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1. INTRODUCTION

One of the promising methods of remote diagnos�
tics of shallow water inhomogeneities is low�frequency
small�mode acoustic tomography [1–3]. Its imple�
mentation is related to selective excitation and recep�
tion of small�mode acoustic signals. The sensitivity of
the method is mainly determined by the quality of
such selection. Radiator arrays where amplitude�
phase distributions required for excitation of corre�
sponding modes are created served as an effective
instrument for generation of small�mode signals. The
mode composition of the radiated fields at a specified
position of the array in a waveguide depends on the
method of excitation of individual radiators. When
moving away from the antenna, the losses attributed to
the interaction of individual modes with the bottom
and their scattering at the wind�induced waves on the
free surface start playing an important role in the mode
spectrum formation. The limitation of the antenna
aperture, as well as oscillations of the radiators in hor�
izontal planes owing to underwater flows, yields an
undesirable broadening of the mode spectrum when
unnecessary (parasitic) modes are actively excited
along with the necessary modes.

A numerical analysis of peculiarities of small�mode
field generation in a shallow sea for the array with
deflecting radiators was done in [6–8]. It is shown that
radiator oscillations yield anisotropy of the radiated
mode composition in a horizontal plane and a depen�
dence of the intensities of individual modes on the
direction of their propagation. The present work,
which is a continuation of these investigations, studies
potential possibilities of forming an assigned mode
composition of the field in a shallow sea related to an
appropriate selection of an acceptable way of sound
source excitation. In particular, it has solved the prob�
lems of determining excitation coefficients providing
for the maximal total intensity of a specified group of

modes at a given point of a waveguide, the minimal
intensity of parasitic modes, the maximal ratio of
intensities of the given groups of modes, etc. This work
can be also considered as a development of [9], where
some problems of optimization of the waveguide field
mode composition were solved.

2. MODE REPRESENTATION OF THE FIELD 
OF A GROUP OF INDEPENDENT RADIATORS

Consider an antenna array consisting of K inde�
pendent point monochromatic radiators of the
sound with the frequency  positioned at the points

, . Such a collective source
can be written as

where  is the delta function and  is the complex
excitation coefficient of the kth radiator. For the spec�
tral amplitude of the total field generated by the
antenna array at the observation point 
positioned at the distance  in the direction of the unit
vector  in a horizontal plane, we have an approxi�
mate representation in the form of the sum of 
weakly attenuating modes,

(1)

Here  is the normalized profile of the
jth mode,  is the spectral number, and

 is the attenuation decrement of the jth
mode [10]. When deriving Eq. (1) in [6], it was
assumed that the deflection of sources in the horizon�
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tal planes from the origin  are negligible,

 for all  and . At that,
the mode amplitudes

(2)

depend on the frequency , the excitation coefficients

, the coordinates of the sources , and the direc�
tion  to the observation point in a horizontal plane
(the asterisk means complex conjugation). The inten�
sity of the jth mode at the point  is determined by the
equation

(3)

Introducing into consideration the complex unitary

space  (above the field of complex numbers) with

the scalar product  and the norm

, we write amplitudes (2) in the form of

scalar products  and mode inten�

sity (3) at the points  as

(4)

Here the vectors are ,  ≡

.

3. OPTIMIZATION OF THE MODE 
COMPOSITION OF THE FIELD

During all statements of the problems of optimal
field generation, we will proceed from the fact that the
total power of the sources feeding the radiators does
not exceed the specified value. We will denote the set

of all vectors of excitation coefficients 

at which this condition is fulfilled as £ = ,

where  is the specified number.

Let us consider the direction  in a horizontal
plane and the observation point  posi�
tioned in this direction from the source at the distance

 and the depth . Assume that, according to the
content of the problem to be solved, the set of all
modes is divided at the given point into two classes.
The modes of the first class are considered useful;
those of the second class, useless (parasitic). Corre�
sponding sets of mode indices will be denoted as M
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and L. Denote (total) intensities (4) of useful and par�
asitic modes at the observation point as

(5)

Let us consider the following three problems of opti�
mization of the mode composition of the field related
to the selection of excitation coefficients of radiators:

(6)

(7)

(8)

The M�problem (6) of the generation of the field
with the maximal intensity of useful modes at the point

. If the set of useful modes M consists of a number of
the only mode  the vector of the solution of this

problem  will be proportional to the vector :

. (9)

Here  is the arbitrary real number. If the set M con�

tains several numbers, the vector  in the general

case is not proportional to the vectors  for the
modes entering M. In this case, as well as in the case of
radiator deflections in the horizontal planes when

mutual orthogonality of the vectors  is bro�

ken, the vector  can intensively excite parasitic
modes as well.

