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ABSTRACT

Various nonatmospheric signals contaminate radar wind profiler data, introducing bias into the moments

and wind velocity estimation. This study applies a fuzzy logic–based method to Doppler velocity spectra to

identify and eliminate the clutter echoes. This method uses mathematical analyses and a fuzzy inference

system applied to each Doppler velocity spectrum to separate the atmospheric signals from the clutter. After

eliminating the clutter, an adaptive algorithm is used to estimate mean Doppler velocities accurately. This

combination of techniques is applied to the spectral data obtained by the newly developed 53-MHz active

phased array radar located at the National Atmospheric Research Laboratory (NARL), Gadanki, India

(13.58N, 798E). Winds derived using the conventional method and the method developed for this study are

compared with those obtained by collocatedGPS radiosonde. The comparison shows that the presentmethod

derives the winds more accurately compared to the conventional method.

1. Introduction

Radar wind profilers (RWPs) are powerful remote

sensing instruments for measuring atmospheric wind

velocities and turbulence (Gage and Balsley 1978;

Balsley and Gage 1982). Profiler data are used in

weather forecasting, climate modeling, natural hazards

identification (forecasting), nowcasting, air traffic con-

trol (Merritt 1995), etc. Therefore, maintaining high

data quality is very important. RWPs employ a Doppler

beam swinging (DBS) technique, in which the narrow

radar beam is switched sequentially in a fixed routine

between three and five noncoplanar directions (one

vertical zenith, and two or four off vertical in orthogonal

directions). RWPs radiate an electromagnetic signal and

receive the backscattered echo from the refractive index

irregularities present in the atmosphere and advected by

the wind. Thus, the received backscattered signal will

have a shift in the frequency. Backscatter from the clear-

air turbulence is a weak scattering mechanism. Thus, the

received atmospheric signal is very weak. Further, the

received signal is often contaminated by the ground

clutter generated from stationary nonatmospheric

Corresponding author address: S. Venkatramana Reddy, De-

partment of Physics, Sri Venkateswara University, Tirupati 517

502, Andhra Pradesh, India.

E-mail: drsvreddy123@gmail.com

1004 JOURNAL OF ATMOSPHER IC AND OCEAN IC TECHNOLOGY VOLUME 32

DOI: 10.1175/JTECH-D-14-00075.1

� 2015 American Meteorological Society

mailto:drsvreddy123@gmail.com


targets and intermittent clutter generated by the moving

nonatmospheric targets (birds, airplanes, etc.). The shift

of the Doppler frequency in the atmospheric echoes is

used to estimate the wind velocity. Hence, the data must

be processed with care to estimate the mean Doppler

shift; if they are contaminated by clutter signal, which is

generally stronger than the atmospheric signal, then the

velocity estimates can be wrong.

Conventional signal processing techniques for the

wind profilers are given by Barth et al. (1994), Strauch

et al. (1984), Riddle and Angevine (1992), Passarelli

et al. (1981),Wilczak et al. (1995), and Carter et al. 1995.

For VHF radars, conventional DC1 removal techniques

from power spectrum data involve three-point or five-

point DC removal (Barth et al. 1994), where the DC

component of the data is replaced with the averaged

value of the data corresponding to one (three-point DC

removal) or two (five-point DC removal) adjacent

points on either side. This technique is not suitable for

removing clutter, which extends for several Doppler

bins around DC. A linear interpolation is used in such

cases where a few data points on either side of DC are

replaced with interpolated data values. However, this

technique is not effective in situations where the

Doppler frequency of the atmospheric signal is close to

zero and overridden by the clutter. In such cases, elim-

inating the clutter using interpolation will eliminate the

desired atmospheric signal as well, thus causing a serious

problem in mean Doppler velocity estimation. Further,

this process will not eliminate intermittent clutter. Even

wavelet-transform-based processing techniques (Jordan

et al. 1997; Lehmann and Teschke 2001; Lehtinen and

Jordan 2006) mitigate the clutter contamination only to

some extent. Lehtinen and Jordan (2006) used wavelet

filtering with a multiple-peak picking algorithm [Swiss

Federal Institute of Technology (ETH) MPP method]

and Anandan et al. (2005) used an adaptive moments

estimation method for calculating moments, which im-

proves the accuracy.

