
Co-located and distributed antenna systems:
deployment options for massive multiple-
input–multiple-output

ISSN 1751-8725
Received on 24th October 2014
Revised on 23rd May 2015
Accepted on 1st June 2015
doi: 10.1049/iet-map.2014.0714
www.ietdl.org

Khawla A. Alnajjar1,2, Peter J. Smith2, Graeme K. Woodward1 ✉

1Wireless Research Centre, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
2Department of Electrical and Computer Engineering, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand

✉ E-mail: graeme.woodward@canterbury.ac.nz

Abstract: To evaluate the benefits of distributed arrays in massive multiple-input–multiple-output systems, the authors
investigate the interaction between linear receivers (maximum ratio combining and zero forcing) and three
deployments scenarios: (i) a massive co-located array at the cell centre; (ii) a massive array clustered at B discrete
locations; and (iii) a massive distributed array with a uniform distribution of individual antennas. The authors also
study the effect of propagation parameters, system size, correlation and channel estimation error. The authors
demonstrate by analysis and simulation that in the absence of any system imperfections, a massive distributed array is
preferable. An intermediate deployment such as a massive array clustered at a few discrete locations, can be more
practical to implement and more robust to imperfect channel state information. The authors show an example with a
128 antenna deployment where four locations achieves one third of the gains due to a fully distributed array.

1 Introduction

There is growing interest in massive multiple-input–multiple-output
(MIMO) techniques [1, 2] for 5th generation wireless systems (5G).
This is due to their ability to increase degrees of freedom, reduce
transmit power [3], average out small-scale fading, and create
quasi-orthogonal user equipments (UEs) [3]. One of the remaining
challenges for massive MIMO is the design of an effective
antenna deployment strategy. A massive, centralised array is easier
to construct and requires less backhaul. In contrast, a fully
distributed array is more complex and has higher latency and
backhaul requirements, but may provide superior performance.

Most work on massive MIMO assumes co-located arrays but the
distributed option has potential for increased throughput and
shadow fading diversity [4–7]. The advantage of distributed arrays
has been investigated in traditional MIMO systems (<10 antennas)
and also for remote radio heads/units and cloud Radio Access
Network [7–10]. In this paper, we consider three massive MIMO
deployment options: a co-located base station (BS) array (COL); B
collaborative base stations with multiple antennas (BBS); and
distributed arrays with geographically separated single antenna
base stations (DIST). In BBS and DIST, the multiple BSs
collaborate perfectly to perform joint detection at some central
processor. We assume a standard hexagonal cellular topology with
two tiers of interference: a desired cell at the centre and
interference cells located in two surrounding tiers. One of the
advantages of large arrays is their ability to orthogonalise the
channel vectors of different UEs at the co-located BS [3]. Here,
the focus is on a different massive MIMO property, a type of
averaging over the link gains, which enables us to demonstrate the
gains of distributed over co-located deployment. In [4], a downlink
finite system analysis was developed using randomly located BSs
and in [6, 7], a downlink asymptotic analysis is derived for
sum-rate and rate performance, respectively. In [5], an uplink
distributed system analysis for signal-to-interference-
and-noise-ratio (SINR) is derived from the asymptotic analysis in
[1]. The work in [5] is the closest to this paper but it focuses on
spatial correlation effects and BS grouping. We take a different
approach, simplifying the analysis further while maintaining
accuracy and deriving insights into maximum ratio combining
(MRC) and zero forcing (ZF) receivers, deployment options and

propagation conditions. In this paper, uplink performance is
considered using linear receivers with fixed BS locations. MRC
and ZF are used because they are particularly relevant in massive
MIMO due to their relatively low complexity [2].

The main contributions of this paper are:

† remarkably simple and accurate analytic approximations to the
SINR at the output of massive MIMO linear receivers;
† use of the analytical results to explain the effects of path loss,
shadowing, channel estimation error, channel correlation and
system size;
† analysis and simulation to evaluate the performance of an
intermediate deployment, where the massive array is spread over B
locations (BBS);
† analysis and simulations to evaluate the deployment scenarios
under differing levels of interference (different frequency re-use
factors) and with different geographic spreads of the antenna
arrays within the cell.

In the following, the system model and deployment scenarios are
given in Sections 2 and 3. Sections 4–6 provide analysis, results and
conclusions.

