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Abstract: The authors consider space–time adaptive processing (STAP) when the radar returns are recorded by a
conformal antenna array (CAA). The statistics of the secondary data snapshots used to estimate the optimum
weight vector are not identically distributed with respect to range, thus preventing the customary STAP
processor from achieving its optimum performance. The compensation of the range dependence of the
secondary data requires precise knowledge of the array response for any direction of arrival (DOA), and, thus,
of the spatial steering vectors (SVs). The authors propose a novel registration-based range-dependence
compensation algorithm that gives an accurate estimate of the interference-plus-noise covariance matrix
under the hypotheses that calibrated spatial SVs are available only for a small set of DOAs, and that the
errors in the model giving the true spatial SV for each DOA are DOA dependent. The performance in terms of
signal-to-interference-plus-noise ratio loss is promising.

1 Introduction
Space–time adaptive processing (STAP) is a powerful
technique for detecting slow-moving targets against a strong-
interference background [1–3]. STAP relies on an antenna
array of N elements and a train of M coherent pulses. The
data recorded by STAP radars can be seen as a sequence, in
range, of NM � 1 vectors, called snapshots. For each range,
the optimum processor (OP) computes an optimum weighted
linear combination of the snapshot elements to determine
whether a target is present or not at that range. In practice,
the interference-plus-noise (IþN) covariance matrix (CM)
needed for the computation of the optimum filter must be
estimated from snapshots at neighbouring ranges; these
snapshots constitute the secondary data.

Unfortunately, the secondary-data snapshots are typically
not identically distributed with respect to range [4].

Therefore the method proposed in [5] for estimating the
IþN CM from the secondary data is not applicable here.
Indeed, the estimator proposed in [5] is maximum
likelihood only if the secondary data snapshots are
independent and identically distributed. There are two
major reasons for which the secondary data are not
identically distributed. The first reason is clutter
heterogeneity which is described in [6]. Several, mostly
knowledge-aided, techniques have been investigated to
mitigate the impact of clutter heterogeneity [7–12]. The
second reason is the geometry-induced variation of clutter
signature with range. The clutter signature at a given range
and, thus, the required response of the optimum space–
time filter, are determined by the geometry of the structure
of the receiver array, its geometrical orientation with respect
to its carrying platform, and the relative orientation of the
receiver and the transmitter in the case of a bistatic (BS)
configuration [13–15]. This clutter signature depends on
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range and makes it unacceptable to estimate the IþN CM
by simply averaging the sample CMs corresponding to the
secondary-data snapshots. A STAP filter neglecting the
range-dependent statistics of the secondary data leads to a
severe reduction in detection performance. This problem
is called the geometry-induced range-dependence (RD)
problem or simply the RD problem, and the secondary
data are said to be range dependent. The present paper
addresses the RD problem and offers a novel solution to
this problem in the case of conformal antenna arrays
(CAAs) that are not perfectly calibrated and that operate in
BS configurations.

Early STAP architectures considered monostatic (MS)
flight configurations and uniform linear arrays (ULAs),
generally in sidelooking positions. For these simple
situations, the impact of range-varying clutter signature is
negligible [1]. For STAP systems with ULAs operating in
BS configurations, the evolution of the clutter signature
with range becomes more complicated and RD
compensation algorithms are required [16–22]. The
growing interest in applying STAP, whether in MS or BS
configurations, to CAAs leads to even more complex
clutter signatures. The advantages of CAAs, such as
preservation of the aerodynamic properties of the carrying
platform, can thus only be obtained at the cost of more
advanced RD compensation algorithms [23–25].

The growing interest in CAAs has contributed to the
development of RD compensation algorithms for CAAs.
The registration-based range-dependence compensation
(RBC) algorithm presented in [14, 15] allows one to
obtain a CM estimate not suffering from RD. The
algorithms described in [26–28] provide similar results.
However, these algorithms all assume that the ‘true’ spatial
steering vectors (SVs) (defined later) are available for all
possible directions of arrival (DOAs), that is, that the array
is completely calibrated. In [29], we presented a method
performing accurate RBC with the spatial SVs assumed
calibrated for all DOAs, except for unknown, DOA-
independent, gain and phase errors on each antenna element.

