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Abstract: Direction of arrival (DOA) estimation of multiple sources using an antenna array becomes very
important in wireless communications. It is well known that the quality of the DOA estimation depends on
the selected technique and algorithm but it also depends on the geometrical configuration of the antenna
array used during the estimation. The authors study the influence of the antenna array configurations on the
Cramer– Rao bounds (CRB) of the 2D DOA estimation problem as well as on the performance of the well
known MUSIC algorithm. For this we consider the most known planar arrays and we propose a 2-L shaped 3D
antennas array. It appears that this 3D antennas array outperforms the other configurations as well as that
already proposed in Tayem and Kwon (2005), in terms of both the CRB and the MUSIC root mean square
estimation error and also removes ambiguities from the estimation MUSIC pseudo spectrum.

1 Introduction
Direction of arrival (DOA) estimation has been an
intensively investigated topic in signal processing for some
decades. A large number of DOA algorithms have been
studied and developed from the beam-former methods [1]
to the high resolution methods like MUSIC [2], ESPRIT
[3, 4] and their variations and the maximum likelihood
methods [5–8]. In [9], the authors provided an excellent
review and comparison of the various narrowband
techniques. Despite this large literature, limited research
has considered the impact of the array geometrical
configuration on the quality of the DOA estimation.

The uniform linear array (ULA) has been applied in many
works to estimate the 1D (azimuth only) DOA [10–13].
But, for the 2D (azimuth and elevation) DOA estimation
problem, at least a planar array is required.

Liang and Paulraj [14] performed computer simulations to
compare the diversity performance of several planar array
configurations in a multi-path channel. For all the compared
arrays, the difference between configurations decreased with
an increasing multi-path angle spread and an increasing
number of elements.

The Cramer–Rao bound (CRB) is widely used to evaluate
the ultimate attainable performance in an estimation problem.
It serves as an important tool in the performance evaluation of
estimators involved in the field of communications and signal
processing. In [15] a CRB analysis of the planar and 3D arrays
was presented and several designs of isotropic planar and
volume arrays were studied. In [16], Gazzah and Marcos
have presented a simplified CRB expression for the study of
the geometry impact of planar antenna array on the accuracy
of the estimated DOA of single source. The authors have
also taken into consideration the array ambiguity problem.
Other studies of the performance of some planar array
geometries are given in [17–19].

In this paper, we study the impacts of antenna array
geometries on the performance of DOA estimation by
computing the expression of the CRB for the circular,
rectangular and L-shaped antenna arrays and compare
them with those of a 3D antenna array configured as a 2-L
shaped array.

The idea of using L-shaped arrays is not new, for example
[20] and [21]. But the elements of the L-shaped array in our
paper are placed in the x–y axes whereas the elements in [20]
are placed in the x–z. In [21], Maohui presents the
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advantages of using the L-shaped array in comparison with
the uniform circular array (UCA) for the 2D DOA
estimation problem and shows that the L-shaped array not
only has a simpler array manifold but also yields a smaller
estimation error.

In [20] the authors proposed the 2-L shaped array for the
estimation of both the elevation and the azimuth angles.
They decomposed the antenna array in three linear uniform
sub-arrays and brought the problem back to a one
dimension problem by estimating independently the
elevation angle by the sub-array placed on the z-axis and
the azimuth angle by the sub-arrays placed on the x-axis
and the y-axis. In this paper, we propose to deal with the
3D case by considering the entire 2-L shaped antenna
array and jointly estimating the elevation and azimuth angles.

The improved performance of the MUSIC algorithm
when using the proposed 2-L shaped antenna array will be
presented in terms of root mean square estimation error
(RMSE) of the estimated 2D DOA. In addition, the rate
of detection of the DOAs using the different geometries of
antenna arrays will be considered.

The rest of the paper is organised as follows. In Section 2
the antenna arrays manifold representation and the
mathematical models used in this work are presented and a
short review of the MUSIC algorithm used in simulations
is given. In Section 3, we compute the CRBs for the
estimation of the elevation and azimuth angles for each
studied antenna array configuration. Section 4 presents
simulation results concerning the advantage of the
proposed 2-L shaped antennas array compared with
the other antennas array configurations. Section 5 draws
the conclusions.

