonal loading is introduced
to the approach. Even in the scenario of special PRF, which is close to the singular point, the signal could be successfully
reconstructed with the improved approach. Simulation results validate the proposed method.

1 Introduction

Synthetic aperture radar (SAR) is a powerful and increasingly
developing technique for acquiring high-resolution radar
images in all-weather conditions day and night. The
applications of SAR include agriculture, ship and oil slick
detection, land cover mapping, dynamic monitoring etc. [1,
2]. All those applications would benefit from high-
resolution images for detailed information and from wide
swath images reducing the revisiting time. However,
conventional SAR systems cannot meet the two
requirements simultaneously [2].
In recent years, multichannel SAR systems have been

regarded as the most promising candidate for
simultaneously obtaining wide swath in range and high
resolution in azimuth [3–5].
In this paper, we focus on the multichannel reconstruction

in azimuth. Multiple independent receiving channels arrayed
in flight direction increase the number of spatial samples.
Each of the receiving channel’s signal is converted,
digitised and stored. A digital beam forming (DBF)
technique, which is called the reconstruction algorithm, can
recover the Doppler spectrum even if the azimuth signal is
non-uniformly sampled [6, 7]. The processing of the
recorded sub-aperture signals combine the N subsampled
signals to one single signal that is sampled with N PRF
without aliasing. As a result, the additional samples
increase the sample frequency by the factor of N. In
comparison with conventional single channel SAR,

multiaperture in azimuth can reduce the PRF requirement
without a decrease of azimuth resolution, which offers a
wider swath.
The detailed analysis of the performance of the

reconstruction algorithm is presented in [3]. The
performance of the reconstruction is affected, because the
energy outside the band [−N·PRF/2, N·PRF/2] is not
cancelled by the reconstruction algorithm. The residual
reconstruction error deteriorates the azimuth ambiguities. In
addition, there is another problem with the conventional
method. The problem is that when the PRF is close to the
special PRF of the singular point, the performance of the
reconstruction does degrade dramatically.
In this paper, we deal with the signals of each channel as the

superposition of in-band energy and out-of-band energy based
on antenna pattern. The proposed approach allows for a
minimisation of the ambiguities after reconstruction. Aiming
at an increased robustness of the approach, the method of
diagonal loading is introduced. With the improved approach,
the scenario of special PRF, which is close to the singular
point, can be processed successfully.
The paper is organised as follows. The basic signal model

is described in Section 2. In Section 3, the improved method
for suppressing azimuth ambiguities is shown. A system
design example is presented that allows for verifying the
approach in Section 4. We demonstrate the performance of
the proposed algorithm and compare it with the
conventional algorithm. Finally, the conclusions are drawn
in Section 5.
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2 Signal model

We look at a multichannel SAR system with a planar antenna
array consisting of N sub-antennas uniformly placed in the
azimuth direction, whose geometry is shown in Fig. 1. The
ntth sub-antenna is used as the transmitting antenna and all
the N sub-antennas can be used as receivers and are able to
cover the illuminated area. This section introduces the
signal model of the azimuth multichannel SAR system and
the conventional reconstruction algorithm.

2.1 Received azimuth signals of N channels

The length of the sub-antenna is daz, the distance between the
phase centres of the sub-apertures is daz too. Assuming that
there is one point target in the swath centre and the minimal
slant range between the radar and the target is R0, the
received azimuth signal [6] of the nth sub-antenna from the
point target after demodulation is given by

un(t)=s ·a(u(t))

×exp −j
2p

l

������������
R2
0+ (Vst)

2
√

+
�������������������
R2
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2
√( )[ ]
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where σ represents the target reflectivity, t is the azimuth slow
time, a(θ(t)) is the two-way antenna gain pattern, Vs

represents the velocity of the radar, l is the wavelength of
the transmitted signal and Δxn = (nt − n)·daz, n = 1, 2,…, N.
The ntth channel is the transmitting channel. Using the
Taylor series expansion of (1), the signal can be
reformulated as

un(t) ≃ s · a u(t)
( )