In recent years, a new approach was developed based

on fuzzy logic (FL) to identify and remove the con-

tamination from wind profiler range–Doppler spectral

data, and this was proven to be an effective technique to

remove clutter. We have used a FL-based technique to

eliminate the undesired signal from the data collected

by a VHF active phased array radar wind profiler, lo-

cated at NARL. The FL method presented by Cornman

et al. (1998), Morse et al. (2002), and Bianco and

Wilczak (2002) is adjusted and tuned according to the

characteristics of the signal and site location. Further, an

adaptive moments estimation (Anandan et al. 2005)

method is implemented for the identification of the peak

and the estimation of the moments on the cleaned

spectra. In section 2 we present the FL method and

approach utilized in this study, while the results ob-

tained by the conventional method compared with the

results obtained by the one developed here are pre-

sented in section 3. Conclusions are presented in the last

section.

2. Dataset and analysis

Data collected by the VHF active phased array radar

during 2013 are used in this study. This radar operates at

53MHz and has a 133-element antenna array arranged

in seven groups, with each group comprising 19 ele-

ments. Each antenna element is excited with a 1-kW

transmit–receive module, and the peak power of the

radar is 133kW at a maximum duty ratio of 10%. This

radar is used for probing the atmosphere up to about 10–

12 km. For more details about the system, readers can

refer to Srinivasulu et al. (2013). Important specifica-

tions of the radar are given in Table 1.

Figure 1a schematically shows a representation of the

conventional signal processing steps involved in wind

velocity estimation. First, coherent integration (Barth

et al. 1994; Carter et al. 1995) is performed on the

complex received signal (inphase: I signal, quadrature

phase: Q signal) to improve the signal-to-noise ratio and

reduce the data volume. Then the signal is transformed

into the frequency domain using complex Fourier

transform. To reduce spectral leakage and picket fence

effects, windowing (generally Hamming or Hanning) is

applied. The power spectrum is computed and three- or

five-point DC removal or linear interpolation is im-

plemented. Several successive spectra are incoherently

averaged to improve the detectability. The mean noise

TABLE 1. Important specifications of the system.

Parameter Value

Frequency 53MHz

Technique Doppler Beam Swinging

Number of beams 5 (east, west, zenith, north, south)

Peak power 133 kW at 10% duty ratio

Antenna 133 elevation array (50m)

Bandwidth 3.4MHz

Pulse width 1–64 ms

Max range coverage 10–12 km

Range resolution 150m

Time resolution 3min (for one set of five beam directions)

1 DC refers to the zero frequency on the Doppler frequency axis.

Because the clutter signal, which contaminates the radar back-

scatter, is due to stationary targets, it appears at zero frequency on

the Doppler axis.
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level is computed using the Hildebrand and Sekhon

method (Hildebrand and Sekhon 1974) and subtracted

from theDoppler spectrum beforemoments (Woodman

1985) and wind velocities (Sato 1989) are calculated. As

the DC removal or interpolation does not remove the

contamination in the atmospheric data due to clutter,

the estimated winds may be in error when using the

conventional signal processing.

The schematic representation of the FL approach of

analyzing data (Klir and Yuan 1997; Zadeh 1965) is shown

in Fig. 1b. The main difference between the conventional

signal processing approach and the FL signal processing

approach is in the removal of clutter/DC. In the FL ap-

proach, after incoherent averaging, the range–Doppler

spectra are subjected to a fuzzy inference process to

remove the clutter contamination. Fuzzy inference is the

process of formulating the mapping from a given input

to an output using FL. Figure 1c schematically illustrates

the steps involved in the fuzzy inference process. This

process consist of 1) fuzzification of the input variables,

2) application of the fuzzy operator (AND or OR), 3)

aggregation of the consequents across the rules, and

4) defuzzification. The fuzzification step takes the nor-

malized parameters as inputs and converts them through

membership functions. The outputs of the fuzzification

step are values always in the interval between 0 and 1.

The fuzzy operator step takes two or more membership

values (fuzzified inputs) and generates the single truth

value depending on the operators. Generally AND

(minimum or product) or OR (maximum or sum) are

used as fuzzy operators. The aggregationmethod takes all

the truthmembership values produced by fuzzy operators

as inputs. Threemethods—1)max (maximum), 2) probor

(probabilistic OR), and 3) sum (simply the sum of each

rule’s output value)—are used in the aggregation process

to generate a resultant membership value. This output

membership value of the aggregation process acts as the

input for the defuzzification. In the defuzzification pro-

cess, different methods like centroid, bisector, middle of

maximum, largest value of maximum, and smallest of

maximum are used. For details on these methods, readers

can refer to theMATLAB fuzzy logic toolbox (Mathworks

2013) or Sivanandam et al. (2007). Among these methods,

the centroid method is widely used. In this paper we use

the centroid defuzzification method, which picks up the

center of the area under the curve.

