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Abstract: We present and test a gradient-based shape optimisation method for the minimisation of the active
reflection coefficient for conformal array antennas. The goal function is an average of the active reflection
coefficient with respect to all antenna elements, a prespecified frequency interval, and a set of excitation
modes. The sensitivity of the goal function with respect to changes of the antenna’s shape is based on the
continuum form of Maxwell’s equations, which provides good flexibility for the choice of field solver. The
sensitivity is formulated in terms of the field solution of the original antenna problem and a similar adjoint
field problem, which gives the sensitivity for an arbitrary number of design parameters given the solution of
Maxwell’s equations. We test the optimisation method in two dimensions for array antennas that conform to
a circular cylinder, where both uniform arrays and arrays that occupy a part of the cylinder’s circumference
are considered. For some cases, we find that it is feasible to reduce the active reflection coefficient for arrays
that partially cover the circumference of the cylinder by means of end elements that differ from the bulk
elements of the array. In general, substantial reductions in the active reflection coefficient can be achieved by
relatively small shape changes of the antenna elements. For the test cases considered in this article, the
optimisation method typically converges to an optimised design within 5–15 iterations.

1 Introduction
Array antennas are useful for beam forming, which is
achieved by controlling the excitation for each antenna
element in the array. Furthermore, conformal array
antennas, where the antenna conforms to some surface, are
important for antenna applications where the antenna has
to be integrated into an existing design. Reasons for this
can be to preserve certain features of the application, for
example, aerodynamic performance or aesthetic design. In
addition, array antennas conforming to, for example, a
cylinder can also have a beam coverage of up to 3608 as
opposed to planar array antennas.

An important consideration in the electromagnetic design of
an array antenna is to achieve a low reflection at the aperture of
the array antenna for the range of excitations that is necessary
for beam-forming purposes. One important way to achieve
this is to alter the geometry of the antenna elements in
the array. Optimisation of the radiation efficiency with respect
to the shape of a single horn has been performed in

electromagnetics [1] and acoustics [2, 3]. Moreover, an
analytic method for analysing the impedance for acoustic
horns is presented in [4, 5]. The influence of the antenna
elements’ shape on the active reflection coefficient of an array
antenna is an extensively studied problem, which is typically
treated by means of parameter studies [6, 7]. Studies on the
effects of the antenna elements’ geometry on the far-field
pattern have been conducted in the two-dimensional (2D)
case in electromagnetics [8]. These studies indicate that the
geometry of the antenna is important for the reflection of a
transmitted wave. In the context of an array antenna,
however, the shape of the antenna elements appears to have a
limited effect on the beam-forming ability of the array
antenna. Pattern synthesis by means of controlling the
excitations has been thoroughly studied using genetic
algorithms [9–11], simulated annealing [12], and methods
based on Dolph–Chebyshev pattern synthesis [13, 14].

In this article, we present an unbiased and efficient method
for the optimisation of the active reflection coefficient with
respect to the shape of the antenna elements for conformal
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array antennas. The optimisation method utilises accurate
numerical field solvers and its goal function is expressed as
an average of the active reflection coefficient with respect to
the frequency interval, excitation modes of interest, and the
ports of the array antenna. Our formulation is based on the
continuum form of Maxwell’s equations, which offers good
flexibility with respect to the choice of field solver. The
gradient of the goal function is expressed in terms of the
solutions of the original field problem and a similar adjoint
field problem [15, 16]. Consequently, the computational
work is independent of the number of design parameters
that are used to describe the individual antenna elements.
This feature of our optimisation method offers both high
computational efficiency and the possibility for a geometry
description with many design parameters that can be used
for complicated array antennas with many, not necessarily
identical, antenna elements. We test our optimisation
method on array antennas that can be modelled in 2D,
where we exploit a field solver that combines the finite-
difference time-domain (FDTD) scheme [17] and the
finite element method (FEM) [18]. The tests feature arrays
that conform to a circular cylinder. We consider both a
uniform array of identical antenna elements and an
array that occupies a part of the cylinder’s circumference,
where the elements at the ends of the array are of different
shape as compared to the bulk elements. The main
contributions in this article are (i) the derivation of the
continuum expression for the gradient of the active
reflection coefficient for shape optimisation of array
antennas in three dimensions (3D), and (ii) shape
optimisation of array antennas in 2D that conform to a
circular cylinder.