This paper makes the more realistic assumptions that
the true spatial SVs are available only for a small number of
DOAs (e.g. obtained through calibration), and that the
errors in the model (defined later) giving the true spatial
SVs for each DOA are DOA-dependent. Our contribution
is an array-interpolation based approximation scheme
tailored to our RBC algorithm that allows one to perform,
under these assumptions, an accurate RBC, leading to a
valid IþN CM estimate. The impact of SV mismatch is
examined in [30], but no solution to the problem is
proposed. The authors of [9, 31] propose several techniques
to obtain the true spatial SVs, but these techniques focus
on finding the spatial SVs in the direction of the peak
clutter returns. On the contrary, our method, although not
being a self-calibration method, allows one, under the given
assumptions, to synthesise valid approximations of the

‘missing’ true spatial SVs for any DOA leading to very
promising end-to-end STAP performance for CAAs
operating in BS configurations.

Section 2 introduces the signal model used in this paper.
Section 3 describes the RD problem. Section 4 introduces our
new RBC method. Section 5 gives results. Section 6 concludes.

2 Signal model
Fig. 1 describes the generic BS configuration used throughout
this paper. It is characterised by the position (xR, yR, zR) of the
receiver (R) relative to the transmitter (T), the transmitter
velocity vT, the receiver velocity vR, the angle aR between
the velocity vectors (assumed horizontal) of the receiver and
the transmitter, and the crab angle d.

One of the signal models used in this paper to describe the
space–time snapshot is a simplified version of that used by
Hersey et al. [32]. A single scatterer S characterised by a
DOA (u, f), with corresponding spatial frequency vector [15]

ns(u, f) ¼ 0:5[ cos u cos (f� (dþ aR)),

cos u sin(f� (dþ aR)),�sin u]T (1)

where T denotes transpose, and by a normalised Doppler
frequency nd, gives rise to the space–time snapshot [15]

y ¼ s at(nd)� st(nd)
� �

� as(ns)� ss(ns)
� �

where � is the Kronecker product and � is the element-wise
product. s is a complex-valued random amplitude, and at and
as are random vectors modelling the temporal and spatial
decorrelations, respectively. The general expression for the
temporal SV st(nd) is

st(nd) ¼ 1 ej2pnd � � � ej2pnd(M�1)
h iT

(2)

Figure 1 BS configuration: transmitter T, receiver R and
scatterer S
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and that for the spatial SV ss(ns) is

ss(ns) ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g0(u, f)

q
ej(2pnT

s p(0))=(l=2)
� � �

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gN�1(u, f)

q
ej(2pnT

s p(N�1))=(l=2)

�T
(3)

where p(n) is the position vector of the nth antenna element,
l is the wavelength at the carrier frequency and gn(u, f) is
the gain of the nth antenna element for DOA (u, f). For
simplicity, we do not consider range ambiguities.

The clutter snapshot corresponding to a given range cell
k is obtained by coherently summing the statistically
independent contributions of all Q clutter patches (indexed
by i) located in this range cell, that is

yc,k ¼
XQ�1

i¼0

sk,i at(nd,i)� st(nd,i)
� �

� as(ns,i)� ss(ns,i)
� �

We continue with a discussion of the several types of spatial
SVs used below: the operational spatial SVs occurring in the
real conditions of a mission; the calibrated spatial SVs
occurring in the real condition of the calibration phase
of the array (e.g. in an anechoic chamber); and the
approximation of these spatial SVs obtained via the use of
several models. Note that, here, we do not distinguish
between operational and calibrated spatial SVs, and thus we
refer to both as true spatial SVs. Details are as follows.

A true spatial SV for an arbitrary DOA (u, f) characterised
by ns ; ns(u, f) is denoted by strue

s ¼ strue
s (ns) ¼ strue

s (u, f) (as
appropriate). In the remainder of this paper, we assume that
the strue

s ’s are available only for a discrete set Sd of DOAs.
The corresponding set S of strue

s ’s is referred to as the
calibration table. These true spatial SVs may have been
obtained, for example, by calibrating the array only every Du

degree in elevation and every Df degree in azimuth. We
then say that the array has been partially calibrated. The set
Sd is illustrated in Fig. 2. It is important to note that, in the
expression of the theoretical clutter CM used as benchmark
in SINR loss computations, one must use the strue

s ’s for the
required DOAs.