The fuzzy logic attributes are estimated across the

Doppler velocity spectrum before estimating the

FIG. 2. Fuzzy inference process for clutter.

FIG. 1. (a) Classical signal processing steps for wind velocity

measurement. (b) Signal processing steps for wind velocity mea-

surement using the FL method. (c) Fuzzy logic inference

process flow.
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spectral moments. The mathematical parameters of the

data, such as power spectral density (PSD), signal-to-

noise ratio (SNR), asymmetry, curvature, skewness, and

gradient, are computed as given by Cornman et al.

(1998), Bianco and Wilczak (2002), and Morse et al.

(2002) after the incoherent averaging. These parameters

are used to differentiate the atmospheric signal from the

clutter. We have used theMATLAB fuzzy logic toolbox

R2013b (Mathworks 2013) for developing the tool

aimed at the identification of clutter and atmospheric

signal. The fuzzy inference process for clutter recogni-

tion is represented in Fig. 2. Using the fuzzification

process, membership functions are calculated for these

normalized mathematical parameters. Backscattered

signal characteristics are different for various atmo-

spheric conditions, topography, and radar parameters

(Morse et al. 2002). Thus, the membership functions and

rules as tuned (modified) for identifying atmospheric

signal and clutter signal are not the same for all the radar

sites. Therefore, the membership function values and

rules, as tuned (modified) for the NARL location and

radar signal characteristics, are given as tables A1

through A13 in the appendix. The tuning process is

carried out according to Cornman et al. (1998), Bianco

and Wilczak (2002), and Morse et al. (2002), where

suitable membership functions and their mathematical

parameters that recognize the features of the atmo-

spheric backscattered signal are identified. For the study

presented here, the membership functions found suit-

able for the identification of clutter (clutt) and atmo-

spheric signal (atm) are Gaussian shaped, P shaped and

trapezoidal shaped. To identify the mathematical pa-

rameter values for these functions, trial and error basis

experimentation were carried out on large set of data

and suitable values were found empirically.

Once the clutter is removed from theDoppler spectra,

the data are subjected to the moments estimation algo-

rithm, where signal power, mean Doppler shift, and

spectral width are estimated. The conventional method

to estimate the mean Doppler shift selects the dominant

peak in the Doppler power spectrum as the atmospheric

signal. This method fails particularly in the upper

heights, where the noise is comparably stronger than the

atmospheric signal and also at heights where multiple

peaks are present. In such cases, the conventional

method picks the wrong signal as the atmospheric one.

To circumvent this possibility, an adaptive algorithm

(Anandan et al. 2005) is used instead, which selects the

desired atmospheric signal peak using some predefined

criteria for parameters such as the Doppler window, the

wind shear threshold, and the signal-to-noise ratio based

on spatial and temporal continuity. As a result, the

adaptivemethod can pick the desired atmospheric signal

in all such cases (noisy regions and presence of multiple

peaks) where the conventional moments estimation

algorithm fails.

In the adaptive method algorithm, a Doppler window

is fixed, typically with a width equal to 20% of the entire

Doppler axis width. As a first step, the mean Doppler

frequency of the atmospheric signal peak, after removal

of the clutter, is identified for the first range gate. For the

second range gate, the search to locate the signal peak is

carried out within the fixed Doppler window centered

on the mean Doppler frequency of the first range gate,

whose SNR is above 7dB (and below max SNR). For the

third range gate, the Doppler window is centered on

themeanDoppler frequency of the signal identified for the

second range gate, and so on. This process is repeated until

the last range gate, having provided a predefined Doppler

window for the identification of the signal. More details on

this algorithm are given in Anandan et al. (2005).

