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Abstract: Currently chemotherapy, radiation and surgery are the widely accepted treatments for cancer. A fourth modality,
hyperthermia, or heat treatment, is emerging as an adjuvant cancer treatment along with radiation or chemotherapy, and
works as a booster, sometimes even doubling the effects of these standard treatments. Hyperthermia essentially heats the
cancer region to around 42°C by precisely controlled electromagnetic radiation in the 27, 900 or 2400 MHz frequency range.
The re-emergence of hyperthermia is primarily due to advanced antenna technology, which can precisely target the tumour
volume, while delivering minimal energy to neighbouring healthy tissue. The precise focusing of the electromagnetic beam is
realised either by focusing plates or lenses, or by conformal antenna arrays. In order to achieve efficient array near-field
control for hyperthermia applications, electronic control of the array currents is essential to control the beam over the tumour
volume and achieve uniform heating. This paper reports a generalised analytical technique to reconstruct the array currents
from a specific near-zone electric field profile. This reconstruction technique is applicable to conformal arrays with planar,
cylindrical or spherical geometry. Several simulations have been carried out to test the validity and accuracy of the
reconstruction algorithm.

1 Introduction

Near-field synthesis techniques find applications in
diverse fields of medical therapy and communication
systems. Applications in medical therapy are focused on
heat treatment of tumours by focused hyperthermia,
while in communication satellite systems, near-field
techniques are used to detect defective elements in large
array systems. These applications are elaborated in the
section below.

1.1 Applications of near-field synthesis techniques

Antenna array synthesis techniques are very useful in the
medical field, specifically related to the treatment of
tumours by focused microwave or radiofrequency (RF)
radiation. This method of focusing the beam by feeding the
needed currents offers more controlled way of dealing
with carcinoma using microwave hyperthermia [1–3]. A
conformal array, with the precise current distribution
can focus the antenna beam very precisely in the
tumour-affected volume, with minimal radiation over the
neighbouring healthy tissue [4–7]. Accurate beam steering
of the radiation is also essential to obtain uniform heating
over the tumour surface or tumour volume, depending on
the tumour constituency.

Another application of near-field array synthesis pertains
to the space communication field, where satellites usually
work with large antenna array systems. In case any one
antenna or few antennas malfunction, it becomes a tedious
task to find the defective antennas among the large
number of antennas. To solve this problem all the
antennas on the satellite can be fed with currents and the
currents reconstructed back from near-field data [8–11].
The non-defective antennas have the same reconstructed
and initial currents. Those antennas for which the initial
and reconstructed currents do not match are considered
defective. Hence, this method is very effective to weed
out the defective antennas when dealing with large
number of antennas [8, 9]. However, the methods
presented [8–11], for defective element detection, involve
transformation of the measured near-field to the far-field,
and then reconstruction of equivalent magnetic currents in
the source plane [10] or iterative techniques based on Fast
Fourier Transform (FFT) algorithms [11]. The essential
difference in our reconstruction approach is a direct
inversion of near-field of a conformal array source, with
pre-specified geometry, as in a hyperthermia system. Since
array current reconstruction will have to be done on
a real-time basis for such a working therapy system, an
algorithm with lesser complexity and computation stages
would be advantageous.
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1.2 Near-field focusing using conformal array
technology

Coming back to the primary role in cancer treatment, tumours
have traditionally been targeted by using radiation,
chemotherapy and surgery, but alternative treatments for
cancer are in the pipeline. Among the latter, Hyperthermia
treatment is one of the more promising modalities against
cancer, and in current times, it is transitioning from the
experimental to clinical stage [1–3]. The mechanism behind
hyperthermia therapy is based as follows: heating of cancer
tissue by incident RF or microwave radiation sensitises the
cells to the following radiation or chemotherapy treatment,
sometimes even doubling the response, as compared with
standalone radiation or chemotherapy [3]. Hence,
hyperthermia treatment for cancer currently serves as a
supplemental or adjuvant to chemotherapy or radiation, and
this treatment is administered by using antenna arrays to
focus RF or microwave energy to heat the area of the
cancer tissue up to the desired temperature of 42°C (112°F).
For efficient hyperthermia application, it is necessary for