× exp −j
4p
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If n = nt, unt(t) is the signal which is received by the

transmitting channel and can be expressed as

unt (t) ≃ s · a(u(t)) exp −j
4p

l
R0 − j

2pV 2
s

l

(t)2

R0

[ ]
(3)

Compensating the second phase term of (2) with
F = exp j pDx2n/2lR0

( )[ ]
and performing the Fourier

transform of un(t) and unt(t) to Doppler domain could yield

Un(f ) = F exp j
pDx2n
2lR0

[ ]
un(t)

[ ]
(4)

Un(f ) = F un(t)
[ ]

(5)

F represents the Fourier transformation. Comparing (2) with
(3), it is easy to obtain

Un(f ) ≃ exp −jp
Dxn
Vs

f

( )
· Unt

(f ) (6)

For each channel, the sample frequency of the azimuth signal
is the PRF. However, Bd (Doppler bandwidth) is wider than
the PRF. Therefore the sampled signal in each channel is
spectrum aliasing.
If the constraint that N·PRF must be higher than Bd is

satisfied, the Doppler spectrum could be recovered by the N
channels’ data. The existing reconstruction algorithm is
based on the reconstruction of multichannel sampling of
low-pass signals [8]. Many existing methods have been
proposed to reconstruct the under-sampled signal [6, 7].

2.2 PRF of singular point

In Fig. 2, it is shown that with a special PRF the equivalent
phase centres of the first pulse and the ones of the
subsequent pulse have K coinciding points. With the
introduced condition, the PRF is

PRF = 2 · Vs
(N − K) · daz

(7)

In this condition, the conventional reconstruction matrix
would become an ill condition matrix and the conventional
reconstruction algorithm would be invalid. The azimuth
ambiguity to signal ratio (AASR) and the signal-to-noise
ratio (SNR) influenced by the conventional reconstruction
algorithm would also be worse.

Fig. 1 Geometry of antenna array in azimuth Fig. 2 K equivalent phase centres are coincident
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3 Improved method for suppressing azimuth
ambiguity

For multichannel SAR system in azimuth, the transmitting
and receiving antenna pattern is shown in Fig. 3.
The azimuth signals are weighted by two-way antenna

pattern, so the azimuth ambiguity energies are all brought
by it. Aiming at suppressing the azimuth ambiguity signal,
the in-band energy (the energy which is in the band
[−N·PRF/2, N·PRF/2]) and out-of-band energy (the energy
which is out of the band [−N·PRF/2, N·PRF/2]) are both
considered in this section. The signal energy part and
ambiguity energy part of Un( f ) is shown in Fig. 4. It can
be seen that the spectrum of Un( f ), which is weighted by
azimuth antenna pattern, is divided into several pieces with
the width of the PRF. If the signal is sampled with the
frequency of the PRF, the energy in all pieces would be
stacked together to cause spectrum aliasing. The aliasing
spectrum of Un( f ) can be defined as U a

n ( f ).
The energy of the frequency of f in the aliasing spectrum is

a combination of all the energy of the frequency points (…,
f− 2PRF, f− PRF, f, f + PRF, f + 2PRF, …) in the spectrum
of Un( f ). In Fig. 4, the frequency points are shown in
Fig. 4. We clearly have ( f, f + PRF, f + 2PRF,…, f + (N−
1)·PRF) ∈ [−N·PRF/2, N·PRF/2].

3.1 Improved reconstruction method based on
antenna pattern

Taking the received signal of the transmitting sub-antenna as
the reference signal could yield
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(8)

where βm is a vector which can be expressed as

bm =

exp(−jp f + (m− 1)PRF
( ) · Dx1/Vs)

exp(−jp f + (m− 1)PRF
( ) · Dx2/Vs)

..