2 System model for uplink cellular layout

A cellular structure is considered with 19 hexagonal cells, where the
centre cell contains the desired UEs and there are two surrounding
interference tiers (top left-hand side, Fig. 1). In each cell, a BS
with Nr receive antennas serves Nt single antenna UEs and Nf≤
18Nt is the number of interferers in the first and second
interference tiers that share resources with the centre cell, such as
frequency and time. For this uplink model, the received signal is
given by

y = Hx+ FxI + n

= h1x1︸�︷︷�︸
desired signal

+
∑Nt

m=2

hmxm︸����︷︷����︸
intra-cell interference

+
∑Nf

m=1

f mxIm︸����︷︷����︸
inter-cell interference

+ n︸︷︷︸
noise

, (1)
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where H = h1 · · · hNt

[ ]
is the Nr × Nt channel matrix of the UEs

located in the centre cell, F = f 1 · · · f Nf

[ ]
is the Nr × Nf channel

matrix of UEs located in the other cells and Rayleigh fading is
assumed for all channels. The remaining terms in (1) are defined
as follows. The Nt × 1 vector of transmitted symbols from centre

cell UEs is x = x1, x2, . . . xNt

[ ]T
while the Nf × 1 vector of

transmitted symbols from other cell UEs is

xI = xI1 , xI2 , . . . xINf

[ ]T
. The received signals are corrupted by the

Nr × 1 noise vector, n = [n1 . . . nNr
]T, with independent and

identically distributed (i.i.d.) complex Gaussian elements,
ni � CN 0, s2( )

. Without loss of generality the transmit symbols

satisfy E xj

∣∣∣ ∣∣∣2[ ]
= E xIj

∣∣∣ ∣∣∣2[ ]
= 1 and so the signal to noise ratio

(transmit SNR) is given by r = E xj

∣∣∣ ∣∣∣2[ ]
/s2 = 1/s2. The

channel coefficient, hij, from UE j inside the centre cell to receive

antenna i has the link gain E hij

∣∣∣ ∣∣∣2[ ]
= Pij, whereas the channel

coefficient, fij, from UE j outside the centre cell to receive antenna

i has the link gain E fij

∣∣∣ ∣∣∣2[ ]
= Qij.

Obtaining accurate channel state information (CSI) is one of the
challenges in massive MIMO due to pilot contamination [2] and in
distributed scenarios there are also likely to be latency issues [11].
Thus, the simple equivalent channel estimation model [12] is used,
where the true channel, H, is given by H = r0Ĥ +

�������
1− r20

√
E,

where r0 is the correlation coefficient between H and the estimated

channel Ĥ , and E = e1 · · · eNt

[ ]
has the same statistics as H.

In this paper, we consider linear detectors where the output of
the linear combiner, W, has the form, WHy, where WH represents
the complex conjugate transpose of W. For any such combiner, the

output SINR (the mean signal power divided by the mean
interference plus noise power) for the mth UE is calculated using a
simple variation of the SINR in [13, (9)] as

SINRm =
E r0w

H
m ĥmxm

∣∣∣ ∣∣∣2[ ]

E wH
m r0

∑
j=m ĥjxj +

�������
1− r20

√
Ex+ FxI + n

( )∣∣∣ ∣∣∣2[ ] ,
(2)

where wm is the mth column of W. Note that the expectation in the
numerator and denominator of (2) is with respect to signal and
noise. The combiners considered are ZF, where W = Ĥ(ĤHĤ)−1

[14, page 48] and MRC where W = Ĥ [15, page 331]. For small
systems, typically using 2–8 antennas, MRC is never normally
preferred over ZF as it has no capability to reduce interference.
However, for massive MIMO the simplicity of MRC is desirable
and in certain situations MRC performance approaches that of
minimum-mean-squared-error detection [14, page 48] as the
system size increases [2]. The precise nature of channels and
receivers depends on the BS deployment which is discussed next.

3 Deployment scenarios for the massive array

Massive MIMO can result from a large number of antennas deployed
at one location or from an array of distributed antennas linked
together to form a massive network MIMO system. The following
scenarios are considered for simplicity and are also shown
schematically in Fig. 1.

† One massive co-located array (COL).
† B collaborative base stationswithmultiple antennas at eachBS (BBS).
† One massive array with geographically distributed single antenna
BSs (DIST).

