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Abstract

Reduced element spacing in antenna arrays gives rise to strong mutual coupling between array elements and 
may cause significant performance degradation. These effects can be alleviated by introducing a decoupling 
network consisting of interconnected reactive elements. The existing design approach for the synthesis of 
a decoupling network for circulant symmetric arrays allows calculation of element values using closed-form 
expressions, but the resulting circuit configuration requires multilayer technology for implementation. In 
this paper, a new structure for the decoupling of circulant symmetric arrays of more than four elements is 
presented. Element values are no longer obtained in closed form, but the resulting circuit is much simpler 
and can be implemented on a single layer.
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1.	 Introduction

In wireless systems, spatial diversity can achieve 
significant gain in system capacity [1]. The effects 
of mutual coupling in arrays are usually restricted 
by using an inter-element spacing of at least half a 
wavelength (λ/2). However, for antenna diversity in 
mobile applications, the use of an element spacing 
considerably smaller than λ/2 becomes inevitable. 
Reduced element spacing results in increased coupling 
between array elements, which will decrease the antenna 
gain considerably and thus cause significant system 
performance degradation [2,3].

The effects of mutual coupling can be countered by using 
passive, lossless decoupling and matching networks. A 
decoupling network consists of interconnected reactive 
elements and/or transmission line sections and stubs. 
It provides an additional signal path between the array 
elements, which effectively cancels the external coupling 
between them. The decoupling network for an N-port 
array is a 2N-port network with N ports connected to the 
array elements, while the remaining N ports represent 
the isolated input ports. Various implementations of 
decoupling networks (DN) have been described in the 
literature [4-9], but investigations have largely been 
limited to a small number of radiators.

For maximum versatility, the number of elements in 
an adaptive array needs to be as large as possible. 
Recently, a systematic design approach for larger 
circulant symmetric arrays was proposed [10]. The 
design procedure involves the repeated decoupling of 

the characteristic eigenmodes of the array. The method is 
uncomplicated and allows calculation of element values 
using closed-form expressions, but the resulting circuit 
configuration is complex. For example, the decoupling 
network for an array of N>5 elements would require a 
circuit with at least three different layers.

In this paper, we propose a new structure for the 
decoupling of circulant symmetric arrays of N>5 
elements. Network element values are still obtained 
through a process of repeated eigenmode decoupling, 
but in this case by solving sets of nonlinear equations. 
Although the design procedure is more complicated, 
the resulting decoupling network can be implemented 
on a single layer.

2. 	 Theory

Consider a circulant symmetric array comprising N 
elements equally spaced on the circumference of a circle. 
The port voltages and port currents of the array are thus 
related by

V = Za I,			    (1)

where V=[V1, V2, ..., VN]T and I=[I1, I2, ..., IN]T are the 
voltage and current vectors, respectively, and Za is 
the symmetric impedance matrix of the array. Za will 
have N eigenvalues and N corresponding orthogonal 
eigenvectors. Eigenmode m is excited when the port 
currents are proportional to eigenvector em. The 
eigenvectors form a complete basis for the port currents 
so that any conceivable excitation can be expressed as
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I e= ∑cm
m

m,	 (2)

with cm being the excitation coefficient of mode m. Using 
Equation 1, the port voltages are obtained as
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where Zm is the eigenvalue corresponding to eigenvector 
em. The input impedance at port i is given by
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where emi is the ith element of em. From Equation 4, it 
is clear that the input impedance is dependent on the 
port excitations, which is a well-known consequence 
of mutual coupling between the array elements. When 
a single mode is excited, the input impedance reduces 
to Z Zi m

in = . The eigenvalue Zm therefore represents the 
input impedance observed at each port when the port 
currents or voltages are proportional to eigenvector em.

Decoupling of an array involves a process of modifying 
its impedance matrix to reduce all the off-diagonal 
elements to zero. An alternative approach involves 
a process of matching the modal input impedances. 
Suppose the impedance matrix of the array is modified 
by connecting additional circuitry to the array ports to 
yield a new impedance matrix Z'. If Z' has the same 
eigenvectors as before, but all the modal impedances are 
equal (i.e. Zm=Z0'), Equation 3 reduces to 

V e= ′ ∑Z cm
m

m0 . 	 (5)

From Equation 4, the input impedance at each port 
becomes Z Zi

in = ′0 , which is independent of the port 
excitations. For circulant symmetric arrays, array 
decoupling can therefore also be accomplished by 
equalizing the eigenvalues of the impedance matrix of 
the array.