An approximated, or model-induced, spatial SV for an
arbitrary DOA (u, f) characterised by ns ¼ ns(u, f) is
denoted by smod

s ¼ smod
s (ns) ¼ smod

s (u, f). The various
models used for generating the smod

s ’s provide different
degrees of realism. Each model can be seen as an operator
M( � , � ) the input of which is a DOA (u, f), and the
output of which is the corresponding model-induced spatial
SV, that is, smod

s (u, f). For some models, M( � , � ) is an
analytical formula. An analytical model was already given in
(3). Section 5 presents another analytical model in (9),
which is a simplified version of (3). For some other
models, M( � , � ) can be an algorithm, for example, a
numerical electromagnetic-simulation tool like FEKO [33].

Carefully note that, while the strue
s ’s are available only for a

limited number of DOAs, we assume thatM( � , � ) allows
one to compute the smod

s ’s for any DOA.

3 RD for CAAs
3.1 RD phenomenon

The RD phenomenon for CAAs is best illustrated using the
spectral representation for space–time signals recorded by
CAAs that was introduced in [15, 23]. The clutter patches
contributing to the ground clutter in a snapshot in a given
range cell are located on the corresponding isorange. The
signal returned by each clutter patch along this isorange is
characterised by a particular pair (ns, nd) of normalised
spatial and Doppler frequencies. Hence, the signal from
each clutter patch corresponds to a particular point in
the 4D spatio-temporal frequency domain (ns, nd). Each
snapshot is the result of the contributions of all the clutter
patches along the corresponding isorange. Thus, for each
particular range cell, the support of the clutter power
spectrum (PS) in the 4D spatio-temporal frequency domain
(ns, nd) is represented by a continuous curve. This 4D
curve is called the 4D clutter PS locus [15]. This curve is
a very useful tool for investigating the behaviour of the
clutter signature with range. This is shown in Fig. 3 for a
BS flight configuration. We clearly see that the clutter
snapshots are range dependent. This RD gives rise to

Figure 2 Set Sd corresponding to the calibration table

Figure 3 Evolution of the 4D clutter PS locus for increasing
range in a BS configuration

The first graph is the projection of the 4D clutter PS locus in the
(nsx nsy, nd) subspace; the second graph is the projection in
the (nsx , nsy, nsz) subspace. Note that nsx , nsy and nsz are the
elements of the normalised spatial frequency vector ns
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severely biased estimates of the clutter CM when one simply
uses an average of sample CMs [15].

3.2 Registration-based RD compensation

Several RD compensation algorithms exist, for example,
Doppler warping (DW) [16], angle-Doppler compensation
(ADC) [34], adaptive angle-Doppler compensation (A2DC)
[18], derivative-based updating (DBU) [21] and RBC [35].

The DW, ADC and A2DC methods have poor performance
when used with omnidirectional transmit antennas. The
reason is that they register the clutter PS only at a single
point. The DBU method relies on the assumption of a linear
variation with range of the optimum weight vector and
imposes a substantial increase in computational load and in
the need for secondary data. The problems associated with
the first four methods discussed above are addressed by the
RBC algorithm [15, 29, 35], and this is why we choose to
extent the RBC algorithm to work under the hypothesis of a
partially calibrated array.

Here, we simply recall the elements of the RBC algorithm
that are vital to understanding the problem discussed in this
paper. The RBC algorithm relies on three steps. (A) An
analysis step, where a clutter PS estimate of the snapshot at
each range is independently computed along the clutter
PS locus at this range. This can be achieved by using a
matched filter [35], a least-square fitting technique, a
minimum-variance distortionless-response beamformer [24]
or a maximum-likelihood estimator [28]. However, these
techniques all require precise knowledge of the true space–
time SVs (and, thus, of the true spatial SV) for each of the
(ns, nd)-pairs for which a clutter PS estimate is to be
obtained. (B) A registration step, where the PS estimates
at different ranges are averaged along so-called flowlines
(defined in [35]). (C) A synthesis step, where the CM at
each range of interest is synthesised from the clutter PS
estimate and the knowledge of the clutter PS locus at the
range of interest. This step requires, for each range cell l of
interest, a model of the clutter CM R

c,l
¼ E{ y

c,l
yy

c,l
}, the

expression of which also requires the knowledge of the true
spatial SVs. It is thus important to note that the benefits of
the RBC algorithm leading to an accurate estimate can
only be obtained if we have knowledge of the true spatial
SVs, or a good approximation thereof.