Fig. 1 Example of deployment scenarios
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In these cellular layouts the positions of UEs and BSs is as
follows. The UEs are located uniformly and randomly in all cells
which have a common radius of r (diameter D = 2r). The BSs are
located in the inner indented hexagon of the centre cell as in
Fig. 1 to study the effects of distributing antennas over varying
proportions of the cell. Hence, the BSs are located inside a
hexagon of diameter Da = daD where 0≤ da≤ 1 is a scaling factor.
The special case of da = 0 corresponds to COL and, in DIST, da =
1 corresponds to spreading the array over the entire cell. Note that
Fig. 1 shows only 12 antennas in DIST for clarity whereas we
consider 128 antennas in the array because a regular grid of 128
points fits almost symmetrically in a hexagon giving an even
spread of antennas over the cell in DIST. Thus, the specific
deployments are: COL: 128 co-located antennas at the centre of
the coverage area; 4BS: 4 BS locations each with 32 antennas at
each of the positions 0, − ��

3
√

/4
( )

, (−0.25, 0), 0, − ��
3

√
/4

( )
and

(0.25, 0) for da = 1 and D = 1; 8BS: 8 BS locations located in a
circle each with 16 antennas; and DIST: 128 single antenna BSs.
Note that optimal placement of the BSs is beyond the scope of
this paper and we select simple examples of possible locations for
4BS and 8BS. The 4BS locations span the cell with 0, +

��
3

√
/4

( )
lying on the cell edge and the other 2 BSs located at (±0.25, 0)
were chosen to be half way to the cell edge to increase the SINR
values. Various levels of interference from the two interference
tiers in the cell layout of Fig. 1 are considered. The interference
scenarios are: no interference (nCells = 1), interference from the 6
cells located in the first interference tier (nCells = 7), interference
from the 18 cells located in both interference tiers (nCells = 19),
and interference from the 6 shaded cells located in the frequency
reuse group of size 3 (nCells = 19, reuse 3).

For all scenarios, we adopt the classical channel model where

H = R1/2
r G, (3)

Gij =
���
Pij

√
Uij , the Uij � CN (0, 1) are i.i.d. fast fading terms, R1/2

r is
the spatial correlation matrix at the receive array and Pij is the link
gain defined by [16, page 104]

Pij = ALijd
−g
ij . (4)

The terms in (4) as follows. A is a constant depending on transmit
power, antenna height etc. Lij is a lognormal shadow fading
variable defined by Lij = 10Lij/10, where Lij is an i.i.d. complex
Gaussian variable with zero mean and constant shadow fading
variance s2

SF and dij is link distance. Including the effects of
spatial correlation in the shadow fading is critical here because
small values of da bring the antennas close together and in this
situation independent shadowing is unrealistic. The correlation
between the shadow fading terms at antennas i and j, is defined by
�Rij = e−rij/(br) with rij being the antenna separation and b∈ [0, 1]
is the fraction of the cell radius at which decorrelation occurs, that

is, at which �Rij = e−1. Note that �Rij = E 10log10Lik × 10log10L jk

[ ]
for any UE, k = 1, 2, …, Nt. This is the well-known exponential
correlation model [17] and typical values of b in the literature
range from 0.1 to 0.5 [18]. For simplicity, we assume a constant A
and a constant path loss exponent, γ. The difference between the
channel coefficients for the scenarios lies solely in the structure of
the link gains. For COL, Pij = Pj = ALjd

−g
j , as all Nr paths from

UE j to the BS have the same power defined by a single shadow
fading variable, Lj and a single distance, dj. In BBS, each UE has
B link gains. These powers are defined by

Pij = P(k)
j = AL(k)j d(k)j

( )−g

, where k = {1…, B}, the B lognormals

are independent, distances are distinct and k is the index of the

BS. Here, k replaces the index i as the powers depend on the BS,
not on the individual antenna. For DIST, Pij = ALijd

−g
ij where Lij

are correlated shadow fades and dij are the distances from UE j to
the 128 BSs. Similarly, fij has the same structure as hij, where
fij =

����
Qij

√ Vij, Qij is the link gain and Vij � CN (0, 1) are i.i.d. fast
fading terms.

The channel correlation matrix at the receiver in (3) has the block
diagonal form Rr = diag(Rb, …, Rb), where Rb is the correlation
matrix at each of the B arrays. Let Rb = (Rij), then the element Rij

is modelled by Rij = a|i−j|
u , where αu is the correlation between

channels at adjacent antennas, 0 < αu < 1 and i, j = {1, …, Nr/B}.
This is the simple exponential correlation model given in [19].
Therefore, Rb can be decomposed as Rb = CH

bLbCb, where Ψb is
a unitary matrix and Λb is a diagonal matrix containing the
eigenvalues of Rb.