An N-element array characterized by a circulant 
impedance matrix with k distinct eigenvalues requires 
a decoupling network with 2(k−1) independent 
parameters. In [10], it was shown that array decoupling 
can be accomplished in (k−1) stages by using a ladder 
of circulant symmetric network configurations (stage 
networks). Each stage network consists of N identical 
series reactive elements and N identical parallel reactive 
elements. The parallel elements can be arranged in the 

shape of a single polygon, several smaller polygons 
rotated with respect to one another or in the shape of 
a star with or without a common node at the center. 
In order to decouple the array, (k−1) suitable stage 
networks have to be identified. Two modes with distinct 
eigenmode impedances are decoupled during each stage 
by calculating the elements of the stage network using 
closed-form expressions. The order in which the stage 
networks are employed is critical to ensure that the 
equality of the eigenmode impedances is preserved in 
subsequent states. Since all element values are calculated 
in closed form, the synthesis procedure is very simple. 
However, the complexity of the composite network 
complicates its implementation.

In this paper, we present an alternative geometry for the 
decoupling circuit. For an N-element array characterized 
by a circulant impedance matrix with k distinct 
eigenvalues, all the first (k−2) stage networks consist 
of N series reactive elements and N parallel reactive 
elements arranged in the shape of a single polygon. This 
ladder of stage networks is employed to decouple (k−1) 
eigenmodes, which involves the numerical solution of a 
set of 2(k−2) nonlinear equations to determine the 2(k−2) 
reactive elements. The final stage network consists of N 
series reactive elements and N parallel reactive elements 
arranged in the shape of an N-legged star with a common 
node in the center. This stage network is used to decouple 
the lowest-order eigenmode and the other modes. The 
two reactive components of the final stage network 
can be determined using the closed-form relations 
provided in [10]. The composite decoupling network 
yields uncoupled ports for the array. The uncoupled port 
impedances can be matched to the system impedance 
Z0 using suitable matching networks. For each reactive 
element in the decoupling and matching network, the 
value of a corresponding inductor or capacitor may 
be computed at the center frequency. The decoupled 
array can thus be analyzed as a function of frequency. 
The application of this approach is best illustrated by 
considering the following two examples.

2.1 	 Design Example: 6-Element Array

The method presented in [10] was illustrated by 
considering a 6-element circulant symmetric array. The 
impedance matrix of such an array is given by

Za =

Z Z Z Z Z Z

Z Z Z Z Z Z

Z Z
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a a a a a a
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The eigenvalues of the impedance matrix are
Z Z Z Z Za

a a a a= + + +11 12 13 142 2 ,
Z Z Z Z Zb

a a a a= − + −11 12 13 142 2 ,
Z Z Z Z Z Zc d

a a a a= = − − +11 12 13 14  
and Z Z Z Z Z Ze f

a a a a= = + − −11 12 13 14, while the corresponding 
orthogonal eigenvectors are ea = [1, 1, 1, 1, 1, 1]T,  
eb = [1, −1, 1, −1, 1, −1]T, ec = [1, 0, −1, 1, 1, 0, −1]T,  
ed = [1, −1, 0, 1, −1, 0]T, ee = [1, 0, −1, −1, 0, 1]T and ef = [1, 
1, 0, −1, −1, 0]T. Since there are four distinct eigenvalues, 
three stage networks are required to decouple the 
eigenmodes. The stage networks are shown in the 
second column of Table 1. A stage network will reduce 
to the equivalent circuit shown in Figure 1 for each 
eigenmode. The parameter nim in Figure 1 for stage 
network type i can be determined by assuming port 
voltages corresponding to eigenvector m and using 