the projected microwaves to be focused on the tumour area
without having significant energy distributed over normal
(non-cancerous) tissue and also to have control over the
motion of the beam around the tumour area for successful
therapeutic effect. In order to achieve this, the appropriate
distribution of currents to the antenna array needs to be
supplied; to generate accurately positioned radiation beams.
We need to remember that we are treating humans and

animals; therefore the areas of the surface required to be
treated can be of a various shapes. Therefore the array
geometry being considered in this aspect has to be
preferably conformal to planar, cylindrical and spherical
surfaces [12–15]. Fig. 1 depicts typical surfaces of the body
that can be applied with one of the three mentioned
geometries.
An array that can generate any of the three shapes can be

realised with a flexible microstrip patch material, as shown
in Fig. 2a [14], or a set of waveguide elements housed
in an outer frame [15], as shown in Fig. 2b, with fixed
cross-sectional positions, but variable lateral position.

Now by processing the reconstruction algorithm for each of
these shapes individually, as described in this study, we can
synthesise the array currents from the near-zone electric
field information. Once calculated, these currents can be
electronically controlled by the array, with the principal aim
to focus on the desired tumour area. Sections 2–4 will
outline the generalised element current reconstruction
algorithm for planar, cylindrical and spherical array
geometries.

1.3 Near-field focusing using continuous source
technology

An alternate approach to obtaining a precise beam in the near
field is to use focusing plates or lenses [16]. The latter paper
describes one such technique to design near-field focusing
plates, with the ability to produce a desired sub-wavelength
focal pattern. A detailed four-step design procedure is
presented in this paper, which concludes that completely
passive near-field plates composed of inductive and
capacitive elements can focus electromagnetic energy to
extreme sub-wavelength dimensions.

Fig. 1 Array geometry application to typical hyperthermia sites

Fig. 2 Conformal antenna array structures

a Microstrip patch array [14]
b Waveguide array [15]
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While focusing plates and lenses are also good options
to obtaining near-field beams for possible hyperthermia
applications, digital array control has greater flexibility in
controlling the beam over the tumour area. In addition,
array geometry can be controlled to conform to different
body shapes and individual region profiles.

2 Synthesis of excitation currents of
planar arrays

In the synthesis planar arrays, we utilise an inversion
technique to reconstruct the excitation currents of planar
arrays from near-field data, which is obtained over a planar
surface close to the array. This technique is based on
a two-dimensional FFT algorithm [17], and can be
implemented with high accuracy and speed.
Let us consider a uniformly spaced planar array of

M x-directed electric point dipole elements, with an
inter-element spacing d, and with as shown in Fig. 3.
Let there be M = N2 number of elements in the array

with N elements arranged along the x-axis (with y held
constant) and N elements along the y-axis (for any fixed
value of x). The exact expression for the near field of
this array at an observation plane P1(x, y, z = z0)
obtained from the potential integral solution is given by
Balanis et al.

Ex = −jvAx +
1

jve

∂2AX

∂x2
(1)

where Ax represents the magnetic vector potential.
Simplifying the equation for Ax, we obtain

Ax =
m

4p

∑M−1

m=0

am
e−jksm

sm
(2)

where

sm = x− x′m
( )2 + y− y′m

( )2+ z2
[ ]1/2

(3)

and am is the amplitude and phase of the excitation current
of the mth element located at P(x′m, y′m, 0). Hence,
simplifying (1), which is the dominant near-field

component

Ex =
−jvm

4p

∑M−1

m=0

am
e−jksm

sm
+ 1

4pjvt

∑M−1

m=0

ame
−jksm

+ 3jk x− x′m
( )2
s4m

+ 3 x− x′m
( )2

s5m
−

k2 x− x′m
( )2+ 1

[ ]
s3m

jk

s2m

⎡
⎣

⎤
⎦

(4)

The near field of the array reference element located to x0 = 0;
y0 = 0 is given by [7]

Ex0
= −jvm

4p
a0

e−jks0

s0
+ 1

4pjev
a0

e−jksm
3jkx2

s40
+ 3x2

s50
− k2x2 + 1

[ ]
s30

− jk

s20

[ ] (5)

From (4) and (5) we obtain

EX x, y, z = z0
( ) = ∑M−1

m=0

amEX0
x− xm′ ; y− ym′ ; z0
( )