.

exp(−jp f + (m− 1)PRF
( ) · DxN/Vs)

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦ (9)

So the column number of the matrix […, β1, β2,…, βN, …]
indicates the width of the Doppler spectrum which is
considered. The spectrum of U a

n ( f ) could be retrieved from
each channel. The algorithm needs to reconstruct the
spectrum of Un( f ). In the conventional method of spatial
domain, the DBF only considers the energy in the band
[−N·PRF/2, N·PRF/2]. So in the conventional method, the

energy out of the band [−N·PRF/2, N·PRF/2] is neglected,
which means that βm(m∈ [1,…,N ]) and
Unt

f
( )

f � [−N · PRF/2, N · PRF/2]( )
are not taken into

account. In the conventional method, we could find a
weight vector wk = [ωk1, ωk2,…, ωkN] which satisfies

wk ·
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= [vk1, . . . , vkn, . . . , vkN ] ·
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⎡
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⎤
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= Unt
(f + (k − 1) · PRF)

(10)

Substituting (8)–(10), we obtain

wk · b1, . . .bk , . . . , bN

[ ] = 0, . . . , 1, . . . , 0[ ] (11)

Therefore the reconstruction weights of the conventional

Fig. 3 Azimuth transmitting and receiving antenna pattern

a Transmitting antenna pattern
b Receiving antenna pattern of each sub-antenna

Fig. 4 Spectrum of Un(f) weighted by azimuth antenna pattern
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method are

w1

..

.

wk

..

.

wN

⎡
⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎦

= b1, . . .bk , . . . , bN

[ ]−1
(12)

However, in real scenes, the azimuth spectrum is not band
limited. Therefore, if considering the energy out of the band
[−N·PRF/2, N·PRF/2] and using the reconstruction filter in
(12) to recover the spectrum, all the energy outside the
band [−N·PRF/2, N·PRF/2] would deteriorate the AASR.
Using wk to reconstruct Unt( f + (k− 1)·PRF) could yield

wk ·
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[ ]

+ Unt
(f + (k − 1) · PRF)

(13)

Unt( f + (k− 1)·PRF) is the signal which is reconstructed, and
the ambiguous signal is

∑
m=k wk · bm · Unt

(f + (m− 1) · PRF). so the power of ambiguity energy
could be written as

PAM(k) =
∑
m=k

wk · bm · Unt
(f + (m− 1) · PRF)

∣∣∣ ∣∣∣2 (14)

The goal of this paper is to find an improved weight vector w′
k

to reconstruct the in-band energy and minimise the ambiguity
energy. If

w′
k · bk = 1 (15)

After reconstruction, the energy of ambiguity is

P′
AM(k) =

∑
m=k

w′
k · bm · Unt

(f + (m− 1) · PRF)
∣∣∣ ∣∣∣2 (16)

P′
AM(k) can be reformulated as (17).

Defining

Rk =
∑

m=k
Unt

(f + (m− 1) · PRF)
∣∣∣ ∣∣∣2· bm · bH

m

( )[ ]( )

Rk is a matrix similar to a covariance matrix.
Assuming that a(θ) is known as the two-way antenna gain

pattern of the radar. As the amplitude of the Doppler spectrum
has the same shape with the antenna pattern, so we have

Unt
(f + (m− 1) · PRF)

∣∣∣ ∣∣∣2= a · a[u(f + (m− 1) · PRF)]∣∣ ∣∣2
(18)

α is a constant. Combining (15) and (17), the weight vector
has to satisfy

w′
k · bk = 1

min
w′
k

(P′
AM(k))

{
(19)

Based on the method of Lagrange multipliers, the solution of
(19) is

w′H
k = R−1

k bk

bH
k R

−1
k bk

(20)