4 RBC algorithm with partially
calibrated array
The problem addressed in this section is to obtain an accurate
estimate of the IþN CM by means of the RBC algorithm in
the presence of RD when the true spatial SVs cannot be
obtained for all possible DOAs. The goal of the method
presented here is thus to obtain approximations to the
missing true spatial SVs under the conditions described in
Section 2.

4.1 Nearest-neighbour scheme

Before describing the array interpolation based
approximation scheme in Section 4.2, we describe a first-
cut approach based on a nearest-neighbour (NN) scheme.

Let us assume that we require the true spatial SV
strue
s (ns(u0, f0)) corresponding to a DOA (u0, f0) that is not

available in Sd. The NN scheme consists in using, instead of
the missing strue

s (ns(u0, f0)), the strue
s in S that corresponds

to the DOA (u, f) in Sd closest to (u0, f0). More formally,
the NN in S of strue

s (ns(u0, f0)) is the true spatial SV
strue
s (ns(u0,NN, f0,NN)) belonging to S and verifying

(u0,NN, f0,NN) ¼ argmin
(u,f)[Sd

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(u0 � u)2

þ (f0 � f)2
q

This is illustrated in Fig. 4.

The NN scheme combined with the RBC algorithm is
denoted NN-RBC. This simple scheme has a reduced
computational cost. However, it is likely to fail when Df

and Du (defined in Fig. 2) increase as is shown in Section 5.

4.2 Array interpolation scheme

First, we restate briefly the principles of array interpolation.
Second we describe how the conventional approach applies
array interpolation in the context of calibration issues.
Then, we present our approach.

4.2.1 Principles of array interpolation: The principle
of array interpolation is to design a linear transformation T
that allows one to compute the data that would have been
received by a virtual array if this virtual array had been
used instead of the real array. T must map the real array
manifold into the predefined virtual array manifold over a
given 2D field of view (A field of view is defined as the
cartesian product of an elevation-angle interval and an
azimuth-angle interval.) F of limited size such that

Tsr
s(u, f) ’ sv

s (u, f), 8(u, f) [ F (4)

where sr
s (u, f) and sv

s (u, f) are the spatial SVs of the real array
and of the virtual array, respectively. The nature of these spatial
SVs is discussed below. T is obtained by solving the following

Figure 4 Illustration of NN approximation scheme for
missing true spatial SVs
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linear least-squares optimisation problem

min
T

XJ

j¼1

kTsr
s (u(j), f(j))� sv

s (u(j), f(j))k2

¼ min
T
kT Ar

� Av
kF

(5)

where the (u(j), f(j))’s, j ¼ 1, . . . , J, are the sample directions
(defined later) in the field of view F, and F is the Frobenius
norm. The matrices Ar and Av contain the spatial SVs of
the real array and of the virtual array as columns,
respectively. The least-square solution of (5) is

T ¼ Av(Ar)y(Ar(Ar)y)�1 (6)

4.2.2 Conventional approach – Single mapping:
In the conventional approach [36], one chooses

† A single field of view F compatible with the zone over
which the radar has to provide surveillance coverage (see
Fig. 5a).

† The strue
s ’s (corresponding to the DOAs simultaneously in

Sd and in F) as the real spatial SVs, that is, the sr
s ’s.

† The smod
s ’s (corresponding to the DOAs simultaneously in

Sd and in F) as the virtual spatial SVs, that is, the sv
s ’s.

