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STATISTICAL CHARACTERISTICS OF ADAPTIVE ANTENNA ARRAYS
UNDER CONDITIONS OF RECEPTION OF WIDE BAND SIGNALS

O. S. Litvinov and S. V. Zimina ∗ UDC 621.396.67

We present the results of statistical analysis of adaptive antenna arrays receiving wideband signals
with allowance for the weight-vector fluctuations. Expressions for the correlation function of the
array output signal are given in cases where the antenna arrays are adjusted by the discrete gra-
dient algorithm with constraints, algorithm of recurrent inversion of the sample estimate of the
input-signal correlation matrix, and Hebb’s algorithm. It is shown that the widebandness condi-
tion leads to the appearance of an additional factor in the formulas for statistical characteristics
of adaptive antenna arrays, which distorts their output signals.

1. INTRODUCTION

In modern environment, requirements to the operation quality of communication systems become
more stringent. This is related to the fact that such systems often operate under urban conditions where
received signals are subject to multiple reflections, which leads to broadening of the signal spectra.

These features are also observed during the signal reception by adaptive antenna arrays. Moreover,
operation of adaptive antenna arrays is complicated by fluctuations of the adjustable weight coefficients [1,
2]. Allowance for the weight-vector fluctuations during the statistical analysis usually shows that they
deteriorate the adaptive-array performance [3, 4].

However, the existing methods for analyzing the statistical characteristics of adaptive antenna arrays
with allowance for the weight-vector fluctuations can be used only in the case of narrow-band input sig-
nals. Nevertheless, practical needs require analysis of operation of the adaptive systems receiving wideband
signals since the transmitted signal is often distorted by not only strong external interference, but also
multiple reflections from obstacles (in particular, during mobile-system operation under urban conditions).
As a result, the signal arriving at the receiving elements of adaptive systems has a complex shape due to
interference and own reflections and is wideband in the general case.

In this work, we generalize the methods of analyzing the statistical characteristics of the adaptive
arrays to the case of the wideband-signal reception by an antenna array with allowance for fluctuations of
the adjustable weight coefficients.

2. STATEMENT OF THE PROBLEM

Let us consider operation of an N -element adaptive antenna array adjusted by the algorithms which
can generally be formulated as

W(k + 1) = Ã [W(k) + (−1)c̃ µB̃X∗(k)z(k)] + D̃. (1)
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Here, W(k) is the adjustable weight vector at time k, X(k) is the input-signal vector, z(k) is the output
signal of the adaptive antenna array, µ is the adaptation coefficient, Ã, B̃ and D̃ are the matrices and
the vector, respectively, which are determined by the form of the particular algorithm, c̃ is the numerical
parameter equal to 0 or 1, depending on the form of the considered algorithm, and the superscript ∗ denotes
complex conjugation.

Let us consider in more detail the parameters for the algorithms which are used in this work.
1. The discrete gradient algorithm with constraints [5]:
Ã = P = I − C (CHC)−1CH is the projection matrix projecting the input-signal vector onto the

weight-coefficient space, where C ≡ [C1,C2, . . . ,CL] is the N ×L constraint matrix whose columns are the
linearly independent constraint vectors Cl, L is the number of introduced constraints, the superscript H
denotes Hermitian conjugation, and I is the unit matrix;

B̃ = I;
z(k) = XT(k)W(k) in the case where the antenna-array circuit is a linear summator, while z(k) =