4 SINR analysis for ZF and MRC

In this section we analyse the effects of propagation parameters and
the BS deployment scenarios described in Section 3 on MRC and ZF
performance.

4.1 Exact SINR calculations

For a ZF receiver and UE 1, the general SINR in (2) collapses to [20]

SINR(ZF)
1 = r20

(WH 1− r20
( )

EEH + FFH + s2I
( )

W
[ ]

11

, (5)

where [.]11 denotes the (1,1)th element of a matrix. For an MRC
receiver, the SINR for UE 1 is given by (see (6))

Every term in (5) and (6) is constructed from the cross products ĥHi ĥj,

ĥHi ej and ĥHi f j. Since all UEs experience the same correlations, ĥj, ej
and fj all have the same correlation matrix. Hence, each cross product
is of the form x^Hy^ = x̃HR1/2

r R1/2
r ỹ where x̃, ỹ have the same power

structure as x^, y^, but are independent. Using the eigenvalue

Fig. 2 SINR CDFs for the DIST scenario with ZF and MRC and differing
numbers of interfering cells. Lines alone represent ZF and lines with circles
represent MRC. nCells∈ {1, 7, 19}

SINR(MRC)
1 =

r20 ĥH1 ĥ1

∣∣∣ ∣∣∣2
r20
∑Nt

j=2 ĥ
H
1 ĥjĥ

H
j ĥ1 + 1− r20

( )∑Nt
j=1 ĥ

H
1 eje

H
j ĥ1 +

∑Nf

j=1 ĥ
H
1 f jf

H
j ĥ1 + s2ĥH1 ĥ1

. (6)
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decomposition of Rr gives

x
^H

y
^ = x̃HCHLCỹ, (7)

where Ψ = diag(Ψb, …, Ψb) and Λ = diag(Λb, …, Λb). Furthermore,
since Ψ is block diagonal and each UE has the same power in each
block, Cx̃ is statistically identical to x̃. Hence, x^Hy^ is statistically
identical to x̃HLỹ = x̃HL1/2L1/2ỹ. Now L1/2ỹ and x̃HL1/2 are
simply scaled versions of the original x̃, ỹ values. Hence, for our
uplink model of distributed single-antenna transmitters, the effect
of correlation is equivalent to scaling the power at antenna i by
Λii. As a result, in the subsequent analysis, we replace Pij by
�Pij = LiiPij and Qij by �Qij = LiiQij and maintain the independence
of the channel correlation coefficients as the correlation is catered
for by the power scaling. Note that in the uncorrelated case,
Rr =Λ = I and the power scaling has no effect, as desired.

4.2 SINR approximation analysis with ZF

Using the full SINR representation in (5) leads to a complicated
analysis without any resulting insight. To avoid this complexity,
we can approximate the interference from outside the desired cell

as noise and replace the estimation error, interference and noise
covariance matrix, 1− r20

( )
EEH + FFH + s2I , by an equivalent

noise covariance matrix, s2
eqI , where s2

eq = s2 + 1/Nr 1− r20
( )∑Nr

i=1

∑Nt
j=1

�Pij + 1/Nr

∑Nr
i=1

∑Nf
j=1

�Qij. The accuracy of this
approximation investigated in Section 5 (see Figs. 3 and 4). Thus,

SINR(ZF)
1 ≃ r20

s2
eq Ĥ

H
Ĥ

( )−1
[ ]

11

. (8)

Using the co-factor expression for Ĥ
H
Ĥ

( )−1
[ ]

11

, we obtain

r20

s2
eq Ĥ

H
Ĥ

( )−1
[ ]

11

=
r20 Ĥ

H
Ĥ

∣∣∣ ∣∣∣
s2
eq ĤH

2 Ĥ2

∣∣∣ ∣∣∣ , (9)

where Ĥ2 is the channel matrix, Ĥ , with the first column removed.
The mean SINR over the fast fading can be approximated using
the Laplace approximation approach from [21], which was shown
to be quite accurate for ratios of quadratic forms in [22], as

E SINR(ZF)
1

[ ]
≃

r20E Ĥ
H
Ĥ

∣∣∣ ∣∣∣[ ]
s2
eqE ĤH

2 Ĥ2

∣∣∣ ∣∣∣[ ] = r20Perm P
( )

s2
eqPerm P2

( ) , (10)

where Perm(.) is the permanent of a matrix, P = �Pij

( )
, 1 ≤ i ≤ Nr,

1 ≤ j ≤ Nt, P2 = �Pij

( )
, 1 ≤ i ≤ Nr, 2 ≤ j ≤ Nt and the expectations

are with respect to the fast fading. There are several reasons for using
the Laplace approximation. The results, shown in Figs. 3 and 4,
verify its accuracy for this situation and the analytical results in
(13)–(17) verify the simple form of the resulting expressions.
Furthermore, [21, 22] suggest that an exact analysis is intractable
for more than two UEs. Rewriting the right-hand side of (10) gives:

r20Perm �P
( )

s2
eqPerm �P2

( ) ≃ r20
∑Nr

i1=1
�Pi11

∑
i2[s(1,1)

�Pi22
. . .