(6)

By Fourier transforming (FT) on either side of (6) with
respect to the spatial frequency variables ‘u’ and ‘v’, we
obtain

Ex(u, v) =
∑M−1

m=0

amEx0
(u, v)e−jkx′m−jvy′m (7)

where

Ex(u, v) =
∫∫1
−1

Ex(x, y)e
−jux−juy dx dy (8)

We rewrite (7) as

Ex(u, v) = Ex0
(u, v) FT am

[ ]
(9)

Fig. 3 Rectangular array geometry and field plane
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and am denotes the x-directed surface current density of the
radiating aperture. Following (9), we can obtain the current
distribution, after taking the inverse FT.

3 Synthesis of excitation currents of
cylindrical arrays

In this section, we present an efficient algorithm to synthesize
the excitation currents of a circular cylindrical patch array,
from near-field data over a concentric cylindrical surface
[17]. Here, the geometry of the array is different, but the
synthesis of array currents from near-field data is a similar
two-dimensional Fourier inversion technique, as in the
synthesis of planar arrays.
The circular cylindrical surface of a two-dimensional

curved array is built up of discrete point dipole current
elements distributed along the surface as depicted below in
Figs. 4a and b. The spacing between the elements of the
array is assumed to be uniform and the current flowing in
the array elements is in the φ-direction as shown in Fig. 4a
or in the z-direction as shown in Fig. 4b.

3.1 Discrete point dipoles with direction of current
flow along φ-direction

The curved two-dimensional array has an inter-element
spacing of dz in the z-direction and a spacing of dφ along

the φ-direction as depicted in Fig. 4a. The current element
is considered to be located at a position Pi(a, φi, zi), where
a is the radius of the cylinder, whose surface current
density is given by

Js = f̂
d zi − z′
( )

d fi − f′( )
Ii

a
(10)

where Ii is the excitation current of the ith array element. At
the field observation position P(ρ, φ, z) in near field, we
obtain the magnetic vector potential components as

Ari =
−Ii sin fi − f

( )
e−jk r−ri| |

4p r− ri
∣∣ ∣∣ (11a)

Afi =
−Iicos fi − f

( )
e−jk r−ri| |

4p r− ri
∣∣ ∣∣ (11b)

where

r− ri
∣∣ ∣∣ = x− xi

( )2+ y− yi
( )2+ z− zi

( )2[ ](1/2)
(12)

or, in cylindrical coordinates

r− ri
∣∣ ∣∣ = r2 + a2 − 2ra cos f− fi

( )+ z− zi
( )2[ ](1/2)

(13)

The electric field at the near-field observation point, P(ρ, φ, z)
is given by

Ei = f̂Efi + ẑEzi (14)

Considering the individual φ-field component

Efi = E1fi + E2fi (15)

where

E1fi = −jvmAfi (16a)

and

E2fi =
1

jv1r

∂

∂r

1

r

∂

∂r
rAri
( )+ ∂2Afi

∂f2

[ ]
(16b)

Considering the individual z-field component

Ezi = E1zi + E2zi (17)

where

E1zi = 0 (18a)

Fig. 4 Geometry of cylindrical array

a Array currents along φ-direction
b Array currents along ẑ-direction
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and

E2zi =
1

jv1r

∂

∂z
1

r

∂

∂
rAri
( )+ ∂2Afi

∂z∂f

[ ]
(18b)

Defining the field expressions

Li r,f, z; a,fi, zi
( ) = 1

r

∂

∂r
rAri
( ) (19a)

Mi r, f, z; a, fi, zi
( ) = ∂

∂r
rAri
( )

(19b)

And defining the two-dimensional Fourier transform of the
field components

�Afi r, u, v; a, fi, zi
( )
=

∫2p
0

∫1
−1

Afi r, f, z; a, fi, zi
( )

e−j(uf+vz) df dz (20a)

�Li r, u, v; a, fi, zi
( )
=

∫2p
0

∫1
−1

Li r, f, z; a, fi, zi
( )

e−j uf+vz( ) df dz (20b)

�Mi r, u, v; a, fi, zi
( )
=

∫2p
0

∫1
−1

Li r, f, z; a, fi, zi
( )

e−j(uf+vz) df dz (20c)