FIG. 3. Normalized mathematical parameters: (a) original power

spectrum, (b) gradient, (c) curvature, (d) asymmetry, (e) clutter

score, (f) atmospheric score, (g) total score (clutter score is sub-

tracted from atmospheric score), and (h) processed power

spectrum.
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3. Results and discussion

The power spectrum of a single range gate, where the

clutter is dominating over the atmospheric signal, is cho-

sen for explaining the FL processing technique. Figure 3

shows the normalized parameters. The original power

spectrum, where strong ground clutter (GC) is present at

the zero frequency and the desired weak atmospheric

(atm) signal is located to its left, is shown in Fig. 3a. The

absolute gradient calculated for this spectrum is shown

in Fig. 3b. The value of the gradient is small at the peak

portion of the clutter and atmospheric signal and large at

their edges. The curvature calculated for all the spectral

points is shown in Fig. 3c. The value of the curvature at

the peak of the clutter is smaller (a more negative value)

compared to the value at the peak of the atmospheric

signal. Further, it is larger (positive value) at the edges of

the clutter compared to the value at the edges of the

atmospheric signal. The asymmetry computed for all

the points in the spectrum is shown in Fig. 3d. This is the

absolute value of the difference between the positive

(1f) and negative (2f) Doppler frequency points, lo-

cated on either side of the zero frequency point.

Figures 3e and 3f show the clutter score and the atmo-

spheric signal score obtained by the FL processing

technique. The clutter score is large where the clutter is

actually present and the atmospheric score is large

where the atmospheric signal is actually present. Finally,

we subtract the clutter score from the atmospheric score

and the resultant atm–GCs shown in Fig. 3g. From this

figure we can observe that the clutter-dominated portion

of the spectra becomes negative and the atmospheric

signal-dominated part is positive. The area where these

values are negative is replaced with random noise values

in the original spectrum (Bianco and Wilczak 2002).

Finally, the processed-cleaned spectrum is shown in

Fig. 3h.

Figure 4 shows power spectra for three different range

gates presenting different types of clutter contamina-

tion of the backscattered signal. The original power

spectrum, the processed spectrum using the conven-

tional method, and the processed spectrum using the

FL algorithm are represented by solid, dotted, and

dashed lines, respectively, in all three panels of the

figure. In the top panel the clutter and atmospheric

signals are close to each other and the clutter signal is

stronger compared to the atmospheric signal. In the

middle panel, the clutter signal is overriding the at-

mospheric signal. In the bottom panel, the clutter and

atmospheric signals are close to each other and their

powers are almost equal. In all three cases, the con-

ventional method with five-point DC removal does not

completely eliminate the clutter, as can be seen in the

figure. However, it can be seen that the FL algorithm

has eliminated the clutter completely, leaving only the

atmospheric signal.

FIG. 4. Example spectra where atmospheric signal and clutter overlap.
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Figure 5 shows the range–Doppler spectra for thewest

beam, observed by the radar at 1700 local time (LT)

7 August 2013. The left panel shows the original spectra,

the middle panel shows the processed spectra using the

conventional five-point DC removal method, and the

right panel shows the processed spectra using the FL

technique. The mean Doppler shift estimated using the

conventional moments estimation method and the

adaptive moments estimation method are shown as

dashed and solid lines, respectively, on the convention-

ally processed data. In the right panel, the solid line in-

dicates the mean Doppler shift estimated using the

adaptive moments estimation method. From the figure,

it is evident that the conventional method with five-

point DC removal still leaves a portion of the clutter

signal that is closer to the atmospheric signal in some

range gates. Further, it can also be seen that even if we

apply the adaptive moments estimation algorithm to the

conventionally processed data, it is difficult to pick

the atmospheric peak due to the following reasons: (i) the

clutter signal amplitude is still stronger compared to the

atmospheric signal and (ii) both are very close to each

other. However, in the FL-processed spectrum (right

panel), the clutter is completely eliminated and thus the

adaptive moments estimation algorithm can pick the

atmospheric signal peak, based on the knowledge ob-

tained from the data in the previous range gate. As a

result, themeanDoppler velocity can be estimatedmore

accurately.

A comparison plot between the wind profiles derived

by the radar (processed by the FL method as well as

conventional method) for the same data that are used in

FIG. 5. West beam: (left) the original spectra for all range gates, (middle) processed spectra using the conventional five-point DC

removal method, and (right) processed spectra using the FL technique. The mean Doppler shift estimated using the conventional mo-

ments estimationmethod and the adaptivemoments estimationmethod are shown as dashed and solid lines, respectively, on the processed

data in the middle panel.
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Fig. 5 and the collocated GPS radiosonde (GPS RS) is

shown in Fig. 6, where we note that the fuzzy-derived

winds are in good agreement withGPSRS–derivedwind

velocities. The left and right panels illustrate the zonal

and meridional wind velocities, respectively. To verify

the validity of this method, we tested the FL tool on the

radar data over a large number of observations available

over a time period of 10 months. For this extended data-

set, scatterplots of the zonal (U) and meridional (V)