2 Model assumptions and array
geometries
2.1 Data model

In the scenario shown in Fig. 1, K narrow-band signals
transmitted from K far-field sources travel through a
homogeneous isotropic fluid medium and impinge on an
array of M identical isotropic antennas or sensors located at

rm for m [ [1, M]. Let us note qk ¼ [wk, uk] the DOA of
the kth source, with elevation angle uk [ [�p=2, p=2]
measured clockwise relatively to the z-axis and azimuth
angle wk [ [0, 2p] measured counterclockwise relatively to
the x-axis in the x–y plane.

The received signal is modelled as

x(t) ¼ A(w, u)s(t)þ n(t) (1)

where x(t) is the M � 1 snapshot vector of the signals
received simultaneously on all the sensors, s(t) is the K � 1
vector of the source signals, n(t) is the M � 1 noise vector
that is assumed to be white, Gaussian and uncorrelated
with the source signals. The M � K steering matrix
A(w, u) ¼ [a(w1, u1), . . . , a(wK , uK )] defines the array
manifold and consists of the steering vectors a(wk, uk)
whose components are

am(wk, uk) ¼ e j2p:f :tm(wk ,uk) (2)

where tm(wk, uk) ¼ dT
k (wk, uk) � rm=c is the propagation delay

of source signal k received sensor m, c is the speed of
propagation of the waves in the medium and dk(wk, uk) is
the unit vector pointing towards source k.

In the 3D case, when the signal arrives from azimuth angle
w and elevation angle u (see Fig. 1)

d(w, u) ¼ [ cos (w) sin (u), sin (w) sin (u), cos (u)] (3)

rm ¼ [xm, ym, zm]T is the position vector of sensor m that
depends on the geometry of the antenna array. In this
paper, the circular, rectangular and L-shaped arrays shown
in Fig. 2 will be addressed and compared to a 3D array
with a 2-L shaped configuration.

Figure 1 3D system showing a signal arriving from azimuth
w and elevation u

Figure 2 Geometrical configurations of antennas array
used in simulation, respectively

a The circular array
b Rectangular array
c L-shaped array
d The 2-L shape array
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2.2 Planar Arrays

Fig. 2 shows the array configurations used in this paper.
Fig. 2a is a UCA, with radius r allowing that the elements
are spaced by half a wavelength. The position vector rcir:m,
in this case, is expressed as

rcir:m ¼ [r coscm, r sincm, 0]T (4)

and the propagation delay is then

tcir:m(wk, uk) ¼
r sin uk cos (wk � cm)

c
(5)

The antenna array in Fig. 2b has a rectangular configuration
composed by two ULAs placed in parallel on the x–y plane.
The inter-sensor distance d is taken to be half a wavelength of
the signal waves. Then the position vector rrect:m can be
expressed as

rrect:m ¼ [xm, ym, 0]T (6)

The propagation delay for the kth source on the mth sensor is
derived as

trect:m(wk, uk) ¼
sin uk[xm cos (wk)þ ym sin (wm)]

c
(7)

In the same way the L-shaped array presented in Fig. 1c is a
particular case of planar antenna. The sensors are placed on
the x and y axes. The sensors on the x axis have y and
z co-ordinates equal to zero and the sensors on y axis have
x and z co-ordinates equal to zero. The propagation delay
of the kth source received on the mth element of the
L-shaped array can also be determined from (7) using the
proper co-ordinates.

2.3 3D array

In Fig. 2d, the 3D 2-L shaped array composed of three
uniform linear sub-arrays placed on the x, y and z axes
with inter-element spacing equal to d is presented. The
element placed at the origin is common for referencing
purposes. This antenna array configuration has already been
proposed in [21] for the estimation of the 2D directions
of arrival. However, the authors of [21] estimated
independently the elevation angle by the sub-array placed
on the z axis and the azimuth angle by both the sub-arrays
placed on the x axis and the y axis. Here the investigation
of the antennas array shape is different. Indeed, we here
propose to jointly estimate the elevation and azimuth
angles directly from the 3D 2-L shaped antenna array.