Using the Fourier transform relations, from 14 to 19, we
obtain

�Ezi =
∫2p
0

∫1
−1

Ezi(r, f, z)e
−j(uf+vz) df dz

= 1

jv1r
jv �M 0 − uv�Af0

[ ]
Iie

−jufi−jvzi (21a)

and

�Efi = Ii −jvm�Af0 +
1

jv1r
juL0 −

u2

r
�Af0

[ ]
e−jufi−jvzi (21b)

where

�M 0 =
�Mi(r, u, v; a, 0, 0)

Ii
(22a)

�Af0 =
�Afi(r, u, v; a, 0, 0)

Ii
(22b)

given that Ii≠ 0
Finally, we have

�Ef(r, u, v)=
∑M
i=1

�Efi = −jvm�Af0 +
1

jv1r
ju�L0 −

u2

r
�Af0

{ }[ ]
∑
i

Iie
−jufi−jvzi

(23a)

�Ez(r, u, v)=
1

jv1r
jv �M 0 − uv�Af0

[ ]∑
i

Iie
−jufi−jvzi (23b)

Rewriting (23a) and (23b), we obtain the Fourier coefficients
of the current distribution as follows

∑
i

Iie
−jufi−jvzi =

�Ef(r, u, v)

−jvm�Af0 + 1/(jv1r)
( )

ju�L0 − u2
( )

/r
( )

�Af0

{ }[ ] (24a)

and

∑
i

Iie
−jufi−jvzi =

�Ez(r, u, v)

1/(jv1r)
( )

jv �M0 − uv�Af0

[ ] (24b)

which can be inverse Fourier transformed to obtain the array
currents Ii(w, z).

3.2 Discrete point dipoles with direction of current
flow along ẑ-direction

Analysing current flow using a similar analysis employed
previously in Section 3.1 gives us the following

Js = ẑi
d z− zi
( )

d f− fi

( )
Ii

a
(25)

Azi =
Iie

−jk r−ri| |
4p r− ri

∣∣ ∣∣ (26)

and, adopting a similar analysis as in Section 3.1, we obtain
the two-dimensional Fourier transform of the element
near-zone electric field distribution as follows

�Ei r, u, v; a, fi, zi
( ) = f̂

1

jv1

( ) −uv

r

( )
�Az0

[

+ ẑ −jvm− v2

jv

( )
�Az0

]
Iie

−jufi−jvzi

(27)

And, the two-dimensional Fourier transform of the array
near-zone electric field distribution is finally obtained as

�E(r, u, v) =
∑M
i=1

�Ei r, u, v; a, fi, zi
( )

= �Az0 f̂
1

jv

( ) −uv

r

( )
+ ẑ −jvm− v2

jv1

( )[ ]
∑
i

Iie
−jufi−jvzi

(28)

which can be inverted, as shown in Section 3.1 to yield the
array current distribution, Ii(w, z).
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4 Synthesis of excitation currents of
spherical arrays

This section details the reconstruction algorithm to obtain the
array currents from the near-field data of a spherical array.
The analysis of spherical arrays is more complex than
planar or cylindrical arrays, owing to the geometry. Hence,
it does not involve a purely two-dimensional Fourier
transform inversion as in the case of the planar and
cylindrical arrays, but a Legendre–Fourier type of
transformation [19, 20]. The following sections detail the
analysis of the spherical array, and the inversion procedure
to reconstruct the array currents for the near-field data.

4.1 Near-field analysis of spherical array

Consider a spherical array of N-point dipoles, as shown in
Fig. 5, with array radius r0. The array currents are directed
outwards in the radial, r-direction.
The near-zone electric field of the array at an observation

point P(R, θ, w) is given by

Er(u, F) =
∑N
n=1

I un, Fn

( )
f u, F, Fn, un
( )

(29)

where

f u, F, Fn, un
( ) = 1

r

∂

∂F

6

4p

e−jkR

R

[ ]

R =
����������������������������������������������������������
r2 + r20 + 2rr0 sin u sin un + cos u cos un cos F−Fn