2 Optimisation method
We consider an array antenna with N antenna elements in 3D.
Each antenna element is fed by a waveguide supporting one
transverse electromagnetic (TEM) mode and the frequency
interval of operation is such that only the TEM mode
propagates. The electric field satisfies the homogeneous
vector Helmholtz equation in the domain V that consists of
the array antenna and its surrounding environment. The
boundary of V is denoted by @ V and it consists of the port
surfaces Sp (with p ¼ 0, . . ., N 2 1), the perfectly electrically
conducting surfaces SPEC of the array antenna and its
supporting structure, and the spherical surface SR of radius
R that encloses the antenna and its supporting structure.
The outward-pointing normal of V is denoted by n̂.

The field at port p is described in terms of the TEM mode
m(j, y) as E ¼ V þp me�jkz

þ V �p me jkz, which gives a Robin
boundary condition at Sp [18]. A Dirichlet boundary
condition is applied at SPEC, and at SR the Sommerfeld
radiation condition [18] is used. This field problem is
formulated in weak form [18] as: find E such that

a(w, E) ¼ b(w) (1)

for all test functions w that fulfil the Dirichlet boundary
condition, where

a(w, E) ¼

ð
V

(r �w � r � E � k2w � E)dv

þ jk
X

p

ð
Sp

(n̂�w) � (n̂� E)ds

þ jk

ð
SR

(r̂ �w) � (r̂ � E)ds (2)

and

b(w) ¼
X

p

bp(w) ¼
X

p

2jk

ð
Sp

V þp m �w ds (3)

2.1 Gradient of the active reflection
coefficient in 3D

In this article, the objective is to minimise the active
reflection coefficient [19]

Gp ¼
XN�1

q¼0

V þq

V þp
Spq (4)

with the scattering matrix elements given by Spq ¼ v�p =vþq ¼
�vþp =vþq þ Cbp(E), where C ¼ (2jkvþp vþq

Ð
Sp
jmj2 ds)�1 and

v refers to the voltages used for the computation of the
scattering matrix. An expression for the first-order variation
of the active reflection coefficient with respect to geometry
perturbations is formulated in terms of the solution of
the original field problem and an adjoint field problem.
Given that the geometry of the feeding waveguides is
unperturbed, we express the variation of Spq as dSpq ¼

Cbp(dE) and formulate an adjoint problem a( ~E, w) ¼
bp(w), where ~E is the solution to the adjoint problem. The
variation of the scattering matrix is expressed as [16]

dSpq ¼ Cbp(dE) ¼ Ca( ~E, dE)

¼ �Cda(E, ~E)

¼ �C

ð
S

(r� E � r � ~E � k2E � ~E)dg ds (5)

where E is the solution to the original problem when port q is
excited and ~E is the solution to the adjoint problem when
port p is excited. In (5), dg is a small normal displacement
of the boundary of the array antenna, where dg , 0 for
perturbations in the direction of n̂. The sensitivity of the
active reflection coefficient is

dGp ¼
XN�1

q¼0

V þq

V þp
dSpq ¼ �

XN�1

q¼0

V þq

V þp

1

2jkvþp vþq
Ð

SP
jmj2ds

 

�

ð
S

(r � E � r � ~E � k2E � ~E)dg ds

�
(6)
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2.2 Gradient of the active reflection
coefficient in 2D

For testing purposes, we consider shape optimisation of array
antennas that can be described by an infinitely long cylinder,
where the excitation of the array antenna yields a transverse
electric field with respect to the cylinder axis. In particular,
we consider shape optimisation for array antennas
conforming to a circular cylinder as shown in Fig. 1. Fig. 2
shows the geometry description for antenna element p,
where each side of the horn is described by a Bézier curve of
degree three that features four control points. The horns are
fed by parallel plate waveguides of length lw and width ww,
which are chosen such that only the fundamental TEM
mode is significant at the port.