The position vector of the m-th element is expressed as

r2L:m ¼ [xm, ym, zm]T (8)

Then the propagation delay for the kth source on the mth
sensor is derived as

t2L:m(wk, uk) ¼

[xm cos (wk) sin uk þ ym

sin (wm) sin uk þ zm cos (uk)]

c
(9)

2.4 MUSIC algorithm

In order to compare the influence of the antenna array
geometry of the 2D DOA estimation problem, we will
consider the well-known MUSIC algorithm [2].

The correlation matrix of the sensor observations x(t) is

R ¼ E[x(t) � x(t)H] (10)

where H represents a conjugate transposition. In practice,
only a sample covariance matrix is available, that is, an
estimate of R based on a finite number (P) of data samples
or snapshots

R̂ ¼
1

P

XP

j¼1

x(tj) � x(tj)
H (11)

MUSIC algorithm relies on the eigenvalue decomposition of
the correlation matrix R̂ ¼ VLV H, where V ¼ [v1, . . ., vM],
L ¼ diag[l1, . . . , lM], with vk eigenvector (M-dimensional
column vectors) and lk the eigenvalue associated with vk

sorted so as l1 � � � � � lK . If the number K of sources is
smaller than the number M of sensors, then all the signal
components are represented in the signal subspace spanned
by the first K eigenvectors v1, . . . , vK, and the remaining
M2K eigenvectors vKþ1, . . . , vM represent the noise
subspace. The signal and the noise subspaces are orthogonal
to each other.

The subspace spanned by the K steering vectors
a(w1, u1), . . . , a(wK , uK ) is also the signal subspace. When
(w, u) coincides with one of the source 2D DOA
(w1, u1), . . . , (wK , uK ), the steering vector a(w, u) and the
noise subspace vKþ1, . . . , vN are orthogonal, and therefore
the so-called pseudo spectrum U (w, u) ¼

PM
k¼Kþ1

jvH
k a(w, u)j2 approaches zero. For the noise subspace to

exist, the number M of sensors should be larger than the
number K of sources. Thus, the MUSIC algorithm is
applicable for mixtures of up to M 2 1 signals.

Note that some specific 2D DOA estimation algorithms
have been developed in the literature in order to reduce the
computational burden resulting in the search of zeros in a
pseudo spectrum, see [22] and [23] for examples. However,
the computational cost of the DOA estimation problem is
not the topic of the present paper.
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3 Cramer–Rao bounds
The CRB provide an unbeatable performance limit for any
unbiased estimator and hence can be used to investigate the
fundamental limits of parameter estimation problems or as
a baseline for assessing the performance of a specific
estimator. The CRB are also widely used in problems
where the exact minimum-mean-square estimation error is
difficult to evaluate. Indeed, the Cramer–Rao inequality
[24] provides a relatively simple lower bound on the
variance of unbiased estimators. For multi-parameter
estimation, it has the form

var(ûi) � [ J�1]ii

where the ijth element of the Fisher information matrix J is
given by

J ij ¼ � E
@2 ln [pR=u(x=u)]

@ui@uj

( )" #
(12)

where u is the parameter vector of components ui and uj to be
estimated and pR=u(x=u) is the probability density function of
the observation vector x conditioned by u.