wind components were constructed, showing the com-

parison between winds derived from the GPS RS and

those from RWP using 1) the conventional processing

method with five-point DC removal and conventional

moments estimation, 2) the conventional processing

method with adaptive moments estimation, and 3) the

FL processing method with adaptive moments estima-

tion (Figs. 7–9, respectively, where solid lines in all plots

are the best-fit linear interpolation of the data). It may be

noted that the correlation coefficients for the zonal- and

meridional-derived winds are 0.72 and 0.68, re-

spectively, in the first case (Fig. 7); 0.83 and 0.78, re-

spectively, in the second case (Fig. 8); and 0.95 and 0.90,

respectively, in the third case (Fig. 9). From this com-

parison it is evident that the FL method combined with

the adaptive moments estimation algorithm is efficient

at identifying the real atmospheric signal and deriving

spectral moments.

4. Conclusions

We tested a tuned fuzzy logic method to remove

contaminated signal from the data collected by VHF

active phased array radar during 2013. Results from this

study demonstrate that this method is successful at re-

moving the clutter signal in the received signal. The

combination of FL and adaptive moments estimation

methods reduces clutter contamination and effectively

identifies the desired signal. We verified that the

FIG. 6. Wind velocity components U and V derived using GPS RS (solid lines) and radar observations. Radar

winds are processed using the conventional method with conventional moments estimation (dashed lines), con-

ventional method with adaptive moments estimation (dashed–dotted lines), and FL method with adaptive mo-

ments estimation (dotted lines).
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proposed method is able to effectively separate the

atmospheric signal, even when clutter and atmospheric

signals are overlapping each other, resulting in more

accurate estimations of wind speeds compared to

the conventional processing method. We tested this

method on a 10-month-long dataset and the results

are found to be satisfactory. The wind velocities de-

rived using this method are compared with the collo-

cated GPS radiosonde, yielding very good correlation

and suggesting that the method presented in this study

is effective.
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APPENDIX

Fuzzy Logic Membership Functions and Rules

Three distinct membership function types are used:

Gaussian, P shaped, and trapezoidal, defined as follows:

Gaussian membership function:

f (x;s, c)5 exp

"
2(x2 c)2

2s2

#
.

FIG. 7. Scatterplot of theU andVwind components showing the correlation betweenwinds derived fromGPSRS

and those derived from radar. Radar winds were processed using the conventional method with conventional

moments estimation.

FIG. 8. Scatterplot of theU andVwind components showing the correlation betweenwinds derived fromGPSRS

and those derived from radar. Radar winds were processed using the conventional method with adaptive moments

estimation.
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P shaped:

This is a spline-based curve, so named because of

itsP shape. The membership function is evaluated at

the points determined by the vector x:

f (x; a,b, c,d)5

8>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>:

0, x# a

2
�x2 a

b2 a

�2
, a# x#

a1 b

2

1-2

�
x2 b

b2 a

�2

,
a1 b

2
# x# b

1, b# x# c

1-2
�x2 c

d2 c

�2
, c# x#

c1 d

2

2

�
x2 d

d2 c

�2

,
c1 d

2
# x# d

0, x$d

9>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>;

.

Trapezoidal:

f(x; a, b, c, d)5max

�
min

�
x2 a

b2 a
, 1,

d2 x

d2 c

�
, 0

�
.

These membership functions are shown in Tables

A1 through A7.

More membership functions and parameters are

given in Tables A8 through A13.

a. Clutter recognition algorithm

For all the mathematical parameters (gradient, dis-

tance, asymmetry, SNR, curvature, skewness) and clutter

output, Gaussian membership functions are computed

and the shape depends on parameters c and s, which

represent the center and width of the curve, respectively.

Parameter values (c and s) and rules depend on signal

characteristics and site location.

CLUTTER RULES

1) If the distance from zero radial velocity is small and

curvature is negative, then clutter is large.

2) If the gradient is small and distance from zero

radial velocity is small and asymmetry is not

large and curvature is negative, then clutter

is large.

3) If the gradient is small and distance from zero radial

velocity is large and asymmetry is large and SNR is

large and curvature is negative and skewness is not

zero, then clutter is small.

4) If the distance from zero radial velocity middle and

SNR is large and curvature is zero, then clutter

is small.