For circular arrays, it is useful to consider phase mode
excitations V þp ¼

~V me jmwp , where ~V m is the phase mode
amplitude. The angle wp is the azimuthal angle with
respect to the x-axis such that wp ¼ pDw, where
Dw ¼ 2p=N , and p ¼ 0, . . ., N 2 1 is the port number. To
characterise the performance of the array antenna, we use
the active reflection coefficient (4) which can be stated in
terms of phase modes as

~G
m

p ¼
XN�1

q¼0

e jmDw(q�p)Spq (7)

In the general case, the active reflection coefficient is different
for each antenna element, but for a uniform array antenna
with identical antenna elements, ~G

m

p is independent
of p. The variation of the active reflection coefficient is
expressed as

d ~G
m

p ¼
XN�1

q¼0

dSpqe jm(q�p)Dw
¼ �

XN�1

q¼0

wwe jm(q�p)Dw

2jkvþp vþq

 

�

ð
L

(r � E � r � ~E � k2E � ~E)dg dl

�
(8)

From (8) it is clear that the active reflection coefficient and its
gradient with respect to geometry perturbations can be
calculated by solving N field problems. In the case of a
uniform array with identical antenna elements, it is sufficient
to solve a single field problem to calculate the goal function
and its gradient with respect to geometry perturbations.

3 Numerical tests
We minimise the root-mean-square (RMS) value of the active
reflection coefficient for a frequency interval [ fmin, fmax], all the
N ports, and a set of excitation modesM¼ {m1, . . . , mM }.
Thus, the goal function is given by

g ¼
1

M

X
m[M

1

N

XN�1

p¼0

1

fmax � fmin

ðfmax

fmin

j ~G
m

p j
2 df

 !2
4

3
5

1=2

(9)

The overall size of the array (R ¼ 1.2 m), the number of horns
(N ), the waveguide dimensions (ww ¼ 0.02 m, lw ¼ 0.1 m),
and the length of the horn (lh ¼ 0.4 or 0.8 m) are fixed in the
optimisation. The design parameters for each horn are the
local coordinates ~y1, ~x2, ~y2, ~x3, ~y6, ~x7, ~y7, ~x8, where
Pi ¼ (~xi, ~yi) in Fig. 2 and

0 , ~w1 ,
d

2R
(10)

~x1 �
lh
2

, ~x2 , ~x1 (11)

0 , ~y2 , R cos
d

2R
(12)

0 , ~x3 ,
lh
2

(13)

and similarly for the other design parameters. The remaining
coordinates of the control points are fixed to enforce

Figure 2 The horn geometry consists of a waveguide part
and a horn part described by two Bézier curves with four
control points each, that is, P1, . . ., P4 and P6, . . ., P9

The horn geometry is specified in terms of local coordinates x̃ and ỹ

Figure 1 Array with antenna elements conforming to a
circular cylinder
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continuity of the horn’s geometry and its derivatives. Thus, the
maximum number of design parameters for the array antenna is
8N, which is restricted by constraints as described below.

Linear constraints can be used in the optimisation
algorithm to enforce symmetries of the array in a
straightforward manner and we investigate two basic cases:
(i) a uniform array with 40 antenna elements distributed
over the entire circumference of the circular cylinder, where
all antenna elements are identical and described by the four-
parameter vector B; and (ii) an array with 10 elements
distributed over a part of the circumference of the circular
cylinder. In the following, the array that only partially covers
the circumference of the circular cylinder is referred to as a
finite array since it features end elements at the two ends of
the array. We use the element separation d ¼ 2 p R/N for
the uniform array with N ¼ 40 and this value for d is also
used for the finite array. The finite array, schematically
depicted in Fig. 3, is tested with four different constraints
on the antenna elements at the ends of the array. Table 1
shows the geometries and the parameters which describe
each individual horn in terms of the four-parameter vectors
B, S, S1, S2, and the eight-parameter vector A. The
geometry E consists of identical symmetric antenna elements
described by B. The second geometry, S1, consists of the
identical and symmetric bulk horns 2–9 described by B and
the symmetric horns 1 and 10 described by S. The third
geometry, S2, consists of the identical symmetric bulk horns
3–8 described by B, the symmetric horns 1 and 10
described by S1, and the symmetric horns 2 and 9 described
by S2. The fourth geometry consists of the symmetric bulk
horns 2–9 described by B and the asymmetric horns 1 and
10 described by A. Thus, geometry E is described by four

degrees of freedom, S1 by eight degrees of freedom, and S2

and A1 by 12 degrees of freedom.

The field problem is solved by a stable FEM–FDTD hybrid
method [20] formulated in the time domain. It combines the
efficiency of the FDTD scheme in large homogeneous
regions outside the array antenna with the body-conforming
ability of the FEM in the vicinity of the curved boundary of
the array antenna. In the numerical simulations, we use a
resolution of 20 cells per wavelength at the highest frequency
and truncate the computational domain by a perfectly
matched layer [17]. The use of a time-domain method allows
us to compute the frequency-domain solution for a given
frequency range by the Fourier transform of the time-domain
solution. For the optimisation, we use sequential quadratic
programming implemented by the routine NPSOL [21].
This optimisation routine is part of a larger package of
optimisation algorithms provided by TOMLAB.