We are here interested by determining the CRB for each
antenna array configuration seen previously and by
analysing their characteristics. We address the problem of
the joint estimation of the azimuth and elevation angles of
a unique source. The CRB for the source DOA estimate is
given by [15]

CRB(w, u) ¼ [G(B, w, u) � T ]�1 (13)

where

T ¼
2P(2pfMs 2

s =c)2

s 2
n (s 2

n þ s 2
s M)

(14)

G(B, w, u) ¼
@d(w, u)

@w

@d(w, u)

@u

� �T

B
@d(w, u)

@w

@d(w, u)

@u

� �
(15)

B ¼
1

M

XM
m¼1

(rm � rc)(rm � rc)
T (16)

In (14), s2
s and s2

n are the signal and the noise variances,
respectively. P is the number of snapshots and rc in (16) is
the centre of the array and expressed by

rc ¼
1

M

XM
m¼1

rm (17)

The CRB is the product of two terms. G(B, w, u) depends on
the geometry of the antenna array through matrix B, on the
DOA (w, u) and on T that depends on the source and

noise powers, the number of sensors and the number of
snapshots. From the CRB expression, it appears that the
only parameter that is going to change, according to the
geometry of the antennas array, is the vector position rm.

4 Simulation results
Computer simulations have been conducted to evaluate the
2D DOA estimation performance of the considered
antennas array configurations. Each antenna array contains
eight isotropic sensors. The distance between two sensors is
uniform and equal to half a wavelength of the source signal.

In Fig. 3, the CRB on the estimation of a single source
DOA located at (208, 708) is presented for different array
configurations. In fact, the mean of the azimuth angle
CRB and the elevation angle CRB is plotted. Fig. 3a
exhibits the CRB against the number of snapshots with an
SNR ¼ 0 dB and 8 sensors on each antenna array while
Fig. 3b presents the CRB against SNR for 20 snapshots
and 8 sensors. In both cases, the CRB obtained for the
2-L shaped array is lower than the CRB of the other
configurations. This indicates that estimators using the 2-L
shaped array may yield lower estimation errors than the one
using the other antenna array geometries. It can also be

Figure 3 CRBs for different antenna array geometries of
eight sensors in the case of a source located at (208, 708)
a Against snapshots with SNR ¼ 0 dB
b Against SNR with 20 snapshots
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noticed that among the planar antenna arrays above studied,
the L shaped array has a lower CRB that the rectangular and
circular arrays in the same conditions. This is in accordance
with the results already obtained in [16].

Fig. 4 exhibits the pseudo spectrum U (w, u) of the
MUSIC algorithm obtained for the different array
configurations when jointly estimating the azimuth and
elevation angles of a single source at (208, 708) with
SNR ¼ 0 dB and with 20 snapshots. It appears that only
the 2-L shaped array gives an interesting result.

These results are generalised in Fig. 5 which exhibits the
RMSE obtained by the MUSIC algorithm performed over
100 realisations and as a function of (a) the SNR for 20
snapshots and (b) the number of snapshots for SNR ¼
0 dB, respectively. The RMSE obtained with the 2-L
shaped array is extensively lower than that of the other
array configurations. This further shows the effectiveness of
this 3D configuration.

Among the planar antenna arrays that are studied here, the
L shaped array has a lower RMSE than the rectangular and
circular arrays in the same conditions.

The study of the influence of the antenna array geometry
on the detection of picks in the MUSIC pseudo spectrum
yielding the elevation estimate is also presented as a
function of the SNR and of the number of snapshots.

Tables 1 and 2 exhibit the rate of detection of picks in the
MUSIC pseudo spectrum yielding the elevation estimate of a
source located at (208, 708) for a total of 100 realisations, as a
function of the SNR with 20 snapshots and as a function of
the number of snapshots with a SNR ¼ 0 dB, respectively.

In Table 1 the rate of detection of picks in the pseudo
spectrum yielding to the estimation of the elevation angle
by MUSIC algorithm with the 2-L shaped array attains

Figure 4 Pseudo spectrum of MUSIC algorithm for the
estimation of a single source located at (208, 708) with
SNR ¼ 0 dB, 20 snapshots and 8 elements in each array

a Circular array
b Rectangular array
c L shaped array
d 2-L shaped array

Figure 5 RMSE of the DOA estimation of a single source
located at (208,708) by MUSIC with 8 sensors in each array

a According to the SNR with 20 snapshots
b According to snapshots with a SNR ¼ 0 dB

Table 1 Rate of detection of picks in the MUSIC pseudo spectrum yielding the elevation estimate for a source located at (208,
708) for different SNRs, 20 snapshots, 100 realisations and 8 sensors in each antenna array

SNR, dB 0 1 2 3 4 5 6 7 8 9 10

circular, % 83 87 91 94 98 100 100 100 100 100 100

rectangular, % 90 92 94 98 100 100 100 100 100 100 100

L shaped, % 80 87 94 97 100 100 100 100 100 100 100

2-L shaped, % 100 100 100 100 100 100 100 100 100 100 100
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100% at 0 dB. For the other planar arrays it attains 100% of
detection at about 4 dB.