∑
iNt[s 1,Nt−1( ) �PiNtNt

s2
eq

∑Nr
i2=1

�Pi22
. . .

∑
iNt[s 2,Nt−1( ) �PiNt Nt

=
r20
∑Nr

i1=1
�Pi11

�G −∑Nt
j=2 Fj i1

( )[ ]
s2
eq
�G

= r20
∑Nr

i1=1
�Pi11

s2
eq

− r20
∑Nr

i1=1
�Pi11

∑Nt
j=2 Fj i1

( )
s2
eq
�G

,

(11)

where s(k, l ) = {1, 2, …Nr}\{ik, ik + 1, …, il}, �G =∑Nr
i2=1

�Pi22
. . .

∑
iNt[s 2,Nt−1( ) �PiNtNt

and Fj(i1) is defined as (see (12))

For Nr ≫ Nt, the number of products of powers in �G dominates the
number in

∑Nt
j=2 Fj i1

( )
and therefore �G ≫ ∑Nt

j=2 Fj i1
( )

so that

E SINR(ZF)
1

[ ]
≃ r20

∑Nr

i=1

�Pi1/s2
eq. (13)

Note that (13) relies on the equivalent noise model (see (8)), the
Laplace approximation (see (10)) and the removal of lower order
terms in (11). The latter two approximations are motivated by
massive MIMO properties while the first is required for analytical

Fig. 3 SINR CDFs for the three deployment scenarios with ZF and MRC
and r0 = 1. nCells = 19, reuse 3

Fig. 4 SINR CDFs for the COL scenario with ZF and MRC for r0 = 0.99
and different correlation levels, αu = {0.1, 0.9}. nCells = 19, reuse 3

Fj i1
( ) = �Pi1 j

∑
i2[s(1,1)

�Pi22
. . .

∑
i j−1[s(1,j−2)

�Pi j−1j−1

∑
i j+1[s(1,j)

�Pi j+1j+1 . . .
∑

iNt[s 1,Nt−1( )
�PiNtNt

. (12)
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progress. The overall accuracy and the accuracy of the Laplace
approximation stage are evaluated in Section 5.

4.3 SINR approximation analysis with MRC

The mean SINR is again approximated using a Laplace
approximation (as in (10)) to give (see (14))

Similar results were obtained in [5] from a different approach, but
were not expressed or used in the same way as in the following. In
the massive MIMO scenario, the system is intra-cell interference
limited and the leading term in both the numerator and
denominator of (14) is dominant. As a result,

E SINR(MRC)
1

[ ]
≃ r20

∑Nr
i=1

�Pi1∑Nr
i=1

�Pi1 −r20�Pi1 +
∑Nt

j=1
�Pij

( )[ ]
/
∑Nr

k=1
�Pk1

[ ] .
(15)

4.4 Discussion

The simple approximations in (13) and (15) provide the following
insights. Increasing the transmit SNR, ρ, does not scale (13)
linearly as ZF only removes the intra-cell interference resulting in
a ceiling on the ZF SINR. In addition, for MRC, (15) is
independent of ρ as MRC is interference limited and a higher
transmit SNR does not help. Consider the case of perfect CSI, r0
= 1, for further insights. To evaluate the effects of distributed
antennas, we substitute �Pij = �Pj into (13) and (15) to obtain the
co-located results:

E SINR(ZF)
1

[ ]
≃ Nr

�P1

s2
eq

, E SINR(MRC)
1

[ ]
≃ Nr

�P1∑Nt
t=2

�Pt

. (16)

In the BBS scenario, using �Pij = �P
(k)
j , where k∈ {1,…, B}, (13) and

(15) simplify to

E SINR(ZF)
1

[ ]
≃Nr

B

∑B
k=1

�P
(k)
1

s2
eq

,

E SINR(MRC)
1

[ ]
≃Nr

B

∑B
k=1

�P
(k)
1∑B

k=1
�P
(k)
1

[ ]
/

∑B
i=1

�P
(i)
1

[ ]( )∑Nt
r=2

�P
(k)
r

.