3.1 Uniform array antenna

The active reflection coefficient as a function of frequency for
an initial and optimised design of the uniform array is shown
in Fig. 4, where the optimisation is performed for m ¼ 0 and
the frequency interval 796–955 MHz that corresponds to 0.5
� d/l � 0.6. (This frequency interval is indicated by the
shaded area in the figure.) The dashed line in the figure
refers to the initial array and the solid line to the optimised
array. The active reflection coefficient is significantly
reduced for the frequency interval and the goal-function
value is reduced from 0.11 to 0.02 in seven iterations,
which amounts to a total of 16 solutions of the field
problem including minor iterations, that is, line searches.

Fig. 5 shows the shape of the initial horn (dashed line)
together with the shape of the optimised horn (solid line).
A relatively small change in the geometry of the horn
results in a significant change in the active reflection
coefficient, which makes shape optimisation a well-suited
tool for the design of array antennas.

Given the ith antenna element in the array, its neighbouring
antenna elements are important for the reduction of the active
reflection coefficient. Fig. 6 shows the self-reflection jSiij

for the ith horn (solid line) together with j
Piþ1

j¼i�1 Sij j

Figure 3 Schematic picture of the finite array antenna with
ten numbered antenna elements

The dashed line indicates the symmetry line of the array

Table 1 Four finite array geometries E, S1, S2, and A1 described by the four-parameter vectors B, S, S1, S2, and the eight-
parameter vector A. The numbering of the antenna elements is shown in Fig. 3

Antenna element index

1 2 3 4 5 6 7 8 9 10

E B B B B B B B B B B

S1 S B B B B B B B B S

S2 S1 S2 B B B B B B S2 S1

A1 A B B B B B B B B A
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that includes contributions from the two neighbouring horns
(dash-dotted line) and j

Piþ2
j¼i�2 Sij j that includes

contributions from the four neighbouring horns (dotted
line). For the lowest mode, m ¼ 0, the active reflection
coefficient for horn i is the sum of the ith row in the
scattering matrix and it is also shown in Fig. 6 (dashed line).
Although the self-reflection jSiij is relatively large, the
contributions from the other elements reduce the active
reflection coefficient efficiently and the four adjacent
elements provide the main contribution.

The uniform array is compared to a single antenna element
placed on the circular cylinder, cf. [2, 3]. Fig. 7 shows the
shape of the optimised single horn for the frequency
interval 796–955 MHz and it is noted that this design is
rather different as compared to the optimised design shown
in Fig. 5. The reflection coefficient j ~S11j for the single horn
is significantly lower than the self-reflection jSiij for the
horns in the uniform array as shown in Fig. 8: jSiij for a

horn in the uniform array – solid line; j ~S11j for the single
horn – dashed line; and the active reflection coefficient
j
PN

j¼1 Sij j for the uniform array – dash-dotted line. A
uniform array antenna with identical horns of the shape
shown in Fig. 7 has an active reflection coefficient that is
an order of magnitude larger than a uniform array
consisting of horns with the optimised shape shown in
Fig. 5. Therefore it is important to optimise the entire
array, which advocates the use of the optimisation and
numerical techniques proposed in this paper as design tools.

3.2 Array antennas with end effects

In this section, we optimise the finite array antennas with the
configuration of end elements described in Table 1. When
the antenna elements do not cover the entire circumference
of the cylinder, the array is no longer uniform and each
antenna element experiences a different electromagnetic

Figure 4 Active reflection coefficient as a function of
frequency for the initial geometry (dashed line) and the
optimised geometry (solid line) for a uniform array

The optimisation is performed for the frequency interval
796 – 955 MHz (shown by the shaded area) and uniform
excitation m ¼ 0

Figure 5 Initial shape of the horn (dashed line) and the
optimised shape of the horn (solid line) for a uniform array

The optimisation is performed for the frequency interval
796–955 MHz and uniform excitation m ¼ 0

Figure 6 Contributions jrj to the active reflection
coefficient of an optimised uniform array for the horn
with index i: r ¼ Sii – solid line; r ¼ Sii þ Si,i-1 þ Si,iþ1 –
dash-dotted line; r ¼ Sii þ Si,i-2 þ Si,i-1 þ Si,iþ1 þ Si,iþ2 –
dotted line; and r ¼ Sj Sij – dashed line