The L�problem (7) on the maximal suppression of
parasitic modes at the point . Let us denote its solu�

tion as . If the set L contains the number of the only

mode , any vector  (in addition to a zero one) that

is orthogonal to the mode vector  will serve as a
solution and the corresponding optimal value of the

functional will be . If L contains several

numbers, the optimal vector  in the general case is

not orthogonal to the vectors  of the modes

entering L and  > 0. Since useful modes do
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their intensities in the general case is not the maxi�
mum possible one. In particular, it is knowingly lower
than that in the M�problem.
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The ML�problem (8) of distinguishing of useful
modes against the background of parasitic ones belong
to the optimization problems since the functional

, which is to be optimized in it, is two�

dimensional. We will call the vector  an unimprov�
able Pareto�solution (US) of the problem [11] if there

is no excitation vector  that simultaneously increases
the intensities of useful modes in the case of a nonin�
creasing intensities of the parasitic modes or which
increases the latter in case of a nondecreasing useful
mode, i.e., for which the following set of inequalities
holds:

In the general case, the set of all USs to problem (8) is

infinite. Let  be an arbitrary US. It is clear that

. Taking this into

account, let us introduce the vector 
characterizing the quality of a US with the compo�
nents

(10)

and the scalar (defect)

(11)

Each of the introduced parameters (10) and (11)
takes on values at the section [0, 1]. For example,

= (0.9, 0.8) (defect ν = 0.15) means that the

intensity of useful modes  for this excitation

vector  is 90% of the maximum possible one ,

and the intensity of interfering modes  is

100/0.8 = 125% of the minimum possible one .

The closer both components of the vector  to 1, the
higher the quality of the solution and the smaller the
total defect . However, there can be no solution with
a zero defect though the solution with a minimal
defect usually exists.

It is clear that the characteristics of (10) and (11)
can be calculated not only for US but also for an arbi�

trary excitation vector . The existing set Γ of all

points  on the plane ( ) is a subset of the

square . The boundary points of  (marked
with a bold line in Fig. 1) for which displacements in
the direction of growth of any of the coordinate
deduces from the set  are the only ones that corre�
spond to the unimprovable solutions; moreover, a US
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with a minimal defect lies at the line of the level
 with a maximum possible value of the

constant c (a dashed line in Fig. 1). Different USs for
problem (8) can be found using extremum problems
with the scalar functional associated with it. Consider
examples of such problems.

Ratio�functional

(12)

The main drawback of such a functional and the USs
to problem (8) associated with it is attributed to the

fact that the maximum of  can be reached at small
absolute values of the numerator owing to even smaller
values of the denominator (in Fig. 1 these USs are
observed in the lower part of a bold curve, where

). When this method of antenna array excita�
tion is used, its resistance to radiation is mainly repre�
sented by a reactive component and the antenna
weakly excites not only interfering, but also useful,
modes (a superdirective antenna).

Difference�functional

(13)

A nonnegative number  is an example of the func�
tional. In particular, at  problem (13) transforms
to (6) or to (7) at  and the case of  corre�
sponds to the difference of intensities of useful and
parasitic modes. With an increase in , the optimal

value of the functional  decreases and at some

value of  vanishes. This  value coincides with the
optimal functional in problem (12), and a correspond�

ing vector  simultaneously solves problem (12)
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(A.6.4). It yields the following equivalent statement of
problem (12):

(14)

The quality of the solution  to problem (13) and its

defect depend on  , . This can

be used when selecting the parameter . For example,
the value at which the defect of the problem solution

 is minimal can be taken as . It yields the fol�
lowing version of the problem statement:

(15)

Problem (13) can be considered as a result of regu�
larization of the �problem when additional limita�
tions are imposed on the reactive resistance of the
antenna or on the total intensity of all modes [14]. For

this, a stabilizer  is introduced and problem (7) is

substituted by the problem .

In particular, when selecting the intensity of useful modes

 as a stabilizer, we get problem (13)

with .