The above elements are then used to compute a single T by
applying (6). The application of T to the spatial part of
the recorded snapshots (done by applying I

M
� T to each

snapshot, where I
M

is the identity matrix of size M )
would yield virtual snapshots for which the smod

s ’s could
then act as true spatial SVs for any DOAs. Indeed, the
virtual snapshot behaves as if it had been received by an
array that behaves according to the M( � , � ) used. This
approach is appealing since now the ‘true’ virtual spatial
SVs are available for every DOA in the RBC algorithm
since they can be generated by the M( � , � ) under
consideration for generating the smod

s ’s.

Unfortunately, this method will fail when applied in the
context of CAAs. Indeed, CAAs may provide surveillance
coverage over an interval in azimuth as large as 3608. The
contributions to a clutter snapshot recorded by a CAA may
thus come from a very large field of view. However, the
field of view over which T correctly maps the real array
manifold into the virtual array manifold is relatively small,
even if we use more elaborate techniques for the design of
the virtual array, as shown in [37]. This implies that
applying I

M
� T to the clutter snapshots will fail to

produce an accurate virtual snapshot. It thus appears
inappropriate to apply the same mapping T to all the
spatial SVs making up the snapshot to be transformed.

4.2.3 Our approach – multiple mappings: The
solution we propose is motivated by the nature of the RBC
algorithm. Both in the estimation of the clutter PS and in
the synthesis of the CM estimate, the spatial SVs used are
accessed individually. This means that different T’s might
be computed and applied to different spatial SVs. These
observations led us to devise the following approach.

Instead of looking for an overall transformation T to be
applied to the spatial part of the data snapshots, we choose

† Several fields of view Fq,r , q ¼ 0, . . . , Q� 1, r ¼
0, . . . , R � 1 instead of a single field of view F.

† The strue
s ’s (corresponding to the DOAs simultaneously in

Sd and in the union of the Fq,r ’s) as the virtual spatial SVs,
that is, the sv

s ’s, which is the opposite of what is done in
the conventional approach.

† The smod
s ’s (corresponding to the DOAs simultaneously in

Sd and in the union of the Fq,r ’s) as the real spatial SVs, that
is, the sr

s ’s, which is also the opposite of what is done in the
conventional approach.

Carefully note that we are not going to apply the T
q,r

to
the snapshots as in the conventional approach, but that we
are going to approximate the missing strue

s ’s. That is why we
use the strue

s ’s as the sv
s ’s and the smod

s ’s as the sr
s ’s. The

Figure 5 Single mapping against multiple mappings

a Conventional approach using array interpolation with a single
field of view F
b Our approach using several fields of view Fq,r , q ¼ 0, . . . ,
Q� 1, r ¼ 0, . . . , R� 1
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benefit of this approach is that we can let the size of the fields
of view over which each T

q,r
operates be a free parameter.

Details are as follows.

First, we define several fields of view Fq,r as shown in
Fig. 5b. The size in azimuth, Lf, and the size in elevation,
Lu, are kept as free parameters to be determined. The Lf’s
of all Fq,r ’s are assumed identical. The same is true for the
Lu’s. However, Lu may differ from Lf. The position of

the centre of each Fq,r is such that it overlaps with half of

Fq�1,r and half of Fqþ1,r . The same is true in elevation.

This ensures that no smod
s to be mapped is ever located at

the border of a field of view. Indeed, the performance of
array interpolation is generally worse at the border of the
field of view than it is at its centre [37].

Second, for each Fq,r , we find the corresponding T
q,r

by
minimising

min
T

q,r

XI

i¼1

kT
q,r

smod
s (u(i), f(i))� strue

s (u(i), f(i))k2 (7)

where (u(i), f(i)) [ Fq,r , i ¼ 1, . . . , I , are the sample

directions taken now in the field of view under consideration.
These directions correspond to the DOAs for which strue

s ’s are
available, that is, the DOAs in Sd.

Third, we approximate the missing strue
s ’s as follows.

Let us assume again that we require the true spatial SV
strue
s (ns(u0, f0)) corresponding to some DOA (u0, f0)

needed in the RBC algorithm. Instead of using smod
s (u0, f0),

we compute an approximation ~strue
s (u0, f0) to strue

s (u0, f0).
To do so, we first determine the Fq,r with centre closest to
the given DOA (u0, f0). Then, we apply the corresponding
T

q,r
to smod

s (u0, f0) to obtain

~strue
s (u0, f0) ¼ T

q,r
smod
s (u0, f0) (8)

~strue
s (u0, f0) is then used as a surrogate for the missing

strue
s (u0, f0).