( )√

and

∂

∂F

e−jkR

R

[ ]
= R(− jk)e−jkR(( ∂R)/(∂F))− e−jkR(( ∂R)/(∂F))

R2

∂R

∂F
= 1

2R
cos u cos un sin F−Fn

( )[ ]

Solving

f u, F, Fn, un
( ) = 1

8pR3
[jkR+ 1]e−jkR

cos u cos un sin F−Fn

( )[ ]
(30)

and the final equation for the electric field is

Er(u, F) =
∑N
n=1

I un, Fn

( )
[jkR+ 1]

e−jkR

R3

cos u cos un sin F−Fn

( )[
(31)

where

R =
����������������������������������������������������������
r2 + r20 + 2rr0 sin u sin un + cos u cos un cos F−Fn

( )√

4.2 Synthesis of excitation currents of the
spherical array

From (29)

Er(u, F) = 1

4pr

∑N
n=1

In
∂

∂F

e−jKR

R

[ ]

Expanding the finite [(e− jKR)/(R)] using spherical wave
expansion [21] we obtain, for r < r0 (see (32))
where Pl

m(cos x) is the associated Legendre function and
(Jl + (1/2), (Hl + (1/2)) are spherical Bessel functions. The
synthesis procedure is shown below in a series of steps:
Step 1: Legendre Fourier Transform (see (33))
which finally yields

Q(n, m) = F(n, m) · 8r2r0 · n(n+ 1) · (n− m)! · 4p
Hn+(1/2)(kr0)Jn+(1/2)(kr)m(n+ m)!

=
∑N
p=1

I pP
m
n cos up

( )
e−jmØp

(34)

P−m
l (x) and Pm

l (x) are proportional, and related by the
following relation [19]

P−m
l (x) = (−1)m(l − m)!

(l + m)!
Pm
l (x) (35)

Step 2: Spherical harmonic representation

Er(u, F) = 1

4pr

∑N
n=1

In
∂

∂F

p

2jr r0

∑1
l=−1

2l + 1

l(l + 1)
Hl+(1/2)(kr0) Jl+(1/2)(kr)

[ ∑l

m=−l

(l − m)!

(l + m)!
Pl
m( cos u)P

l
m cos un
( )

ejm Ø−Øn( )
]

= 1

8r0r2
∑N
n=1

In
∑1
l=−1

2l + 1

l(l + 1)
Hl+(1/2)(kr0) Jl+ (1/2)(kr)

∑l

m=−l

mPl
m( cos u)P

l
m cos un
( )

ejm Ø−Øn( ) (32)

F(n, m) =
∫2p
0

∫p
0
E(u, Ø) Pm

l ( cos u)e
−jmØ sin u du dF

= 1

8r2r0

∑N
p=1

Ip
1

n(n+ 1)
Hn+(1/2)(kr0)Jn+(1/2)(kr)mp

m
n cos up

( )
e−jmØp · 4p(n+ m)!

(n− m)!
(33)
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The suitably normalised functions, denoted by Ylm(θ, Ø)
are defined as

Ylm(u, Ø) =
����������������
2l + 1(l + m)!

4p(l + m)!

√
Pm
n ( cos u)e

jmØ (36)

The spherical harmonics obey the condition [21]

Yl,−m(u, Ø) = (−1)mY ∗
lm(u, Ø) (37)

The normalisation and orthogonality conditions are

∫2p
0

dØ 2p
0
sin u duYl′m′ (u, Ø)Ylm(u, Ø) = dl′ldm′m (38)

The complete relation is

∑1
l=0

∑l

m=−l

Yl′m′ u′
′
, Ø′

( )
Y ∗
lm(u, Ø)

= d Ø− Ø′ ′
( )

d cos u− cos u
′′

( )
(39)

Using the spherical harmonics in (36) on (34), and utilising
the orthogonality relation in (38), we can reconstruct the
currents of the array.

5 Numerical results and discussions

This section outlines the validation of the reconstruction
algorithms that were derived in Sections 2–4. The
programmes were written in MATLAB©, and each
algorithm was tested in the following two steps:

† Generation of the near-field of the array, at a specified
planar, cylindrical or spherical surface, using the direct
current-field equation
† Application of the synthesis method (for the planar,
cylindrical or spherical array) to reconstruct the electric
currents of the array elements.