The optimisation is performed for the frequency interval
796–955 MHz and uniform excitation m ¼ 0

Figure 7 Optimised shape of a single horn integrated in a
circular cylinder

The optimisation is performed for the frequency interval
796–955 MHz
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environment. In particular, the horns at the ends of the array
only have other antenna elements on one side but not the
other side, which yields an environment quite different
from the bulk elements in the middle of the array.
Numerical tests show that it is in some cases advantageous
to introduce extra degrees of freedom for the end elements,
but that it suffices to let all the bulk horns be identical and
symmetric. This conclusion is also supported by the results
on mutual coupling discussed in Section 3.1.

3.2.1 Asymmetric end elements: The array with
asymmetric end elements labelled A1 in Table 1 yields in
general the best results (as compared to the other types of
end elements considered here) and we explore the
optimisation of this type of array first. In Fig. 9, the
optimised horn geometry for the bulk horn (dash-dotted
line) and the end element 10 (dashed line) are shown
together with the previous results for the uniform array

(solid line), where the optimisation is performed for m ¼ 0
and the frequency interval 796–955 MHz that corresponds
to 0.5 � d / l � 0.6. The bulk horns of the finite array
are very similar to the horns for the uniform array, whereas
the elements at the end of the finite array are distinctively
different from the bulk elements. The initial geometry is
identical for all antenna elements and the initial value of
the goal function (9) is 0.11. The goal function value for
the optimised finite array is 0.03, which can be compared
to the goal function value 0.02 for the optimised uniform
array discussed in Section 3.1.

Furthermore, we compare the optimised finite array
(geometry A1) for m ¼ 0 and two different frequency
intervals: (i) 478–637 MHz, where 0.3 � d / l � 0.4 and
(ii) 796–955 MHz, where 0.5 � d / l � 0.6. The
optimised shapes for the lower (dashed line) and higher
(solid line) frequency interval are shown in Fig. 10 and the
corresponding active reflection coefficients as a function of
frequency are shown in Fig. 11. For optimisation with
respect to the higher frequency interval, the optimised
design features relatively straight edges that are joined with
the feeding waveguide by a curved shape in the region 0.8
� x � 0.95, as shown in Fig. 10. This geometry yields a
low active reflection coefficient for the frequency interval
that corresponds to 0.5 � d/l � 0.6 at the expense of a
rather large active reflection coefficient for 0.3 � d/l �
0.4. For optimisation with respect to the lower frequency
interval, the region with a curved boundary is increased to
0.8 � x � 1.1 and a considerably smaller section next to
the aperture features relatively straight edges. This design
yields a significantly lower active reflection coefficient for
0.3 � d/l � 0.4 at the cost of a relatively small increase
for 0.5 � d/l � 0.6. Shin and Schaubert [6] performed a
parameter study of stripline-fed Vivaldi notch-antenna
arrays and they found similar dependencies on their
opening rate parameter R, which corresponds to a linear
tapering in the limiting case R! 0 and exponential
tapering for R . 0 for the full length of the antenna
element’s tapered slot. (Our optimisation method allows for
combinations of curved and straight boundaries, which is

Figure 8 Reflection coefficient jrj for: a horn with index i in
a uniform array (r ¼ Sii) – solid line; and a single horn array
(r ¼ S̃11) – dashed line

The active reflection coefficient for the uniform array is also
shown (r ¼ Sj¼1

N Sij) – dash-dotted line. The optimisation is
performed for the frequency interval 796–955 MHz

Figure 9 Horn geometry for a uniform array (solid line)
shown together with the bulk horn (dash-dotted line) and
edge horn (dashed line) of a finite array, where the
optimisation is performed for m ¼ 0 and the frequency
interval 796–955 MHz that corresponds to 0.5� d / l� 0.6

Figure 10 Optimised shapes of the bulk horns for a finite
array for m ¼ 0

Shapes are shown for the frequency interval 478 – 637 MHz
(dashed line) and 796 – 955 MHz (solid line). The corresponding
active reflection coefficients are shown in Fig. 11
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displayed by the optimised designs shown in Fig. 10 given
the parameterisation that we use here.) In particular, Shin
and Schaubert [6] show improved standing wave ratios at
low frequencies when R is increased, which compares well
with our shapes optimised for the lower frequency interval
and the corresponding active reflection coefficient.