The result is similar to the minimum variance distortionless
response (MVDR) algorithm [9]. With the proposed w′

k ,
the Doppler spectrum can be reconstructed and the
ambiguity energy is suppressed. For the Doppler spectrum
being wider than N·PRF, the proposed method is using N−
1 degrees of freedom to suppress more than N− 1
ambiguous energy and could minimise the total remaining
ambiguous energy.
For minimising the total azimuth ambiguous energy, all

the signals out of the band should be considered. However,
the number of frequency slots cannot be set arbitrary large,
because the maximum of the Doppler bandwidth is (2Vs/l)
(sin(π/2)− sin(−π/2)) = (4Vs/l). So the maximum number of
slots is the integer part of (4Vs/π)/PRF. However, in real
scenes, we know that the outer parts of side lobes of antenna
beam pattern are low and make little contributions to azimuth
ambiguous energy, so there is no need to calculate all the
frequency slots. For better performance and making the
proposed method efficient, the minimum number of
frequency slots should be chosen with a rational value based
on the calculated AASR of the multichannel system.
Since the purpose of the proposed method is to get an

improved reconstruction filter, the performance analysis
procedure in [3, 10] is suitable for the improved algorithm.
For multichannel system, the influence of reconstruction

filter to SNR is derived in [3, 10] with a measure for the

P′
AM(k) =

∑
m=k

w′
k · bm · Unt

(f + (m− 1) · PRF)
[ ]

· w′
k · bm · Unt

(f + (m− 1) · PRF)
[ ]H

= w′
k

∑
m=k

Unt
(f + (m− 1) · PRF)

∣∣∣ ∣∣∣2· bm · bH
m

( )[ ]( )
w′H
k = w′

kRkw
′H
k

(17)
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image. The influence factor named SNR scaling is defined as

Fbf ,BD
= N ·

∑N
j=1

E Pj(f )
∣∣∣ ∣∣∣2 · rect f

BD

( )[ ]
(21)

where Pj( f ) is the reconstruction filter of the jth channel. In
Section 4, the AASR and the SNR scaling of the proposed
approach are analysed and compared with the conventional
method.

3.2 Processing with special PRF of singular point

Assuming K(1≤ K <N ) overlapped equivalent phase centres
with PRF = (2·Vs/(N− K )·daz) and m is an integer, we have
(22).

So βm and βN−K +m are linear dependent. The rank of
bm . . . bm+N−1

[ ]
is (N− K ). The matrix Rk can be

rewritten as

Rk = . . .b1 . . . bN . . .
[ ] ·

..

.

Unt
(f )

∣∣∣ ∣∣∣2bT
1

..

.

Unt
(f + (N − 1)PRF)

∣∣∣ ∣∣∣2bT
N

..

.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(23)

Therefore the rank of Rk is less than N. To use the proposed
reconstruction, the method of diagonal loading [9] is
exploited to solve the matrix’s morbidity.
A new matrix is defined as

Rkl = Rk + s2
LI (24)

where s2
L is the loading factor of the matrix Rk.

Substituting (24) into (20)

w′H
k = R−1

kl bk

bH
k R

−1
kl bk

(25)

From (22), we obtain that

w′H
m · bN−K+m · bH

N−K+m · w′
m

= w′H
m · bm · bH

m · w′
m = 1

(26)

w′H
N−K+m · bN−K+m · bH

N−K+m · w′
N−K+m

= w′H
N−K+m · bm · bH

m · w′
N−K+m = 1

(27)

Therefore, the Doppler spectrum at the frequency point of
f + (m− 1)·PRF and f + (N− K +m− 1)·PRF cannot be
reconstructed simultaneously. So the proposed method
could reconstruct the signal inside the band [−(N− K )·PRF/
2, (N− K )·PRF/2] and the bandwidth is (N− K )·PRF =
(2Vs/daz). However, the signal outside the band [−(N−
K )·PRF/2, (N−K )·PRF/2] cannot be reconstructed
successfully. So after processing the Doppler spectrum with
our proposed approach, the signal inside the band [−(N−
K )·PRF/2, (N−K )·PRF/2] is the reconstructed azimuth
signal which is needed. For recovering the signal, the
Doppler bandwidth of the system must be narrower than
(N−K )·PRF. However, there is residual energy out of the
bandwidth [−(N−K )·PRF/2, (N− K )·PRF/2] after
reconstruction. To solve this problem, a low-pass filter
Hlp( f ) is introduced as

Hlp(f ) = rect
f

Bdop

( )
(28)

In addition, when the PRF is close to the special PRF of the
singular point, the matrix Rk would be morbid too. Under this
circumstance, the proposed approach is still valid.