(17)

Note that the results in (13)–(17) are averaged over the fast fading.
Nevertheless, we use these results as approximations to the
instantaneous SINR at a system level as the variation due to
the fast fading is negligible compared with the variation due to the
long term powers. As an example, the coefficient of variation
(CV) of the square of the absolute fast fading term, |Uij|

2, is CV =
1 whereas for σSF = 8 dB, γ = 3 the CV of �Pij, exceeds 50 (where
the CV is computed using the moments derived in [23] for a
circular cell). This difference is massive on the CV scale. The
validity of the approximations is also supported by the accuracy of
the results in Fig. 3.

The MRC result in (16) is similar to the SINR of a large code
division multiple access system [24, (8)]; however, the
assumptions and channels are significantly different. The ZF result
also differ from previously published results [5, 24]. Comparing
(13) with (16) and (17) for r0 = 1, we observe that the form of the
ZF SINR is the same, but the co-located version has a single
power, �P1, scaled by Nr/s

2
eq; the BBS version has the average of

B powers
∑B

k=1
�P
(k)
1 /B scaled by Nr/ s2

eq

( )
and the distributed

version has the average of Nr different powers, �Pi1, scaled by
Nr/s

2
eq. Hence, the mean of the absolute SINR is very similar for

the three cases, but in the BBS and the distributed case the
variation is heavily reduced due to increased averaging. Thus, the
co-located case has higher maximum values (all Nr links are strong
when the UE is in a good location) but suffers from a poor lower
tail (when all Nr links are weak). The lower tail of the cumulative
distribution function (CDF) is critical and is emphasised with a dB
scale showing that the distributed case will outperform the
co-located case considerably (see Figs. 3, 5, 6). The BBS scenario
is important because it is much easier to locate a few BSs around
the cell rather than use DIST. Hence, this scenario enables us to
investigate how much of the fully distributed gains are achieved
from a layout with only B sites. The same conclusions can be
drawn for MRC, since the ratio of two single variables in (16) is
being compared with the ratio of an average to a weighted average
in (15) and (17). Again, with a distributed array, the averaging

Fig. 5 SINR CDFs for the four deployment scenarios with ZF, γ∈ {3, 4}.
Lines alone represent γ= 3 and lines with markers represent γ = 4.
nCells = 19

Fig. 6 SINR CDFs for the four deployment scenarios with MRC, γ∈ {3, 4}.
Lines alone represent γ= 3 and lines with markers represent γ = 4.
nCells = 19

E SINR(MRC)
1

[ ]
≃

r20
∑Nr

i=1
�Pi1

( )2
+ r20

∑Nr
i=1

�P
2
i1

r20
∑Nr

i=1

∑Nt
j=2

�Pi1
�Pij + 1− r20

( )∑Nr
i=1

∑Nt
j=1

�Pi1
�Pij +

∑Nr
i=1

∑Nf
j=1

�Pi1
�Qij + s2

∑Nr
i=1

�Pi1

. (14)
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will reduce the variation leading to considerable improvement in the
lower tail. Note that the averaging due to distributed antennas has a
greater impact when the equivalent link gains are more variable, that
is, when the path loss exponent is higher or when the shadow fading
correlation is smaller. The improvements of distributed arrays have
been explained via (13) and (15)–(17) in terms of an averaging
effect. This is closely linked to the benefits of reduced link
distances with distributed arrays. Spreading the antennas creates a
range of link distances and most UEs will be in close proximity to
some antennas and distant from others. As a result, extreme cases
with all short or long links are removed and most UEs have a few
short links. Therefore, these antenna proximity benefits can be
viewed as an averaging effect.