Problems with limitations

Since it is useless to minimize the total level of par�
asitic modes below the level of additive waveguide
noises, the only alternative to (8) is the following prob�
lem:
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where the problem parameter  is determined by the
intensity of additive noises. Problem (16) can be
approximately solved, e.g., by using the penalty
method [12] by maximizing the auxiliary functional

, where  is the

penalty for violation of the inequality .

The function  =  where  > 0
is the constant determining the rate of the penalty
growth, can be taken, for example, as a penalty func�
tion.

4. NUMERICAL SIMULATION

When numerically solving the problems set forward
in the previous section, we will use an observation typ�
ical for the Barents Sea. Consider a channel with a
homogeneous path with the depth H = 0.3 km, a two�
layer absorbing bottom, and an underlying half�space.
The characteristics of the first bottom layer are as fol�
lows: the thickness is 0.005 km, the velocity of longitu�
dinal waves is 1.430 km/s, the density is 1.6 g/cm3, and
the coefficient of attenuation of longitudinal waves is
0.05 dB/(km Hz). The characteristics of the second
later are as follows: the thickness is 25 m, the velocity
of longitudinal waves is 1.520 km/s, and the attenua�
tion coefficient is 0.08 dB/(km Hz). The velocity of
longitudinal waves in the underlying half�space is
2.5 km/s, the density is 2.2 g/cm3, and the attenuation
coefficient is 0.08 dB/(km Hz). The channel hydrol�
ogy for the summer observation conditions is demon�
strated in Fig. 2. It also shows the plots of the first five
modes for the frequency  Hz. The antenna
radiators are positioned at the waveguide height every
half wavelength apart,  m. In horizon�
tal planes, some antenna elements can regularly and
randomly be deflected from their initial positions
owing to underwater flows. Antennas with different
sizes will be used in the experiments, namely, a long
antenna ( , ), a medium�size antenna
( , ), and a short antenna ( ,

). Here  is the relative (with
respect to the channel depth) length of the antenna.
Here and hereinafter, the level  of the upper
antenna radiator will be considered as the depth of the
antenna immersion. The observation points will be
taken at different depths at the horizontal distance
from the antenna  km.

To evaluate the quality of the proposed solution 
to problem (8), in addition to calculation of the vec�

tor  and the ratio , we will compare it with a
widely used mode method of antenna excitation
when the vector of excitation coefficients is propor�
tional to the profile of one of the useful modes:

. For that, we calculate
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the ratio of the mode intensities corresponding to the
compared vectors of antenna excitations:

(17)

If the vector  is an absolute characteristic of the

vector  performing its comparison with all possible

ways of antenna excitation, the vector  is only a

relative characteristic that compares  with a concrete

vector . The coefficient  does not usually
exceed 1 for any US. In problems with only one useful
mode, i.e., at   and in the case of a vertical
antenna, the coefficient  does not also exceed 1 and,
at that, . If the set  contains more than one
element or its individual radiators diverge from the
vertical axis the, as a rule, , since in the case of
the mode method of excitation only the intensity of
the mode  turns out to be high, whereas all other
modes are weakly excited owing to their approximate
orthogonality at the antenna array aperture.

Note that the field is often optimized at the expense
of losses in the useful mode intensity (as compared to
the mode method of excitation). This loss can, in prin�
ciple, be compensated by a corresponding increase in
the total power of the sources getting, as a result, the
field with the same intensity of useful modes, the
intensity of parasitic modes being lower.

The parameters of different USs are listed in
Tables 1–11. The lower rows of the tables give the level
of the observation point, and the captions show the
dimensions and the depths of the antennas. The first
rows of the tables list the type of excitation (the mode
vector, the solution of M� or L�problems or that of
problem (13), respectively). The values of the compar�
ison parameters , , and J obtained for a given type
of excitation are listed in a corresponding row of the
tables.

4.1. Optimization of a Vertical Antenna

4.1.1. Distinguishing of mode 1. Consider the prob�
lem of distinguishing useful mode 1 against the back�
ground of parasitic modes with numbers 2–9, i.e.,
problem (8) for ,  {2–9}. Let is position the

observation points at the levels  km,

 km. The first of these levels was close to the
zero of the amplitude (node) of mode 1; the second
one, to its extremum (antinode) (see scheme in Fig. 3).
Since there is only one useful mode in this case, the
solution of the M�problem coincides with mode 1:

. Let us position the antennas in a
waveguide so that their midpoints are near the anti�
node of mode 1 (the corresponding antenna depths
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are 0.05 km for a long antenna, 0.12 km for a
medium�size antenna, and 0.15 km for a short
antenna). The results of the solution of different
optimization problems for the described configura�
tions are listed in Tables 1–3.