4 Numerical simulation results

To validate the performance and the properties of the
developed reconstruction method, the following cases are
considered: the first is the reconstruction of the azimuth
signal, which is non-uniformly sampled (not with the PRF
of the singular point); the second is to analyse the AASR of

Table 1 SAR system parameters

orbit height 700 km
radar velocity 7508 m/s
wavelength 0.0555 m
Doppler bandwidth 6648.6 Hz
length of the whole antenna 10 m
number of channels in azimuth 5
length of receiving sub-antenna 2 m
receive aperture spacing 2 m
length of transmitting antenna 2 m
slant range of the point target 900 km
uniform PRF 1501.6 Hz

bN−K+m =

exp (−jp f + (N − K + m− 1)PRF
( ) · Dx1/Vs)

exp (−jp f + (N − K + m− 1)PRF
( ) · Dx2/Vs)

..

.

exp (−jp f + (N − K + m− 1)PRF
( ) · DxN/Vs)

⎡
⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎦

=

exp (−jp(f + (m− 1)PRF) · Dx1/Vs)

exp (−jp(f + (m− 1)PRF) · Dx2/Vs)

..

.

exp (−jp(f + (m− 1)PRF) · DxN/Vs)

⎡
⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎦ · exp (−jp(N + 1))

= bm · exp (−jp(N + 1))

(22)
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the signal with out-of-band energy; the third is to analyse the
performance of the processing with the PRF of the singular
point; the fourth, the SNR scaling of the proposed approach
is calculated. At last, an example with non-uniform physical
spacing channels is simulated.
In the simulation, one target in the swath centre is assumed.

The designed system parameters are listed in Table 1.

4.1 Reconstruction of the in-band Doppler
spectrum

In this section, the reconstruction of the in-band Doppler
spectrum is simulated using the proposed algorithm.
The uniformity factor can be defined by Fun = PRF/PRFuni.

In this section, a PRF of 1751 Hz is simulated. Therefore the

uniformity is 1.17. From Fig. 5, it can be seen that the
approach shows a good performance in reconstructing the
in-band Doppler spectrum.

4.2 Performance of suppressing AASR

In this section, the AASR of the SAR system with
conventional reconstruction method and the proposed
method are calculated. In Fig. 6, the solid line shows the
AASR of the multichannel signal reconstructed with the
conventional method and the dashed line shows the AASR
of an equivalent system with single channel (equivalent
system with single channel means one-channel SAR system
with azimuth sample frequency of N·PRF and that all other
parameters are identical to the multichannel system).

Fig. 5 Reconstruction of the signal with PRF = 1751 Hz

a Doppler spectrum before reconstruction
b Reconstructed spectrum
c Compressed signal after reconstruction
d Zoom in the compressed signal

Fig. 6 AASR of the system with conventional method (solid line), proposed method (circle) and the AASR of equivalent system with one
channel (dashed line)

a Simulated AASR of the system
b The AASR of the system with the PRFs around the uniform PRF
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Examining Fig. 6, it can be seen that the AASR of the
multichannel system is much worse than the equivalent
system with one channel. The two AASR are equal at the
PRF of 1501.6 Hz, because the azimuth signal is uniformly

sampled at this PRF. The AASR of multichannel system
with the proposed algorithm is shown with circles. It can be
seen that the AASR of the proposed method is better than
the conventional one.