circuit analysis to obtain the equivalent network. As 
an example, the derivation of the equivalent circuit 
for stage network 1 and eigenmode c is shown in  
Figure 2. In Figure 2(a), port voltages corresponding to ec 
are applied to the new external ports, while the original 
ports are terminated in the array input impedance for 
mode c, Zc. The undriven ports are grounded and an 
electrical conductor is introduced on the symmetry 
plane in Figure 2(b). The resulting equivalent circuit 
is shown in Figure 2(c), and comparing this result to 
Figure 1 yields n1c = 3. Equivalent circuits for the other 
stage networks and eigenmodes can be determined 
in a similar way. The parameter nim for stage network 
type i and eigenmode m is shown in the third column 
of Table 1. A composite decoupling network is obtained 
by cascading the three stage networks, as depicted in  
Figure 3. The equivalent circuit for the composite network 
is shown in Figure 4. Two modes with distinct eigenmode 
impedances are decoupled during each stage by 
selecting appropriate values for the elements of the stage 
network. In [10], circuit elements (X1, B1), (X2, B2) and (X3, 

B3) were obtained by setting ′ = ′Z Zc e , ′′ = ′′Z Zb c and ′′′= ′′′Z Za b ,  

Table 1: Stage networks for equalizing modal impedances 
of a 6-element array
Network type i Stage network Parameter nim in Figure 1
1 1

2

3

4'

5

6

5'

4

3'

6' 2'

1'
jX

jB

n1a = 0

n1b = 4

n1c = n1d = 3

n1e = n1f = 1

2

4'

5' 3'

6' 2'

1'

jB

3

2

1

6

5

4

jX n2a = n2b = 0

n2c = n2d = n2e

         = n2f = 3

3 1

2

3

4'

5

6

5'

4

3'

6' 2'

1'
jX

jB

n3a = 0

n3b = n3c = n3d 
      = n3e = n3f = 1

jX
1'1

jnimB

Figure 1: Equivalent circuit of the stage network i when mode 
m is excited.

Figure 2: Derivation of equivalent circuit of the stage network 1 when mode c is excited.
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and using closed-form expressions to determine the 
component values. Note that an implementation of 
the composite decoupling network shown in Figure 3 
would require a multilayer circuit board or air bridge 
crossover structures.

In the alternative approach, we replace the Type 2 
network with another Type 1 network in the composite 
decoupling network. The resulting composite network 
and its equivalent circuit are shown in Figures 5  
and 6, respectively. From Figure 6, the input impedance 
observed at Ports 1' and 1" for mode m are given by

Figure 3: Composite decoupling network for a 6-element cir-
culant symmetric array [10]. 

Figure 4: Equivalent circuit of the composite decoupling net-
work in Figure 3 when mode m is excited. The values of n1m, 
n2m and n3m are specified in Table 1.

Figure 5: New composite decoupling network for a 6-element 
circulant symmetric array.

Coetzee JC, et al.: Single-layer Decoupling Networks

Figure 6: Equivalent circuit of new composite decoupling net-
work in Figure 5 when mode m is excited. The values of n1m 
and n3m are specified in Table 1.

′ = + +( ) +( ) +




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− − − −

Z Z jX jn B jX jn Bm m m m( )1
1

1 1
1
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1
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and

′′ = ′ + +( )− −
Z Z jX jn Bm m m( )3

1
3 3

1
.	 (8)

In this case, network elements (X1, B1, X2, B2) are obtained 
by numerically solving the following set of nonlinear 
equations:

Re[ ] , Im[ ]
Re[ ] , Im[ ]

′ − ′ = ′ − ′ =
′ − ′ = ′ − ′ =

Z Z Z Z
Z Z Z Z

b c b c

b e b e

0 0
0 0 .	 (9)

The remaining network elements are found in closed 
f o r m  a s  X g Z Za b3 = ′′ ′′( , )a n dB h Z n Z n Xa a b b3 3 3 3= ′′ ′′( , , , , )
, where the functions g and h are defined in [10]. This 
network is suitable for single-layer circuit board imple-
mentation.