This array interpolation based approximation scheme is an
extension of the one presented in [38], where the parameter
Lu of the field of views was kept fixed. Lu was considered to
be imposed by the range interval over which the radar system
has to provide surveillance coverage, which may be difficult if
the range interval is large.

4.3 Extension of RBC algorithm to
partially calibrated arrays

We can now extend the RBC algorithm summarised in Section
3.2. (A) In the analysis step, we proceed as follows to
accurately compute a PS estimate at a given range cell for a
specific (ns(u, f), nd)-pair. Instead of using smod

s (u, f), we
compute the approximation ~strue

s (u, f) as described above. (B)
The registration step remains unchanged. (C) In the synthesis

step, we proceed in the same fashion to obtain the ~strue
s (u, f)’s

required to form the CM estimate. The array interpolation
scheme combined with RBC is denoted AI-RBC.

5 Results
In the absence of real measurements, the true spatial SVs and
each datacube must be generated synthetically, that is, from a
model. Two such models will be considered for generating
the strue

s ’s. First, we consider a simple analytical model
(Section 5.1). Second, we consider a more realistic model
obtained by the numerical electromagnetic tool FEKO [33]
(Section 5.2). The parameters common to all simulations
are as follows. We use a clutter-to-noise ratio of 20 dB, a
wavelength of 0.03 m, M ¼ 12 pulses and L ¼ 20
secondary snapshots. The secondary snapshot are located at
the BS ranges Rb ¼ 18þ 0.6k (in kilometres),
k ¼ 0, . . . , 19. For the temporal decorrelation, we use a
Gaussian CM taper with a spectral standard deviation of
sv ¼ 0.5 m/s as suggested in [9]. Spatial decorrelation is
not considered here. The parameters for the BS flight
configuration used in the simulations are xR ¼ 7 km,
yR ¼ 3 km, zR ¼ 22 km, vT ¼ 120 m/s, vR ¼ 90 m/s,
aR ¼ 308, d ¼ 108 and H ¼ 8 km (which is the altitude of
the transmitter above ground).

As indicated in Section 2, we assume throughout that the
smod
s ’s are generated byM( � , � ) with the general functional

form given by (3). Here, we consider, for both Sections 5.1
and 5.2, a particular case of (3) obtained by setting the
gains gn(u, f) to unity, that is

smod
s (ns) ¼ ej(2pnT

s p(0))=(l=2)
� � � ej(2pnT

s p(N�1))=(l=2)
h iT

(9)

The results will show that our solution based on the smod
s ’s

generated by (9) allows one to minimise the modelling
effort for the smod

s ’s, while still having very promising
STAP performance.

5.1 Simple analytical model

The first array used to evaluate the end-to-end performance of
our algorithm is a bowl-shaped array with N ¼ 42 elements
(Fig. 6). The array’s strue

s ’s are computed according to

strue
s (ns) ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gtrue

0 (u, f)
q

ej(2pnT
s p(0))=(l=2)

�

� � �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gtrue

N�1(u, f)
q

ej(2pnT
s p(N�1))=(l=2)

�T

where the antenna gains are given by

gtrue
n (u,f)¼

G0 cos2 an(u,f)p

u0

� �
if �

p

2
�an(u,f)�

p

2

G0GB cos2 an(u,f)p

u0

� �
if
p

2
,an(u,f) ,

3p

2

8>><
>>:
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where an(u, f) is the angle between the DOA and the normal
to the surface subtending the array at the nth antenna element,
G0 is the gain value in the direction of maximum gain, GB is
the backlobe attenuation and u0 parametrises the first-null
beamwidth of the antenna.