5 SINR results using analysis and simulation

In this section, we verify the accuracy of the analysis in Section 4 and
investigate the effects of system size, deployment and propagation
parameters via Monte Carlo simulation. The baseline parameters
are: Nr = 128, Nt = 10, ρ = 0 dB, γ = 3, σSF = 8 dB. Each cell is
assumed to have a radius of r = 0.5 units, b = 1/ 5, da = 0 for COL,
da = 0.7 for 4BS, da = 0.6 for 8BS, and da = 1 for DIST. The value
of da selected for 4BS and 8BS is chosen as it is nearly optimal
for both ZF and MRC in the perfect CSI and zero correlation
condition. For 4BS, the results in Fig. 7 support our choice and
for 8BS, similar simulations (not presented here) were used to
select da. Where these parameters are changed, it is denoted in
figure labels or captions. The link distance is calculated with an
exclusion zone, so that dij > 0.01, and the scaling parameter, A, in
(4) is set to 1. Note that the value of A has a very small impact on
the results as in the interference limited cases considered, A is
present in the numerator and denominator of the SINR and is
essentially cancelled out. This value is fixed across all simulations
so we are essentially considering a fixed transmit power. Most of
the results correspond to the ideal situation where perfect CSI is
available with zero latency and zero correlation. These
assumptions are much harder to emulate for distributed arrays.
Furthermore, the simulated instantaneous SINR values include fast
fading. With this background, the numerical results in Figs. 2–7
are discussed below.

Fig. 2 shows the SINR for DIST with MRC and ZF and differing
levels of interference. For MRC, intra-cell interference is not nulled
and is dominant. Hence, all four interference scenarios have similar
SINR distributions. For ZF, intra-cell interference is nulled and so
the interference scenarios have a large effect. Results for nCells∈
{7, 19} are similar as the tier 1 interferers are dominant. The effect

of reuse is large and the (nCells = 19, reuse 3) CDF is shifted up by
around 10 dB. Finally, the nCells = 1 result is interference free due
to ZF leading to much higher SNRs. Note that similar conclusions
are found with COL, 4BS and 8BS deployments.

Fig. 3 compares the SINR approximations (labelled Approx.)
using (13), (8) and (15) with the simulated instantaneous SINR
values (labelled Sim.) for MRC and ZF. The remarkably simple
approximations in (13) and (15) provide an excellent match to the
SINR CDFs for both receivers. This validates the use of the
approximation techniques in Section 4. The results in Fig. 3 are
for perfect CSI (r0 = 1). When imperfect CSI is considered the
analytical results are slightly less accurate as shown in Table 1.
For r0∈ {0.6, 1}, approximate results for the median SINR are
accurate to within 1 dB for all MRC scenarios. For ZF, results are
within 1 dB for COL, but have errors around 2 dB for 4BS and
DIST. Two other features are shown in Table 1. First, the
approximation error increases as r0 reduces since greater channel
estimation error inflates the E matrix making the equivalent noise
model less accurate. Secondly, when the CSI is poor 4BS can
outperform DIST. This is because DIST often results in a UE
having a single dominant link and this situation is particularly
susceptible to poor CSI.

For the COL scenario, Fig. 4 compares the SINR approximations,
(13), (8) and (15), with simulated instantaneous SINR values for
MRC and ZF with imperfect CSI and correlation, r0 = 0.99 and αu
= {0.1, 0.9}. These results demonstrate that the SINR obtained
from the simple approximations in (13) and (15) are less accurate
for ZF when the correlation is high, but work well with low
correlation. In addition, with low correlation the approximations in
(8) are similar to (13) supporting the use of the Laplace
approximation. However, for high correlation the ZF
approximation is poor. This is caused by the effect of the
correlation which makes the aggregate interference and noise more
coloured and less like simple additive noise. Overall, the simple
closed form approximations are useful for all MRC scenarios and
for ZF with low correlation.

Compared with the results in Fig. 3, imperfect CSI has a much
greater impact on ZF than MRC. In the DIST scenario, the
correlation does not have an impact on the system performance
because the correlation matrix Rr is the identity matrix.

Using a frequency reuse of factor 1 (nCells = 19), Figs. 5 and 6
show the effect of γ on ZF and MRC. As shown analytically in
Section 4, increasing γ increases the gap between the co-located
and distributed results. The changes between γ = 3 and γ = 4 are
more notable for ZF than for MRC since an increased γ has a
direct effect on SINR for ZF, whereas for MRC, increasing γ
affects both the numerator and denominator of (15). Changes are
also more notable for the distributed scenario. Increased path loss
accentuates the variability in link gain. This is ideal for DIST
where the different antenna locations mean that different UEs tend
to find different sets of antennas with reasonable link gains and
the greater path loss from other UEs reduces the overall
interference which must be mitigated. Importantly, Figs. 5 and 6

Fig. 7 Median SINR vs da for ZF and MRC with DIST and 4BS with b∈
{1/2, 1/5, 1/10}. Lines alone represent ZF and lines with markers represent
MRC. nCells = 19, reuse 3

Table 1 Simulated and approximated median SINR (dB) with imperfect
channel estimation

r0 Sim. Approx.