To verify the theory, a decoupling network for a 6-element 
monopole array was designed and analyzed. As in [10], 
the six elements of the array are evenly distributed on a 
circle with radius of 15 mm (0.125λ at a center frequency 
of f0 2 5= .  GHz). Each monopole has a length of 28 mm 
(0.23λ) and a diameter of 1 mm (0.0083λ). With a system 
impedance of Z0=50Ω, the array’s S-parameters were 
computed at f0 using CST Microwave Studio [11]. Four 
distinct sets of solutions for the values of the elements 
of the decoupling network in Figure 5 can be found. The 
S-parameters of the array and one set of solutions are 
shown in Table 2. The elements of an L-section impedance 
matching networks are also shown, with B4 being the 
susceptance of a parallel element to ground and X4 the 
reactance of a series element. The scattering parameters 
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were computed over a frequency range of 0.98 f0–1.02 f0. 
The results are shown in Figure 7. The array is decoupled 
and matched at the design frequency f0, thus illustrating 
the validity of the theory. The array will be decoupled at 
f0 for each of the four solution sets for the elements of the 
decoupling network, although the scattering parameters 
of the four networks are not identical. Each network will 
excite the array elements in a unique way, but internal 
coupling (via the decoupling network) and external 
mutual coupling will effectively cancel each other at f0. 
Figure 8 shows the radiation patterns of the coupled array 
and decoupled arrays (both single-layer and multilayer) 
when only a single port is excited. For the coupled 
array, the other elements are parasitic radiators excited 
through mutual coupling alone. On the other hand, all 
array elements of the decoupled arrays are driven when 
a single external port is excited. The radiation patterns for 
the coupled and decoupled arrays in Figure 8 therefore 
differ markedly. The radiation pattern of the array with 
the single-layer decoupling network also differs from 
the one for multilayer network due to variations in the 
element excitations.

2.2 	 Design Example: 8-Element Array

The impedance matrix of an 8-element circulant 
symmetric array is given by

Za =

Z Z Z Z Z Z Z Z

Z Z Z Z Z Z

a a a a a a a a
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The eigenvalues of Za are 
Z Z Z Z Z Za

a a a a a= + + + +11 12 13 14 152 2 2 , 
Z Z Z Z Z Zb

a a a a a= − + − +11 12 13 14 152 2 2 ,
Z Z Z Z Zc d

a a a= = − +11 13 152 ,
Z Z Z Z Z Ze f

a a a a= = − + −11 12 14 152 2 , and
Z Z Z Z Z Zg h

a a a a= = + − −11 12 14 152 2 , 
while the corresponding orthogonal eigenvectors are 
ea = [1, 1, 1, 1, 1, 1, 1, 1]T, eb = [1, −1, 1, −1, 1, −1, 1, −1]T,  
ec = [1, 1, −1, −1, 1, 1, −1, −1]T, ed = [1, −1, −1, 1, 1, −1, −1, 
1]T, ee = [√2, −1, 0, 1, −√2, 1, 0, −1]T, ef = [1, −√2, −1, 0, −1, 
√2, −1, 0]T, eg = [√2, 1, 0, −1, −√2, −1, 0, 1]T and eh = [1, √2, 
1, 0, −1, −√2, −1, 0]T. The four stage networks that can be 
used to decouple the eigenmodes of this array are shown 
in Table 3. Each stage network will again reduce to the 

Figure 7: Scattering parameters of the decoupled and matched 
6-element array versus normalized frequency, f/f0.

Figure 8: Normalized radiation pattern of the 6-element ar-
ray with and without the decoupling network. The pattern is 
obtained by feeding port 1 and terminating the other ports in 
matched loads. Excitation at subsequent ports will cause the 
radiation pattern to be rotated by 60°.
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Table 2: Scattering parameters and decoupling network 
elements for the 6-element array
Array scattering parameters S

S

S

a

a

a

11

12

13

6 79 159 3

5

= − ∠ °

= − ∠ °

= − ∠ −

. . dB 

7.96 dB 4.5

15.33 dB 33 4

17 93 101 514

.

. .

°

= − ∠ − °Sa  dB 

Decoupling network elements X B

X B

X B

1 1

2 2

3 3

= =
= =
= − = −

6.3077 0.0827

9.0252 0.2770

5.7862 0.120

,

,

, 33

Decoupled port impedance (Ω) ′′′ = −Z j11 1 4 6342 68 6. .