As is apparent from Table 1, owing to optimiza�
tion in the case of a long antenna, it is possible to sub�
stantially lower the intensity of parasitic modes at a
slight decrease in the parasitic mode intensities and
drastically increase the ratio of J. This is valid within
a wide range of observation point depths, but the case
in which the observation point is far from the antin�
ode of the useful mode where the relative intensity of
parasitic modes during the mode method of excita�
tion can be rather high (the left one in Table 1) is of
particular interest. In case of a long antenna, both the

solutions to  obtained from problem (13) with spe�
cially selected values of  and the solutions to the

problem  (Fig. 4) are of interest from the practical
point of view. High controllability of the antenna is
attributed to the fact that the condition of orthogo�
nality of different modes with respect to one another
is well�met on its aperture. The optimal solutions
present themselves as variations of the mode solution

 (Fig. 5). Since a long antenna occupies the
greater part of the vertical waveguide cross section,
the position of its center does not actually affect the
optimization quality.

Cβ

�

β

LC
�

mod1C
�

With shortening of the antenna, an excess of the
intensities of useful modes over parasitic ones for the
mode method of excitation rapidly decreases, which is
related to the brake of mode orthogonality properties
on the antenna aperture. Objectively, this creates
interest in performing optimization. Unfortunately,
the calculations show that the possibilities of optimi�
zation also rapidly decrease with a decrease in the
number of radiators. Thus, in the case of a medium�
size and short antennas (Tables 2, 3), we managed to
increase the ratio J only by 30–80% as compared to
the mode method of excitation, 20–30% of the useful

mode intensity being lost. The solution  for shortLC
�

Table 5. Distinguishing of mode 3. A medium�size anten�
na, depth 0.05 km

rM rL J rM rL J

1 1 2.0 1 1 6.2

0.99 0.92 2.2 0.97 0.58 10

0.73 0.44 3.4 0.85 0.29 18

… …

3 × 10–3 5 × 10–2 0.1 7 × 10–5 10–2 0.04

 = 0.08 km  = 0.18 km
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Table 6. Distinguishing of mode 3. A short antenna, depth
0.05 km

rM rL J rM rL J

1 1 1.74 1 1 1.66

0.99 0.91 1.89 0.99 0.92 1.77

0.83 0.66 2.18 0.87 0.73 1.97

… …

2 × 10–5 2 × 10–3 0.02 2 × 10–6 10–4 0.03
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Table 7. Distinguishing of modes 2 and 3. A long antenna,
depth 0.05 km

rM rL J rM rL J

1 1 19 1 1 10.7

1.21 0.06 379 1.0 1.0 10.7

1.21 0.03 787 0.98 0.47 22

1.20 0.002 104 0.97 0.1 96

… …

0.99 2 × 10–15 3 × 1016 0.4 4 × 10–15 1 × 1015

 = 0.08 km  = 0.18 km
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Table 8. Distinguishing of modes 2 and 3. A medium�size
antenna, depth 0.05 km

rM rL J rM rL J

1 1 3.9 1 1 6.35

1.3 0.26 20 1. 1. 6.33

1.3 0.22 23 0.97 0.58 10.6

1.29 0.19 26 0.79 0.25 20.4

… …

3 × 10–5 10–5 11 2 × 10–4 0.01 0.09
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Table 9. Distinguishing of modes 2 and 3. A short antenna,
depth 0.05 km

rM rL J rM rL J

1 1 3.3 1 1 1.67

1.01 0.95 3.5 1. 1. 1.67

0.98 0.78 4.1 0.95 0.83 1.9

0.82 0.51 5.4 0.87 0.73 1.99

… …

3 × 10–5 10–5 9 2 × 10–6 10–4 0.03

 = 0.08 km  = 0.18 km
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antennas is, as a rule, of no practical interest (even
when the maximum value of the ratio  is reached),
since the intensity of a useful mode in this case makes
only a small fraction of the intensity implemented
during mode excitation. At small antenna sizes, the
efficiency of optimization, in addition, depends on the
antenna position in a waveguide.