COL 4BS DIST COL 4BS DIST

ZF (nCells = 19, reuse 3)
1 17.2 22.2 30.1 17.3 22.2 30.8
0.99 14.1 18.5 20.0 14.1 17.7 22.4
0.9 7.7 11.6 10.3 7.5 10.0 12.6
0.8 4.6 8.1 6.7 4.2 6.3 8.8
0.6 −0.1 3.3 1.6 −0.5 1.6 3.9

MRC (nCells = 19, reuse 3)
1 3.0 6.9 13.0 2.4 6.2 12.9
0.99 2.9 6.8 11.6 2.1 6.1 12.2
0.9 2.1 5.9 7.0 1.4 5.2 6.9
0.8 0.9 4.8 4.5 0.2 4.0 3.7
0.6 −1.5 2.2 0.4 −2.4 1.4 −0.5
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quantify the gains offered by 4BS and 8BS in comparison with
DIST. A fully distributed array may be impractical and only a
partial distribution, an intermediate deployment as in 4BS or 8BS,
may be viable. We observe that for ZF, moving from one BS site
to four provides approximately 38% of the gains in moving from
one site to 128 sites. The corresponding percentage gain is
approximately 40% for MRC. Moving from one BS site to eight
provides approximately 56% of the gains in moving from one site
to 128 sites for ZF. The corresponding percentage gain is
approximately 53% for MRC. With reuse 3, the percentage gains
are similar.

Fig. 7 shows the median SINR of ZF and MRC with different
values of da and b for DIST and 4BS. This explores the effect of
spreading the antennas over increasing proportions of the cell area
(increasing da) and the effect of increasing shadow fading
correlation (increasing b). We observe that increasing the spread of
the antenna array is more beneficial for DIST compared with 4BS
and for ZF compared with MRC. The effects of shadow fading
correlation is less pronounced but in all cases, increasing
correlation reduces SINR. Both effects are due to the averaging
effect explained by the closed form analysis in Section 4.

Obtaining accurate CSI is one of the challenges in massive MIMO
as performance can be limited by interference arising from the re-use
of pilots in neighbouring cells [2]. Correlation is also an important
factor when large numbers of antennas are deployed in a small
physical volume. In Table 2, we give median SINR results for the
four scenarios and both linear receivers for varying levels of CSI
and correlation. Clearly, ZF is more sensitive to imperfect CSI in
all deployments and the gains of ZF over MRC are reduced as r0
decreases, particularly for DIST. DIST is more heavily affected by
imperfect CSI than COL. With imperfect CSI, the additive channel
errors in the desired channel are of the form

�������
1− r20

√
em, where em

is the mth column of E. The power of this term is
1− r20
( )∑Nr

i=1
�Pim and as shown in Section 4, this is larger for

DIST than COL. Hence, imperfect CSI has a greater impact on
DIST than on COL as mentioned in the discussion of Table 1.
Both r0 and αu have a serious impact on performance, although
DIST is unaffected by correlation as there are no co-located
antennas. Again, we observe that imperfect CSI can cause 4BS or
8BS to outperform DIST.

To summarize the practical implications of the numerical results,
some level of distribution is preferable as averaging reduces variation
and correlation has less impact on performance. Since urban
channels tend to have higher σSF and γ values than most
environments, they are usually more variable and therefore will
benefit more from the averaging effects of distributed arrays.
However, it is far easier to locate a few BSs around a cell than to
use the full DIST approach. Hence, there is a performance-
complexity trade-off which is also influenced by the fact that
distributed arrays are likely to have less accurate CSI than co-located
arrays. As a result, an intermediate deployment is an appealing
design choice as it is simpler and less sensitive to CSI quality than
DIST while avoiding the spatial correlation problems of COL.

6 Conclusion

We investigated the interactions between deployment scenarios, ZF,
MRC and propagation parameters. A mixture of analysis, simulation
and physical interpretations were used to show that the
improvements offered by distributed arrays are largely due to an
averaging effect which is more prominent for the ZF case. This
averaging improves the lower tail of the SINR CDF of the
distributed case relative to the co-located case. We also show that
imperfect CSI has a significant impact which is greater for
distributed arrays than for co-located arrays and reduces the
improvements offered by ZF. In addition, correlation does not play
a role in degrading the performance in distributed arrays but
strongly affects co-located deployments. As a result, a partially
distributed ZF system is an ideal candidate if the cost and CSI
requirements could be met, providing performance benefits and
robustness to errors in CSI.
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