Matching network elements B X4 4= =0.0064 78.0858,
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Table 3: Stage networks for equalizing modal impedances 
of an 8-element array
Network type i Stage network Parameter nim in Figure 1
1

jB
jX

1

4'
5'

3

6'

2

1'

7'

8'

8

2'

3'

4

5

6

7

n1a = 0

n1b = 4

n1c = n1d = 2

n1e = n1f = 2 + √2

n1g = n1h = 2−√2

2

jB

jX

1

4'5'

3

6'

2
1'

7'

8'

8

2'

3'

4

5

6

7

n2a = n2b = 0

n2c = n2d = 4

n2e = n2f = n2g = n2h = 2

3

4'5'6'

1'

7'

8'

jX

jB

1

3

28

4

5

6

7

2'

3'

1

n3a = n3b = n3c = n3d = 0

n3e = n3f = n3g = n3h = 1

4

4'5'6'

1'

7'

8'

jX

jB

1

3

28

4

5

6

7

2'

3'

n4a = 0

n4b = n4c = n4d = n4e 
      = n4f = n4g = n4h = 1

equivalent circuit shown in Figure 1 when an eigenmode 
is excited, with parameter nim defined in Table 3. Instead 
of using a composite decoupling network which consists 
of a tandem connection of the four stage networks, we 
follow the alternative approach by employing three Type 
1 circuits and one Type 4 circuit to obtain the composite 
network shown in Figure 9. The equivalent circuit of the 
composite decoupling network in Figure 10 can be used 
to calculate the impedance observed at Ports 1' and 1" 
for mode m as

′ = + +( ) +( ) +




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+








− − − −

Z Z jX jn B jX jn B jXm m m m( )1
1

1 1
1

2

1

1 2

1

3

−− −

+












1

1 3

1

jn Bm

′ = + +( ) +( ) +






+








− − − −

Z Z jX jn B jX jn B jXm m m m( )1
1

1 1
1

2

1

1 2

1

3

−− −

+












1

1 3

1

jn Bm
 	 (11)

and

′′ = ′ + +( )− −
Z Z jX jn Bm m m( )4

1
4 4

1

.	 (12)

The network elements (X1, B1, X2, B2, X3, B3) are obtained 
by solving the following set of nonlinear equations:

Re[ ] , Im[ ]
Re[ ] , Im[ ]
Re[

′ − ′ = ′ − ′ =
′ − ′ = ′ − ′ =
′

Z Z Z Z
Z Z Z Z

b c b c

b e b e

0 0
0 0

ZZ Z Z Zb g b g− ′ = ′ − ′ =] , Im[ ]0 0 .	 (13)

The remaining network elements are found in closed 
form as X g Z Za b4 = ′′ ′′( , ) and B h Z n Z n Xa a b b4 4 4 4= ′′ ′′( , , , , ), 
where the functions g and h are defined in [10].

A decoupling network was designed for an 8-element 
monopole array with elements evenly distributed on a 
circle with radius of 15 mm (0.125λ at a center frequency 
of f0 = 2.5 GHz). Each monopole has a length of 28 mm 
(0.23λ) and a diameter of 1 mm (0.0083λ). The computed 
scattering parameters of the array are shown in  
Table 4. One of the several sets of solutions for the 
values of the elements of the decoupling network is 
also shown in Table 4, together with the elements of an 
L-section impedance matching network, B5 and X5. The 
computed scattering parameters over a frequency range 
of 0.98 f0 –1.02 f0 are plotted in Figure 11, while Figure 

Figure 9: Composite decoupling network for an 8-element  
circulant symmetric array.

Figure 10: Equivalent circuit of composite decoupling 
network in Figure 9 when mode m is excited. The values of 
n1m and n4m are specified in Table 3.
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12 shows the radiation pattern of the array when port 1  
is excited.

3. 	 Conclusion

We successfully illustrated an alternative design of 
DN for circulant symmetric arrays. The procedure 
is theoretically applicable to arrays of various sizes. 
Although the design is more complex in that it requires 
the numerical solution of simultaneous nonlinear 
equations, it holds a distinct advantage in terms of the 
ease of implementation. The decoupling network can be 
implemented on a single layer without any air bridge 
crossover structures.
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