In Table 2 we observe that for only one observation, that is
a difficult case to MUSIC algorithm and at 0 dB, the 2-L
shaped antenna array allows to detect 60 times among 100
measures the picks in the pseudo spectrum yielding the
estimated elevation angle. This proves again the efficiency
of this array shape.

Let us now consider the case of the estimation of two close
sources when using the different antenna array
configurations. Fig. 6 exhibits the MUSIC pseudo spectra
obtained in the presence of two sources located, at (208,
708) and (258, 758), respectively. Here SNR ¼ 15 dB and
1000 snapshots are generated. The distinction of the two
picks appears with the L-shaped antenna array and more
clearly with the 2-L shaped antenna array. For the
rectangular and circular antenna arrays the two picks are
not clearly distinguished.

Finally, we present, in Fig. 7, the RMSE against SNR
obtained by the MUSIC algorithm for the estimation of a

single source located at (208, 708) when using the proposed
2-L shaped antenna array and the one proposed in [20] in
the case of 20 snapshots and 8 elements (3 elements on the
x axis sub-array, 2 elements on the z axis sub-array and 3
elements on the y axis sub-array). We observe that our
proposed configuration and way of dealing with it can be
about 4 dB better in SNR than the one used in [20].

5 Conclusion
In this paper, a comparative study of different planar antenna
array configurations and a 3D 2-L shaped antenna array has
been presented. For this, the CRBs have been compared.
Also the accuracy of the joint azimuth and elevation
estimation of a single source when using the MUSIC
algorithm has been analysed for different antenna array
configurations.

The 2-L shaped antenna array considered in this paper has
a smaller CRB and exhibits a better RMSE when using the
MUSIC algorithm and a better detection rate compared to
the other planar antenna array configurations studied in
this paper. Besides it outperforms another 2-L shaped
antenna array configuration that had already been presented
in [20] but in which the 3 sub-arrays along the axes were
taken into account independently for the estimation of the
source azimuth and elevation DOA. The proposed results
of this paper show that despite their possibly cumbersome
design, 3D antenna arrays are of great interest in
applications requiring an increased estimation and

Table 2 Rate of detection of picks in the MUSIC pseudo spectrum yielding the elevation estimate for a source located at (208,
708) for different numbers of snapshots, SNR ¼ 0 dB, 100 realisations and 8 sensors in each antenna array

Snapshots 1 10 20 30 40 50 60 70 80 90 100

circular, % 21 62 83 91 96 96 95 97 98 98 98

rectangular, % 29 69 90 96 98 99 99 99 100 100 100

L shaped, % 23 66 80 90 91 94 97 99 98 99 99

2-L shaped, % 60 94 100 100 100 100 100 100 100 100 100

Figure 7 RMSE against SNR obtained with the MUSIC
algorithm for the estimation of a single source located at
(208, 708) and 20 snapshots for the proposed 2-L shaped
array and the one used in [20]

Figure 6 3D pseudo spectra of the MUSIC algorithm for the
estimation of two sources located at (208, 708) and (258,
758) for SNR ¼ 15 dB and 1000 snapshots using 8
elements on each array

a The circular array
b The rectangular array
c The L shaped array
d The 2-L shaped array

848 IET Microw. Antennas Propag., 2009, Vol. 3, Iss. 5, pp. 843–849

& The Institution of Engineering and Technology 2009 doi: 10.1049/iet-map.2008.0234

www.ietdl.org



resolution precision. For example, this can be found in
the airborne emergency positioning problem as mentioned
in [25].
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