In the simulation study of all the three cases: planar,
cylindrical and spherical arrays, we assumed the current
distribution in the array to be uniform, and uniform spacing
between array elements.

5.1 Simulation results for a planar array

In this simulation, we have considered a uniformly spaced
planar array of 25 (5 × 5) point electric dipoles with a

Fig. 5 Geometry of spherical array of point dipoles

Fig. 6 Exact and reconstructed currents of planar array

a Exact
b Reconstructed
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current flow direction along the x-axis as shown in Fig. 3. The
dipoles were assumed to be excited with currents uniform in
amplitude and phase, and at a frequency of 1 GHz. In this
example, the inter-element spacing along both array axes is
d = 0.25λ. The NF data were generated over a 128 × 128
point grid, over a parallel observation plane at z0 = 0.75λ.

The reconstruction algorithm, as detailed in (5)–(8), was
implemented to obtain the array currents. The exact array
excitation currents employed for generating the NF data and
the synthesised array excitation currents are compared in
Figs. 6a and b, respectively, and as observed, a close
agreement is noticed between the two values.

Fig. 7 Exact and reconstructed currents of cylindrical array

a Exact
b Reconstructed

Fig. 8 Exact and reconstructed currents of spherical array

a Exact
b Reconstructed
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5.2 Simulation results for cylindrical array

In this simulation example, a two-dimensional cylindrical
patch array of 25 (5 × 5) uniformly spaced, point dipoles,
with current flowing along the ẑ-direction. The array
structure, as shown in Fig. 4b, is assumed with the
following dimensions:

Length of array L = 6λ
Radius of cylindrical array surface a = 0.5λ
Radius of observation cylindrical surface = ρ = 0.35λ
Angular spacing Δφ = ((2π)/(32)) rad = > 11.25°
Linear spacing Δz = λ/32
Frequency of array = 1 GHz.

The near-field of the array Ez(ρ, j, z) was utilised to
reconstruct the array currents by using the reconstruction
algorithm given in (25)–(28). The near-field synthesis
performed on the array gave the reconstructed array current
distribution, which is depicted in Fig. 7b, and compared
with the exact array currents in Fig. 7a. The colour bar
comparison on the right shows that the array currents have
been reconstructed with good accuracy, thereby validating
the rigorousness of the algorithm.

5.3 Simulation results of spherical array

Finally, the synthesis example was completed for a
49-element (7 × 7) spherical array of r̂-directed point
dipoles situated around the surface of the array as shown in
Fig. 5. The details of the array are given below:

Radius of array spherical surface = r0 = 2.5λ
Radius of application spherical surface = r = 2λ
Frequency of array = 1 GHz
Array spacing along φ-direction: ΔΦ = ((2π)/(7)) radians
Array spacing along θ-direction: Δθ = (π/7) radians.

The array near field was generated over the observation
spherical surface, and the synthesis procedure was
implemented using (31)–(38). The exact and reconstructed
currents are shown in Figs. 8a and b, respectively, and
show good agreement.

6 Conclusions

The main focus of this paper is to design and test efficient
reconstruction algorithms for the near-field synthesis of
array currents over planar, cylindrical and spherical
surfaces. This is a prime requirement in the design of array
systems for near-field applications such as RF/microwave
hyperthermia in the treatment of tumours. Accurate array
current reconstruction is very important to ensure focus of
the array beam on the tumour volume, with minimum
radiation to adjacent healthy tissue; and conformal array
synthesis is essential to deliver radiation to surfaces of the
human or animal body with different geometrical profiles.
The demonstration of the synthesis procedure was similar
for all array geometries: the near field of the array was
generated by feeding proper current values to the antennas.
Then the currents are reconstructed from field to verify that
the reconstructed currents match the currents that were
initially fed to the antennas.
All the three array geometries have been simulated

and synthesised using MATLAB, and the graphical
representation of the simulated code for each array shows

the extent to which reconstructed currents match the initial
currents. To a large extent, the reconstructed currents and
the initial currents have matched for each of the three
arrays. The future direction of this work is to test the set of
reconstruction algorithms on a practical conformal array
system, and gauge the focusing properties and capability of
the array to control the focus point over a desired region.
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