F [XT(k)W(k)] if the nonlinear function F is present in the correlation-feedback circuit of the adaptive array
(the superscript T denotes transposition);

c̃ = 1;
D̃ = Wq is the vector of the complex weight coefficients corresponding to the directional pattern in

the absence of external noise.
2. Algorithm of recurrent inversion of the sample estimate of the input-signal correlation matrix [2]:
Ã = P;
B̃ = (PR̂XXP)+ P, where R̂XX is the sample estimate of the correlation matrix of input signals and

the superscript + denotes pseudoinversion;
z(k) = XT(k)W(k) and z(k) = F [XT(k)W(k)] stand for the form of the output signal in cases where

the nonlinear function is absent and present, respectively, in the correlation-feedback circuit of the adaptive
antenna array;

c̃ = 1;
D̃ = Wq.
(3) Hebb’s algorithm [6, 7]
Ã = B̃ = I;
z(k) = XT(k)W(k) is the output signal of an adaptive antenna array adjusted by the Hebb’s algo-

rithm;
c̃ = 0;
D̃ = −µz(k)z∗(k)W(k). If the algorithm has the vector D̃ which depends on both the adjustable

weight vector and the squared output signal (proportional to the squared weight vector then Hebb’s algorithm
becomes significantly nonlinear.

For detailed analysis of Eq. (1), we write the weight vector W(k) and the stochastic matrix MXX ≡
X∗(k)XT(k) of the input signals as sums of their mean values 〈W〉 and R̂XX and their fluctuation compo-
nents W̃(k) and Φ̃XX(k), respectively:

W = 〈W〉 + W̃, MXX(k) ≡ RXX + Φ̃(k). (2)

Another assumption allowing us to analyze the characteristics of the adaptive antenna array with
allowance for the weight-vector fluctuations deals with the form of the correlation matrix of input signals.
The assumption of narrow-bandness means that the correlation matrix of input signals can be represented
in the form of the product of the spatial and temporal parts:

RXX(k, k + n) ≡ 〈X∗(k)XT(k + n)〉 = RXXr|n|, (3)

where RXX is the spatial part of the correlation matrix of input signals, and r is the autocorrelation
coefficient of the input-signal readouts.
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Assuming that the input signals are narrow-band and allowing for Eq. (2), the statistical charac-
teristics of the adaptive antenna arrays adjusted by the discrete gradient (linear or nonlinear) algorithm,
fast recurrent (linear or nonlinear) algorithm, and Hebb’s algorithm were calculated in [3, 4, 8–11] by the
perturbation-theory methods in the first, the so-called Born approximation with allowance for the weight-
vector fluctuations.

Let us consider in more detail assumption (3) that the signals are narrow-band. The factor r|n|

determines the falloff rate of the correlation function. After some algebra, we find that the correlation time
τcor is determined by the expression

τcor = − logr e, (4)

and the spectrum width has the form

∆ω ≈ − 2π
logr e

. (5)

Equation (5) shows that the spectrum width varies with the autocorrelation coefficient r of the input signal.
As r increases from zero to values close to unity (i.e., the input signal changes from white noise to the
deterministic sinusoid), the spectral width of this signal also decreases.

Therefore, varying the autocorrelation coefficient r of the input-signal readouts, we can attempt
to form signals with different spectrum widths. This means that the model of a wideband signal can be
represented by the signal whose correlation matrix can be written in the form of the product of the spatial
and temporal parts such that the temporal part is the sum of discrete exponentials which fall off in time
at different rates. In other words, to analyze the influence of the weight-vector fluctuations in the adaptive
antenna arrays receiving wideband signals, the following procedure should be performed in Eq. (3) for the
correlation matrix of input signals:

r|n| →
Nmax∑
i=1

ri |n|. (6)

Using the sum of the terms falling off at different rates in time instead of r|n|, we can specify the input
signal in the form of a sum of signals with different spectrum widths.

To write the final expression for the correlation function of input signals, we should specify the
quantity Nmax which determines maximum decrease rate in time for the correlation-function terms. Should
we sum over all values of the superscript i from unity to infinity or confine ourselves to a certain arbitrary
but finite value of Nmax?

Let us consider the case where Nmax → ∞. Then

r|n| →
∞∑
i=1

ri |n| =
1

1 − r|n|
. (7)

Equation (7) holds true for r|n| < 1. However, when calculating the power of the output signal of an adaptive
antenna array receiving wideband signals, the replacement of r|n| by r|n|/(1 − r|n|) leads to divergence in
the expression for the output power.