FIG. 9. Scatterplot of the U and V wind components showing the correlation between winds derived from GPS RS

and those derived from radar. Radarwinds were processed using the FLmethodwith adaptivemoments estimation.

TABLE A1. Gradient membership functions and parameters used

for the clutter recognition.

Membership function Function Parameter Parameter

Small Gaussian s 5 110 c 5 13.26

Middle Gaussian s 5 210 c 5 392

Large Gaussian s 5 300 c 5 1002

TABLE A2. Distance membership functions and parameters used

for the clutter recognition.

Membership function Function Parameter Parameter

Small Gaussian s 5 7.5 c 5 2.5

Middle Gaussian s 5 199 c 5 247

Large Gaussian s 5 437.5 c 5 1000
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5) If the asymmetry is not large and SNR is not large

and curvature is not negative and skewness is not

zero, then clutter is small.

6) If the gradient is large and asymmetry is small and

curvature is positive, then clutter is small.

7) If the gradient is middle and distance from zero

radial velocity is middle and asymmetry is not small

and SNR is not small and curvature is negative, then

clutter is small.

8) If the asymmetry is large and SNR is large and

curvature is negative, then clutter is small.

9) If the gradient is large and distance is small and

asymmetry is large and SNR is small and curvature is

negative, then clutter is large.

b. Wind (atmospheric signal) recognition algorithm

In the wind recognition algorithm, the gradient, SNR,

asymmetry, distance, and wind output are computed

using Gaussian membership functions. For computing

the curvature, (negative and positive) theP-shaped (the

parameters a and d locate the left and right, respectively,

base points or ‘‘feet’’ of the curve; the parameters

b and c set the left and right, respectively, top point or

‘‘shoulders’’ of the curve) and trapezoidal-shaped (the

parameters a and d locate the feet of the trapezoid and

the parameters b and c locate the shoulders) member-

ship functions are used.

WIND (ATMOSPHERIC SIGNAL) RULES

1) If the gradient is small and curvature is negative and

asymmetry is large and distance is large, then wind

is large.

2) If the gradient is middle and SNR is small and

curvature is positive and asymmetry is small and

distance is large, then wind is middle.

3) If the gradient is small and SNR is large and curvature

is negative and asymmetry is small, then wind is small.

4) If the asymmetry is small and distance is small, then

wind is small.

5) If the gradient is middle and distance is small, then

wind is small.

6) If the gradient is small and SNR is small and distance

is small, then wind is small.

7) If the curvature is not negative and gradient is not

small and asymmetry is small, then wind is small.

TABLE A3. Asymmetry membership functions and parameters

used for the clutter recognition.

Membership function Function Parameter Parameter

Small Gaussian s 5 130 c 5 0

Middle Gaussian s 5 170 c 5 349

Large Gaussian s 5 380 c 5 1000

TABLE A4. SNR membership functions and parameters used for

the clutter recognition.

Membership function Function Parameter Parameter

Small Gaussian s 5 4.717 c 5 1.09 3 10213

Large Gaussian s 5 834.6 c 5 989.9

TABLE A5. Curvature membership functions and parameters used

for the clutter recognition.

Membership function Function Parameter Parameter

Negative Gaussian s 5 840 c 5 21000

Zero Gaussian s 5 288 c 5 334

Positive Gaussian s 5 274 c 5 994

TABLE A6. Skewness membership functions and parameters used

for the clutter recognition.

Membership function Function Parameter Parameter

Zero Gaussian s 5 10 c 5 0

TABLE A7. Clutter output membership functions and parameters

used for the clutter recognition.

Membership function Function Parameter Parameter

Small Gaussian s 5 212.3 c 5 0

Middle Gaussian s 5 212 c 5 503

Large Gaussian s 5 212 c 5 997

TABLE A8. Gradient membership functions and parameters used

for the wind recognition.

Membership function Function Parameter Parameter

Small Gaussian s 5 300.2 c 5 0

Middle Gaussian s 5 412.2 c 5 600

Large Gaussian s 5 712.2 c 5 1000

TABLE A9. SNR membership functions and parameters used for

the wind recognition.

Membership function Function Parameter Parameter

Small Gaussian s 5 9.43 c 5 1.1 3 10213

Large Gaussian s 5 800 c 5 10 000

TABLE A10. Curvature membership functions and parameters

used for the wind recognition.

Membership

function Function a b c d

Negative P shaped 2765 2190 2185 5.3

Positive Trapezoidal

shaped

20.051 339 1030 2400
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Membership function Function Parameter Parameter
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