Fig. 7 shows SINR loss (SINRL) [1] curves as a function of
nd for two sets of values for the quadruplet (Du, Df, Lu, Lf)
and for two DOAs chosen in the range cell under

examination. The left column corresponds to calibration
steps given by (Du, Df) ¼ (108, 108) and a field-of-view
size given by (Lu, Lf) ¼ (40, 160), whereas the right
column corresponds to (Du, Df) ¼ (158, 158) and (Lu,
Lf) ¼ (608, 2408). Each row corresponds to a different
DOA in the range cell under examination. Each subfigure
shows the SINRL curves for distinct algorithms. The usual
references are shown, that is, the OP and the SMI [5]. As
additional references, we show the SINRL curves of the
RBC algorithm having access to the strue

s ’s for all (u, f)’s and
the SINRL curves of the RBC algorithm having access only
to the smod

s ’s (for any DOA) and no access to any strue
s . These

algorithms are denoted True-RBC and Nom-RBC,
respectively. Of course, we also show the SINRL curves for
NN-RBC and for AI-RBC.

True-RBC performs almost as well as the OP [35], [15],
since their SINRL curves are seen to be almost
superimposed. In all cases, the Nom-RBC algorithm fails to
give satisfactory performance. This is to be expected since
the modelling effort is kept small. For (Du, Df) ¼ (108,
108), NN-RBC still gives satisfactory perfomance, whereas
AI-RBC performs almost as well as OP and True-RBC,
since all three curves are almost superimposed. For (Du,

Figure 6 Bowl-shaped CAA with N ¼ 42 elements

The short line segments represent the normals to the surface
subtending the array. Axes are in units of l/2

Figure 7 SINRL curves for the array of Fig. 6 with G0 ¼ 1, GB ¼ 0.01 and u0 ¼ p

The left and right columns correspond to (Du, Df, Lu, Lf) ¼ (108, 108, 408, 1608) and (Du, Df, Lu, Lf) ¼ (158, 158, 608, 2408), respectively.
Each row corresponds to a different DOA in the range cell under examination
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Df) ¼ (158, 158), NN-RBC becomes unreliable, but AI-
RBC still gives excellent performance. We thus clearly see
the benefit of AI-RBC.

To investigate further the impact of the parameters
Du, Df, Lu and Lf, we introduce the average relative
SINR loss, denoted ar-rel-SINRL. We define the relative
SINR loss, denoted rel-SINRL, as the ratio of the SINRL
of the algorithm under consideration, here AI-RBC, and
the SINRL of the OP. We also define the ar-rel-SINRL
for a given DOA as the average of the rel-SINRL over all
the nd’s. Fig. 8 shows the ar-rel-SINRL for the AI-RBC
method at the DOA corresponding to Fig. 7a. It shows the
average loss with respect to the OP because of the CM
estimation under the hypotheses of a partially calibrated
array. The white upper-left part corresponds to values of
the quadruplet (Du, Df, Lu, Lf) for which no T

q,r
can be

computed. Indeed, for a given (Du, Df), the size of the
field of view must cover a certain extent to have enough
columns in the matrix Ar for the system Ar (Ar)y to be
invertible as required by (6).

We observe that, for a given size of the field of view, the
performance decreases as Du and Df increase. Indeed, the
smaller the number of calibrated spatial SVs, the more
difficult it is to estimate correctly the clutter CM. For a
given (Du, Df), there exists an optimum size of the field of
view. For too small a size of the field of views, the T

q
’s

correctly map only the smod
s ’s for which the corresponding

strue
s ’s are known. This occurs if the number of calibrated

DOAs in a given Fq,r is such that the system in (7) can be
solved exactly, rather than in the least-square sense. In such
a case, the mapping between the smod

s ’s and the
corresponding strue

s ’s for calibrated DOAs is exact, but
totally erroneous for intermediate DOAs as T

q,r
is not

forced to take them into account to provide a low least-
square error in (7). For too large a size of the field of views
the angular extent of the Fq,r ’s becomes too large for the
linear transformations T

q,r
to perform a correct mapping

between the smod
s ’s and the corresponding strue

s ’s. This is the
same problem as described in Section 4.2.1. Note that AI-
RBC gives very promising performance over a fairly large
region of the parameter space.