Therefore, the expression for the correlation function of the adaptive antenna array receiving wide-
band signals can be written in the form

RXX(k, k + n) = RXX

Nmax∑
i=1

ri |n|. (8)

Here, RXX is the spatial part of the correlation matrix of input signals and
∑Nmax

i=1 ri |n| is the temporal part
of the correlation matrix of input signals.

For the sake of calculation simplicity, it is assumed in Eq. (8) that the spatial parts of all components
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of the wideband signal are identical (i.e., the amplitudes of discrete exponentials are identified). The model
with a set of time scales has practical significance and corresponds to propagation under the conditions of
multiple reflections.

Using assumption (7) of widebandness of input signals, we can obtain an expressions for various
characteristics of adaptive antenna arrays using the perturbation theory in the first (Born) approximation
with allowance for the weight-vector fluctuations. To this end, we should account for the fact that during
generalization, we use the finite value of Nmax for which the temporal part of the correlation matrix of input
signals can be written as

Nmax∑
i=1

ri |n| = r|n|
1 − r|n|Nmax

1 − r|n|
. (9)

In addition, we should make the following replacement in all expressions obtained under the assumption of
narrow-bandness of input signals in [3, 4, 8–11]:

r|n| → r|n|
1 − r|n|Nmax

1 − r|n|
. (10)

3. CORRELATION FUNCTION OF THE OUTPUT SIGNAL OF AN ADAPTIVE ANTENNA
ARRAY WITH ALLOWANCE FOR THE WEIGHT-VECTOR FLUCTUATIONS
IN THE CASE OF RECEPTION OF WIDEBAND SIGNALS

The correlation function of the output signal in an adaptive antenna array can be written in the
form [5]

Kz(k, k + n) ≡ 〈zH(k)z(k + n)〉. (11)

In the absence of the weight-vector fluctuations, the correlation function at the output of a narrow-band
adaptive antenna array (with allowance for Eq. (3)) is described by the expression

Kz0 nb(n) = WH
stRXXWstr

|n|, (12)

where Wst is the stationary weight vector.

Taking Eq. (10) into account, we can write the correlation function at the output of an adaptive
antenna array receiving wideband signals without allowance of the weight-vector fluctuations:

Kz0wb(n) = WH
stRXXWst

1 − r|n|Nmax

1 − r|n|
. (13)

Making similar substitutions in the expressions in the correlation functions obtained with allowance for the
weight-vector fluctuations, we can write similar expressions in the case of reception of wideband signals for
different algorithms of adaptive-array adjustment ([3, 4, 8–11]).

1. At first, let us consider the case where an array is adjusted by the discrete gradient algorithm with
constraints.

If the nonlinear function is absent in the correlation-feedback circuit, then

Kz wb(n) = r
|n|
S

1 − r
|n|Nmax S

S

1 − r
|n|
S

〈|z|2〉S + r
|n|
ξ

1 − r
|n|Nmax ξ

ξ

1 − r
|n|
ξ

〈|z|2〉ξ

+
1
2
µ 〈|z|2〉S

1 + rSrξ

1 − rSrξ
Sp(PRξξ) r

|n|
ξ

1 − r
|n|Nmax ξ

ξ

1 − r
|n|
ξ

+
1
2
µ 〈|z|2〉ξ

1 + r2
ξ

1 − r2
ξ

Sp(PRξξ) r
|n|
ξ

1 − r
|n|Nmax ξ

ξ

1 − r
|n|
ξ
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− µ 〈|z|2〉S Sp(PRξξ)

[
rSrξ

1 − rSrξ

(
r
|n|
S

1 − r
|n|Nmax S

S

1 − r
|n|
S

+ r
|n|
ξ

1 − r
|n|Nmax ξ

ξ

1 − r
|n|
ξ

)