Furthermore, Shin and Schaubert [6] also find that it is
advantageous to have a large aperture opening in
combination with a small taper flare angle close to the feed
of the antenna elements, which also agrees well with the
optimised designs that we find. In fact, the constraint on
the maximum aperture opening that we use is active (or
very close to active) for all our optimised designs. Finally,
we increase the length of the horns by a factor of two such
that lh ¼ 0.8 m, where the parameterisation of the
boundary remains the same. (The optimisation of longer
antenna elements may benefit from additional design
parameters that allow for greater geometrical flexibility, but
we find that a Bézier curve of degree three suffices to
demonstrate the main features of our optimisation
method.) Fig. 12 shows the optimised bulk horn for
geometry A1 by a solid curve when the goal function
averages over the frequency interval that corresponds to 0.3

� d/l � 0.4 given a uniform excitation, that is, m ¼ 0.
Clearly, this design features mainly flat boundaries and we
achieve very similar results for the optimisation when 0.5 �
d/l � 0.6. For higher mode numbers jmj, the field
variations in the radial direction are reduced, which may be
interpreted as a decrease in the radial component of the
wave vector. As a result, the field variation perpendicular to
the array aperture is reduced which may make it more
challenging to find designs that yield good impedance
transitions from the waveguides to free space. We find that
such situations yield optimised designs that feature curved
boundaries to a greater extent. Fig. 12 shows the shape of
an optimised design for m ¼ 2 and 0.3 � d/l � 0.4
(dashed curve), which clearly differs from the case when
m ¼ 0. We find similar optimised shapes for 0.5 � d/l �
0.6, although the curved boundaries are less pronounced for
the higher frequency interval.

3.2.2 Comparison of different end elements:
Table 2 shows the RMS value of the active reflection
coefficient with respect to frequency for each antenna
element in the finite array, where the optimisation is
performed for the frequency range 796–955 MHz and
m ¼ 0. The first column shows the RMS value when all
horns in the array are identical (geometry E) and the
second column shows the RMS value when the edge horns
are allowed to be different from the bulk horns and
asymmetric (geometry A1). The table shows that the RMS
value of the active reflection coefficient for the elements at
the ends of the array are significantly reduced when they
are allowed to be asymmetric. (Only the result for horns 1–
5 in Fig. 3 are shown because of the symmetry.) This result
indicates that it is feasible to exploit also the end elements
in a finite array to achieve an improved active reflection
coefficient. Thus, it would be possible to avoid so-called
dummy elements to truncate finite arrays – a design
solution that is often used in practice and is considered
expensive.

Since the shape of the antenna elements at the ends of the
finite array has a significant effect on the active reflection
coefficient, we investigate different constraints for the horns
at the ends of the array. The four geometries E, S1, S2 and
A1 described in Table 1 are considered. The goal function

Table 2 RMS value of the active reflection coefficient for
the horns 1–5 in a finite array with ten antenna elements
for the geometries E and A1

Horn E A1

1 0.060 0.009

2 0.056 0.045

3 0.018 0.018

4 0.031 0.031

5 0.025 0.024

Figure 12 Optimised shape for long horns for the frequency
interval 478 – 637 MHz and m ¼ 0 (solid line) and m ¼ 2
(dashed line)

Figure 11 Active reflection coefficient as a function of
frequency for the optimised shapes shown in Fig. 10, that
is, optimised shapes for m ¼ 0 and the frequency interval
478–637 MHz (dashed line) and 796–955 MHz (solid line)

The two frequency intervals are indicated by shaded areas
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for the optimised designs are shown in Table 3 for various
situations: frequency range 478–637 MHz and 796–
955 MHz; mode m ¼ 0 and 2; and horn length lh ¼ 0.4
and 0.8 m. In most cases, the goal function takes its lowest
value for the configuration with asymmetric edge horns.
Furthermore, the longer horns with lh ¼ 0.8 m yield a
lower value of the goal function for most cases, and the
reduction is largest for the lower frequency band. It should
be emphasised that the same parameterisation is used for
both the long and the short horns, which effectively may
put the long horns at a disadvantage with respect to
geometrical flexibility. However, this test demonstrates that
the optimisation method proposed in this article yields
designs with low active reflection coefficient for
approximately 5–15 iterations, where further reductions
may be achieved if more flexible geometry descriptions and
more design parameters are used. Finally, the higher-order
modes yield in general a larger value of the goal function.