Fig. 7 Reconstruction with the special PRF (1876 Hz) of singular point

a Aliased spectrum
b Reconstructed by conventional method
c Compressed signal of b
d Reconstructed by proposed method
e Compressed signal of d
f Zoom in the compressed signal in e

Fig. 8 Reconstruction with the PRF (2503 Hz) close to singular point

a Aliased spectrum
b Reconstructed by conventional method
c Compressed signal of b
d Reconstructed by proposed method
e Compressed signal of d
f Zoom in the compressed signal in e
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4.3 Reconstruction performance with the PRF
close to the singular point

First, the reconstruction performance with the PRF of the
singular point is analysed. For example, when PRF = 2Vs/
((N− 1)·daz) = 1876 Hz, the last equivalent phase centre of
the first pulse is overlapping with the first equivalent phase
centre of the subsequent pulse. From Fig. 7, it can be seen
that the conventional reconstruction is invalid. However,
with the proposed method the signal is reconstructed
successfully.
Then, the performance of the approach with PRF close to

the singular point, which causes two equivalent phase
centres’ coincidence, is analysed. The singular point is 2Vs/
((N− 2)·daz)=2501 Hz, so the PRF = 2503 Hz is chosen, the

Fig. 9 SNR scaling factor of conventional and proposed methods

a Simulated SNR scaling factor of the system
b The SNR scaling factor of the system with the PRFs around the uniform PRF

Fig. 10 Structure of the non-uniform spacing antennas

Fig. 11 Reconstruction of the signal with PRF = 1800 Hz for non-uniform spacing antenna

a Doppler spectrum before reconstruction
b Reconstructed spectrum
c Compressed signal after reconstruction
d Zoom in the compressed signal
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reconstruction result is shown in Fig. 8. It is clear that the
proposed method shows better robustness.

4.4 SNR scaling with the proposed method

The SNR scaling factor is calculated in this section. In Fig. 9,
the dashed line shows the SNR scaling factor of the
conventional method, the solid line shows the one of the
proposed approach. It can be seen that with the proposed
approach, a better SNR scaling is obtained for all tested
PRF values. The two factors are equal at the PRF of
1501.6 Hz, because the azimuth signal is uniformly
sampled at this PRF.

4.5 Simulation with non-uniform spacing channels

It is clear that the multichannel in azimuth is substantial to get
periodically non-uniform sampling of azimuth signals. If the
azimuth antennas are non-uniform spacing in azimuth, the
signal received by non-uniform spacing antennas is
periodically non-uniform sampling signal too. For
evaluating the proposed approach with non-uniform spacing
channels, we should analyse this condition in this section.
In this condition, Δxn cannot satisfy the equation Δxn =
(nt − n)·daz. However, this symbol Δxn still can be used for
representing the distance between the nth receiving
sub-antenna and the transmitting antenna centre. All the
other derivations are the same with the uniform spacing
condition.
A system example is simulated. In this simulation, the

structure of the antenna is in Fig. 10.
The system parameters are the same with the parameters in

Table 1. Fig. 11 shows the reconstruction result using the
proposed approach.
From the Fig. 11, it can be seen that the Doppler spectrum

is reconstructed successfully.
The AASR and SNR scaling factor of the system with

non-uniform space antenna is in Fig. 12. The figures in
Fig. 12 show that the proposed approach also has better
performance than the conventional one with the condition
of non-uniform spacing of the sub-antennas.

5 Conclusion

This paper presents an improved reconstruction approach for
multichannel SAR in azimuth to suppress the ambiguity
energy after reconstruction. A matrix that is similar to the
covariance matrix is generated for finding an optimal
solution to reconstruct the Doppler spectrum and
minimising the ambiguous energy based on antenna pattern.
To get better robustness, the method of diagonal loading is
used. Simulation results show that the proposed approach
offers better AASR, better robustness and better SNR
scaling than the conventional one. Therefore, the proposed
approach can promote the applications of multichannel
SAR in azimuth for the development and implementation of
a new generation of more powerful SAR systems and
missions.
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Fig. 12 Simulated performance of the system with non-uniform space antenna

a AASR of the non-uniform space antenna system with conventional and proposed methods
b SNR scaling factor of the non-uniform space antenna system with conventional and proposed methods
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