+
rξ

rS − rξ

(
r
|n|
S

1 − r
|n|Nmax S

S

1 − r
|n|
S

− r
|n|
ξ

1 − r
|n|Nmax ξ

ξ

1 − r
|n|
ξ

)]

− µ 〈|z|2〉ξ Sp(PRξξ) r
|n|
ξ

1 − r
|n|Nmax ξ

ξ

1 − r
|n|
ξ

(
2r2

ξ

1 − r2
ξ

+ |n|
)

. (14)

Here, rS and rξ are the autocorrelation coefficients of the readouts of the useful signal and noise, respectively,
which arrive at the adaptive antenna array, Nmax S and Nmax ξ are the coefficients describing maximum falloff
rates in time for the terms in the expressions for the correlation functions of the useful signal and noise,
respectively, which arrive at the adaptive antenna array, Rξξ is the spatial part of the correlation function of
noise arriving at the antenna array, and 〈|z|2〉S and 〈|z|2〉ξ are the “signal” and “noise” parts of the output
power for the constant stationary weight vector Wst.

Let us discuss Eq. (14). The assumption of widebandness leads to the appearance of additional
factors of the type (1−rNmax |n|)/(1−r|n|), which change the form of the correlation function and, therefore,
the autocorrelation time of signals at the antenna array output.

Let us consider in more detail variation in the signal-autocorrelation time when passing from the
adaptive antenna array receiving narrow-band signals to the antenna array receiving wideband signals. To
this end, we turn to Eq. (4) which describes the autocorrelation time of the narrow-band signals at the
adaptive-array input. Equation (4) shows that the correlation time depends on the coefficient r which is the
logarithm base. The correlation time increases with r increasing from zero to values close to unity.

Let us find the correlation time of the wideband input signals. To do this, we use Eq. (8) describing
the type of the correlation function at the input of an adaptive system receiving such signals. Substituting
Eq. (9), which yields the summation result for the series in Eq. (8), into Eq. (8), we obtain

RXX(k, k + n) = RXXr|n|
1 − rNmax |n|

1 − r|n|
. (15)

If we use Eq. (8) which describes the correlation function of an antenna array receiving wideband signals,
then we see that the input signal consists of Nmax input signals such that each signal has the correlation
time (τcor)i = − logri

e. Therefore, an equation for calculating the correlation time for the input signal of a
wideband adaptive antenna array has the form

logr(1/e) = logr

(
Nmax∑
i=1

riτcor

)
. (16)

However, Eq. (16) shows that the total correlation time of the input signal is not equal to the sum of the
correlation times of individual components of the signal. The characteristic bandwidth of the considered
wideband signal can approximately be defined as the combination of the bands of individual components of
a wideband signal. As a result, the bandwidth of the input signal can be written in the form

∆ω =
Nmax⋃
i=1

∆ωi ≈
Nmax⋃
i=1

(
− 2π

logri
e

)
.

Here,
⋃

denotes combination of the bands of individual components of the input wideband signal.
We now consider the case where a nonlinear function is present in the correlation- feedback circuit.
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Fig. 1. Dependences of the functions f1 = r|n| (1−
rNmax |n|)/(1 − r|n|) (curve 1) and f2 = r|n|

(curve 2) on the time shift n for weakly auto-
correlated readouts of Nmax = 100 input signals
(r = 0.1).

Fig. 2. Dependences of the functions f1 = r|n| (1−
rNmax |n|)/(1 − r|n|) (curve 1) and f2 = r|n|

(curve 2) on the time shift n for strongly auto-
correlated readouts of Nmax = 100 input signals
(r = 0.9).