In Fig. 8, the shape of the field of fiew is fixed by the ratio
Lf=Lu ¼ 4: To investigate the influence of the shape of the
field of view, we proceed as follows. The following
description is for a given pair (Du, Df). We define the ratio

K ¼ Lf=Lu (10)

as the shape parameter of the field of view. We also define
the maximum, average, relative SINRL, denoted, max-ar-
rel-SINRL, which is the maximum value of the ar-rel-
SINRL obtainable by changing Lf (Lu changes accordingly
through (10)). Fig. 9 shows the max-ar-rel-SINRL as a
function of K for several (Du, Df) pairs.

We observe that, for a given (Du, Df), the smaller the ratio
K, the higher the value of max-ar-rel-SINRL. Hence, the
more the shape of a field of view approaches that of a
square, the better the performance. This can be explained
as follows. For large values of K, a field of view has the
shape of a narrow rectangle. For such a field of view, there
are more smod’s corresponding to DOAs located far away
from the centre of the field of view than for a field of view
with a shape closer to that of a square. However, for
DOAs located away from the centre of the field of view the
mapping is generally worse than for DOAs closer to the
centre [37]. This explains why the performances for small
values of K are better than for larger values of K.

Figure 8 Average, relative SINRL, denoted ar-rel-SINRL, in
dB, as a function of Du and Lu
Note that, to obtain a 2D colour-coded graph, we fixed Df to
Df ¼ Du and Lf to Lf ¼ 4Lu. The white upper-left area
corresponds to quadruplets (Du, Df, Lu, Lf) for which T

q,r
cannot be computed (see text)

Figure 9 Maximum average, relative SINRL, denoted
max-ar-rel-SINRL, in dB, as a function of K
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5.2 More realistic model, based on FEKO

The second array used to evaluate the end-to-end
performance of our algorithm is a quarter-sphere array with
N ¼ 48 elements (Fig. 10). The full sphere acts as the
ground plane. The array’s strue

s ’s were computed using the
numerical electromagnetic tool FEKO, taking into account
the mutual coupling among elements, as well as the
interaction with the carrying platform acting as a ground
plane. A given strue(u, f) is obtained as follows. We
simulate a plane wave with unit-amplitude electric field
impinging from direction (u, f) on the array under
consideration. FEKO uses the method of moments (MoM)
[39] to obtain the complex voltages at the output of the
antenna elements. From these complex voltages, we
immediately obtain the elements of strue(u, f).

Fig. 11 shows SINRL curves as a function of nd. Again,
we clearly see the benefit of AI-RBC, which gives very
promising performance, since its SINRL curves are seen to
be almost superimposed with those of OP and True-RBC.

6 Summary and conclusions
In this paper, we considered the problem of RD in STAP
applied to CAAs that are only partially calibrated. We
provided an innovative extension to the RBC algorithm of
[4, 15] in order to obtain an estimate of the IþN
covariance matrix even if the CAA is only partially calibrated.

In Section 2, we described a model of the signal recorded
by a CAA. We also defined a partially calibrated array as an
array for which the true spatial SV has been obtained in
the calibration process (e.g. through measurements in an
anechoic chamber) only for a some DOA of the incoming
plane wave but not for all DOAs. In Section 3, we
reviewed the RD problem and the RBC algorithm. Section
4 presents our innovative extension of the RBC algorithm.
This extension is based on an array interpolation scheme
that allows one to compute an approximation of the
missing true spatial SVs, that is, the spatial SVs not
obtained during the calibration phase of the array but
required by the RBC algorithm and / or the STAP filter.
In this way, the RBC algorithm can be used to estimate
the IþN covariance matrix even if the array is only
partially calibrated. Section 5 analysed the end-to-end
performance on synthetic data. We tested our approach on,
among other arrays, a quarter-sphere array placed in front
of a metal sphere acting as a ground plane. The spatial SVs
of this array were obtained using the electromagnetic
simulation software FEKO, which accounts for the mutual
coupling among the antenna elements and for the
interaction with the metal sphere. We showed that, to
obtain near optimum end-to-end performance, it is
sufficient to obtain the true spatial SVs for only every 108
in elevation and every 108 in azimuth during the calibration
process.

Future work should be aimed at improving the tiling of the
calibration grid by the Fq,r ’s to reduce even further losses
because of imperfect calibration.
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