3.2.3 Optimisation for all excitation modes:
Electronically controlled beam forming is an important
application for array antennas. For such situations, it is
typically desirable to use the M lowest excitation modes
and, consequently, find array antenna designs that yield an

active reflection coefficient that is low on average for these
modes given the frequency band of interest. For geometry
A1, we perform the optimisation with all radiating modes
[19] included in the goal function (9). For the frequency
range 796–955 MHz, all the modes m ¼ 0, +1, +2, +3,
+4, 5 radiate. Thus, we include in the goal function (9) all
the ten modes that are feasible for the finite array antenna
with N ¼ 10 antenna elements.

Fig. 13 shows the optimised shape of the bulk horn (solid
line) together with the optimised shape of the antenna
element 10 (dashed line) at the end of the finite array.
Here, the goal function features a compromise with respect
to a range of excitations and it clearly influences the
optimised shapes of the antenna elements, where the end
elements are particularly affected as compared to the
optimised designs in Section 3.2.1. The active reflection
coefficient as a function of frequency for the optimised
array is shown in Fig. 14 for the individual modes by solid

Figure 13 Optimised horn shape for the bulk horns (solid
line) and antenna element 10 (dashed line) for the finite
array A1 when all modes are included in the goal function

The optimisation is performed for the frequency interval
796–955 MHz

Figure 14 Active reflection coefficient for all modes for a
finite array A1 with the horn shape shown in Fig. 13

The dashed line shows the RMS of the active reflection coefficient
with respect to all modes. The shaded area indicates the
frequency interval (796–955 MHz) considered in the optimisation

Table 3 Goal function values for different combinations of horn length, frequency range, mode number and constraints on the
horns at the two ends of the finite array antenna with ten antenna elements

Constraint lh ¼ 0.4 m lh ¼ 0.8 m

478–637 MHz 796–955 MHz 478–637 MHz 796–955 MHz

m ¼ 0 m ¼ 2 m ¼ 0 m ¼ 2 m ¼ 0 m ¼ 2 m ¼ 0 m ¼ 2

E 0.079 0.102 0.043 0.052 0.051 0.071 0.035 0.054

S1 0.057 0.096 0.035 0.049 0.035 0.071 0.029 0.053

S2 0.052 0.093 0.034 0.049 0.035 0.070 0.028 0.053

A1 0.057 0.087 0.030 0.049 0.035 0.069 0.027 0.053
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curves, where each curve is the RMS average for the ten ports.
It is noted that the higher modes typically yield a larger
reflection. Fig. 14 also shows the average of the active
reflection coefficient with respect to both the ports and the
modes by the dashed curve. We conclude that the
optimisation method proposed in this paper allows for
automatic and unbiased design of array antennas based on
accurate field computations. If desired, goal function (9)
can also be modified to include weighting factors that put
emphasis on specific ports, excitation modes and/or parts
of the frequency interval under consideration.

4 Conclusion
In this article, we derive the gradient of the active reflection
coefficient with respect to geometry changes for an array
antenna in 3D. Our derivation is based on the continuum
form of Maxwell’s equations and it expresses the gradient
in terms of the solution of the original field problem and
an adjoint field problem which renders the computational
cost independent of the number of design parameters
that are used to describe the geometry of the array antenna.
This feature of our method also offers good flexibility with
respect to the choice of field solver. The gradient is tested
for a 2D array antenna conforming to a circular cylinder,
where we minimise the average of the active reflection
coefficient with respect to the ports, a given frequency
interval and a set of excitation modes that are useful for
beam-forming. The tests show that we can obtain a
significant reduction in the active reflection coefficient in
approximately 5–15 iterations.

We observe that relatively small changes in the geometry of
the antenna can result in large changes in the active reflection
coefficient. In addition, mutual coupling between the
individual antenna elements is important in reducing the
active reflection coefficient. These observations indicate
that our optimisation method together with an efficient
numerical field solver is a good tool for design of array
antennas. Moreover, the antenna elements near the ends of
a finite array are allowed to differ in shape from the
antenna elements in the bulk of the array which may be
important in order to further reduce the average active
reflection coefficient.

A natural extension of this work is to test the outlined
optimisation procedure for 3D array antennas. For real-
world applications, it is also interesting to investigate array
antennas conforming to arbitrary geometries. We conclude
that our optimisation method allows for an automatised,
unbiased, and efficient design procedure of complicated
array antennas.
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