With allowance for the weight-vector fluctuations of an adaptive antenna array which has a nonlinear
function in the correlation-feedback circuit and receives wideband signals, the correlation function of the
output signal has the form

Kz wb(n) = a2
1r

|n| 〈|z|2〉0
1 − r|n|Nmax

1 − r|n|

{
1 + µ2a2

1 Sp(PRXXPRXX) r|n|
1 − r|n|Nmax

1 − r|n|

×
[

1 + r

1 − r
− r

(1 − r)2
r|n|

1 − r|n|Nmax

1 − r|n|

]
+ µ2a2

1 Sp2(PRXX)
1

(1 − r)2

}
, (17)

where a1 is the first coefficient of expansion of a nonlinear function in the correlation-feedback circuit into
the Volterra series. Equation (17) shows that in the case of reception of wideband signals, the correlation
function of an output signal depends on the general decrease rate of the product of the functions r|n| and
(1 − rNmax |n|)/(1 − r|n|). This rate significantly depends on the coefficient r. The greater this coefficient,
the smaller is the rate at which the correlation function decreases with increasing n.

Figures 1 and 2 show the plotted dependences of the functions f1 = r|n| (1 − rNmax |n|)/(1 − r|n|)
(curves 1) and f2 = r|n| (curves 2) on the time shift n for different values of the autocorrelation coefficient
of the readouts: r = 0.1 (Fig. 1) and r = 0.9 (Fig. 2). It is seen in the figures that the considered functions
almost coincide if the correlation of the input-signal readouts is low. This indicates that the plots of the
correlation functions of the output signal are almost the same in cases where the adaptive antenna array
receives both narrow-band and wideband input signals with low-correlated readouts.

The case is different if an adaptive antenna array receives signals with highly correlated readouts
(r = 0.9). It is noteworthy that discussion of the high and low correlatedness of readouts in the case
of wideband signals needs refinement. The coefficient r, which is the autocorrelation coefficient of the
readouts for narrow-band signals, is a kind of the least common multiple for the whole set of autocorrelation
coefficients ri of the signal-component readouts for wideband signals.

It is easily seen that for the small autocorrelatedness of the readouts, r 	 1 and, hence, ri 	 1.
Therefore, the higher the order of the input-signal component, the closer is this component by its correlation
characteristics to white noise. And vice versa, for r → 1, when high correlatedness of the input-signal
readouts is observed, all the signal components whose correlation functions are proportional to ri also have
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Fig. 3. Dependence of the autocorrelation function
of the output signal of an adaptive antenna array
adjusted by the discrete gradient algorithm with
constraints on the time shift n. Curves 1 and 2 cor-
respond to the case where the nonlinear function
is absent and present in the correlation-feedback
circuit of an adaptive array receiving wideband
signals, respectively, and curve 3 corresponds to
the case where the nonlinear function is absent in
the correlation-feedback circuit of a narrow-band
adaptive array; Nmax = 100 and r = 0.1.
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a sufficiently high correlatedness of readouts.
Therefore, considering the cases of high and low autocorrelatedness of the readouts of an input

wideband signal somewhat simplifies reality and should be understood only conventionally.
As was mentioned, Fig. 2 shows the plots of the functions f1 = r|n| (1 − rNmax |n|)/(1 − r|n|) (curve

1) and f2 = r|n| (curve 2) in the case of high correlatedness of the input-signals readouts. It is seen in
Fig. 2 that significant differences in the form of the considered functions are observed when a signal that is
close to deterministic one arrives at an adaptive antenna array. This means that the plots of the correlation
functions at the adaptive-array output also significantly differ when receiving narrow-band and wideband
signals with high correlatedness of readouts.

This is confirmed by Fig. 3 which shows the plots of the correlation functions of the signals at
the output of an adaptive antenna array adjusted by the discrete gradient algorithm with constraints and
receiving wideband signals. Curves 1 and 2 describe the characteristics of an adaptive antenna array in
the absence and presence of the nonlinear function in the correlation-feedback circuit, respectively. For
comparison, curve 3 denotes the correlation function of the output signal of a linear narrow-band adaptive
array which is also adjusted by the discrete gradient algorithm, described by the formula

Kz(n) = r|n| 〈|z|2〉0

[
1 +

1
2
µ Sp(PRXX)

1 + r2

1 − r2
− 2µ Sp(PRXX)

r2

1 − r2

]
. (18)

Figure 3 shows that the correlation function of a signal at the output of an adaptive array which does not
contain the nonlinear function in the correlation-feedback circuit is almost the same for reception of both
narrow-band and wideband signals. The correlation function of an antenna array which has the nonlinear
function in the correlation-feedback circuit and receives wideband signals is of somewhat another form. In
this case, when receiving wideband signals, the output correlation function has a smaller maximum value
and, thus, a smaller minimum-to-maximum range of values. When receiving both wideband and narrow-
band signals, the correlation times of output signals remain identical and equal to two iterations, as is seen
in Fig. 3.

Therefore, if we use the discrete gradient algorithm for reception of wideband signals, fluctuations of
the adjustable weight vector result in distortions of the output signal of an adaptive antenna array, which
are additional to those observed when the narrow-band signals are processed by this algorithm.

2. Let us consider the case where the algorithm of recurrent inversion of a sample estimate of the
correlation matrix of input signals is used for adjusting the adaptive array.

If the nonlinear function is absent from the correlation-feedback circuit, then we have
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Kz bb(n) = r|n|
1 − r|n|Nmax

1 − r|n|
〈|z|2〉0

×
[
1 +

1
2
µ Sp[(PRXXP)+ PRXX]

1 + r2

1 − r2
− 2µ Sp[(PRXXP)+ PRXX]

r2

1 − r2

]
. (19)

Here, the superscript + denotes pseudoinversion.
If the nonlinear function is present in the correlational-feedback circuit, then the expression for the

correlation function of the output signal has the form

Kz bb(n) = a2
1r

|n| 〈|z|2〉0
1 − r|n|Nmax

1 − r|n|

[
1 + µ2a2

1 Sp[(PRXXP)+ PRXX] r|n|
1 − r|n|Nmax

1 − r|n|

×
[

1 + r

1 − r
− r

(1 − r)2
r|n|

1 − r|n|Nmax

1 − r|n|

]
+ µ2a2

1 Sp2[(PRXXP)+ PRXX]
1

(1 − r)2

]
. (20)

Equations (19) and (20) show that allowance for the weight-vector fluctuations during reception of wideband
signals by an adaptive antenna array with fast recurrent adjustment algorithm leads to that second-order
terms infinitesimal with respect to the adaptation coefficient µ and the factor r|n| (1 − rNmax |n|)/(1 − r|n|)
determining the decrease rate of the correlation function appear in the formulas for this function. It should
be noted that a factor raised to the second and third powers is present in the second-order infinitesimal terms
with respect to the adaptation coefficient µ, which result from allowance for the weight-vector fluctuations.

3. Finally, we consider the case where an adaptive antenna array is adjusted by Hebb’s algorithm.
The correlation function at the output of an antenna array receiving a wideband signal and adjusted

by Hebb’s algorithm, which is the classical algorithm for adjusting artificial neural networks and is used for
solving the problem of signal processing in an adaptive antenna array with allowance for the weight-vector
fluctuations, has the form

Kz(n) = Ar|n|
1 − rNmax |n|

1 − r|n|
+ Cr3 |n|1 − r3Nmax |n|

1 − r3 |n| , (21)

where the coefficient of the term comprising the first power of r|n| in the formula for the correlation function
has the form

A = 〈|z|2〉0
[
1 + µ

2
1 − r

Sp(WstWH
stRXX) + µ2 1 + r2

1 − r2
Sp(WstWH

stRXX) 〈|z|2〉0

+ µ2 3r2 − r4

(1 − r2)2
(
〈|z|2〉0

)2
+ µ2 r2

(1 − r2)2
Sp2(WstWH

stRXX)
]
, (22)

The coefficient of the term comprising the third power r|n| in the expression for the correlation function of
the output signal is written as

C = −µ2 r2

(1 − r2)2
(
〈|z|2〉0

)2 [
Sp(WstWH

stRXX) r|n| + 〈|z|2〉0
]
. (23)

Figures 4 and 5 show the correlation functions of the output signal of adaptive antenna arrays adjusted
by Hebb’s algorithm (curves 1) and by the fast recurrent algorithm (curves 2) in the case where wideband
signals with weakly (r = 0.1, Fig. 4) and strongly (r = 0.9, Fig. 5) correlated readouts arrive at the antenna
array.

Figures 4 and 5 show that the autocorrelation coefficient of the readouts of the input signals signifi-
cantly influences the correlation characteristics of the output signal. For the small correlatedness of readouts
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Fig. 4. Dependence of the autocorrelation function
of the output signal of an adaptive array receiving
wideband signals and adjusted by Hebb’s algorithm
(curve 1) and the fast recurrent algorithm (curve
2) on the time shift n for the weakly autocorrelated
Nmax = 100 readouts of input signals (r = 0.1).

Fig. 5. Dependence of the autocorrelation func-
tion of the output signal of an adaptive array
receiving wideband signals and adjusted by the
Hebb’s (curve 1) and the fast recurrent algorithm
(curve 2) on the time shift n for the strongly au-
tocorrelated Nmax = 100 readouts of input sig-
nals (r = 0.9).

of the input signals (r = 0.1), the signal extracted by the adaptive antenna has almost the same correlation
functions, regardless of the type of the algorithm for adjusting the weight coefficients of an adaptive array.
The autocorrelation time of the output signals obtained during the antenna adjustment by the Hebb’s and
fast recurrent algorithms is equal to two and three iterations, respectively.

If the correlatedness of the readouts of input signals is high (r = 0.9), then the shapes of the corre-
lation functions significantly differ. First of all, we should emphasize the negative values of the correlation
function of the output signal of the antenna array adjusted by the fast recurrent algorithm. To understand
this phenomenon, we should recall that the above dependences were plotted by the formulas written with
allowance for the weight-vector fluctuations. The negative values on the plot of the correlation function are
related to the large negative values of the third term in Eq. (19). This leads to the “overcompensation” effect
which is observed in the presence of the weight-vector fluctuations and is especially pronounced for the input
signals with strongly correlated readouts [3]. This phenomenon can in particular be manifested in that the
output power for the input signals with strongly correlated readouts, which is calculated with allowance for
the weight-vector fluctuations, turns out to be smaller than the power obtained for the constant stationary
weight vector. In our case, curve 2 in Fig. 5 indicates the presence of the “overcompensation” effect during
reception of the wideband signals with strongly correlated readouts by an adaptive array adjusted by the
fast recurrent algorithm. In Hebb’s algorithm, such characteristics of the input signals do not result in the
“overcompensation” effect.

Therefore, the correlation characteristics of the input signals and the adjustment algorithm are the
factors determine the features and degree of distortions introduced to the output signal of an adaptive
antenna array by the weight-vector fluctuations.

4. CONCLUSIONS

The above study shows that the weight-vector fluctuations related to the input-signal vector by the
non-Gaussian statistical dependence result in additional “fluctuation” terms in the expressions for various
statistical characteristics of adaptive antenna arrays adjusted by the discrete gradient, fast recurrent, and
Hebb’s algorithms in the case of wideband-signal reception. Distortions of the shape of an output signal
of an adaptive array take place. Additional factors related to both the weight-vector fluctuations and the
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wideband-signal reception by the antenna appear in the expressions for the correlation function and the signal
power at the antenna-array output. In the general case, larger distortions of the statistical characteristics
of adaptive antenna arrays are observed during reception of wideband signals due to allowance for the
fluctuations of the adjustable weight coefficients compared with reception of narrow-band signals.
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