4.1.2. Distinguishing of mode 3. Consider the prob�
lem of distinguishing useful mode 3 against the back�
ground of parasitic modes with numbers 1–2, 4–9,
i.e., problem (8) for ,  {1–2, 4–9}. Con�
trary to the problem solved in Section 4.1.1, useful
mode 3 in a waveguide has three intensity levels and we
can trace in detail the dependence of the optimization
efficiency on the mutual positioning of the antenna
and the observation points. Let us position the latter at

the levels  and  km and place the
antennas at the depth of 0.05 km near the upper anti�
node of mode 3 (Fig. 6). As in the previous case, the
most useful mode ( ) is chosen as a reference
mode. The solution of the M�problem also coincides

here with the mode one, .
The versions of the solution to the considered prob�

lem for the antennas with different lengths are listed in
Tables 4–6. It is apparent from Table 4 that, in the case
of a long antenna that covers the entire waveguide, the
quality of optimization does not actually depend on
the position of the observation point. For a medium�
size antenna asymmetrically positioned in a waveguide
with respect to the useful mode antinodes, the para�
sitic modes at the low observation points are sup�
pressed more effectively as compared to that at the
upper point. In the case of a short antenna, the opti�
mization effect is negligible in the entire waveguide
space.

4.1.3. Distinguishing of modes 2, 3. Consider now
the problem of distinguishing useful modes with num�
bers M = {2,3} against the background of parasitic
modes with the numbers L = {1, 4–9}. The observa�
tion points were the same as those in the previous

problem at the levels  and  km far
to the antinodes of mode 3 (Fig. 7). The first level also
corresponded to the antinode of mode 2; the second
one, to the node of mode 2 and the antinode of mode 3.
The mode  was chosen as a reference mode.

Since now the solution  does not coincide, in the

general case, with the mode vector  an additional
row characterizing the mode method of excitation is
added to the table.

When solving the problem with many useful
modes, an evident drawback of the mode method of
excitation is attributed to the fact that only one
mode is efficiently excited in it, namely, the mode

, whereas all other modes (both useful and para�
sitic) are poorly excited on the antenna aperture
owing to their mutual orthogonality. When optimal

J

{ }3M = L =

( )1
0 0.08z =

( )2
0 0.18z =

0 3m =

mod3C
�

( )1
0 0.08z =

( )2
0 0.18z =

0 3m =

MC
�

mod3C
�

0m

methods of excitation are applied, a certain compro�
mise is reached when all useful modes are excited to
a sufficient degree, although the intensities of differ�
ent useful modes are different (Figs. 8–10). How�
ever, these intensities can be equalized during opti�
mization using the functional the intensities of dif�
ferent modes enter with different weights instead of
Eq. (5).

Table 10. Distinguishing of mode 1. The problem with ran�
domly oscillating radiators. A long antenna, depth 0.05 km

δr = 0.001 km

rM rL J rM rL J

1 1 2.65 1 1 216

1.07 0.87 3.26 1.06 0.58 397

0.99 0.17 15.4 1.05 0.25 919

0.91 0.03 70.5 1.02 0.13 1698

… …

0.75 1015 2 × 1015 0.76 6 × 10–16 2 × 1017

 = 0.05 km  = 0.19 km

δr = 0.002 km

rM rL J rM rL J

1 1 1.03 1 1 106

1.3 0.41 3.26 1.25 0.33 397

1.19 0.08 15.4 1.24 0.14 919

1.09 0.02 70.5 1.20 0.07 1698

… …

0.74 3 × 10–15 2 × 1015 0.76 6 × 10–16 2 × 1017

 = 0.05 km  = 0.19 km

mod1C
�

mod1C
�

MC
�

MC
�

1C
�

30C
�

3C
�

90C
�

LC
�

LC
�

z0
1( )

z0
2( )

mod1C
�

mod1C
�

MC
�

MC
�

1C
�

30C
�

3C
�

90C
�

LC
�

LC
�

z0
1( )

z0
2( )

Table 11. Distinguishing of mode 1. The problem with an
inclined antenna array. A long antenna, depth 0.05 km

α = π/4, δr = 0.002 km

rM rL J rM rL J

1 1 0.14 1 1 15.8

1.5 0.07 3.26 1.5 0.06 397

1.4 0.01 15.4 1.5 0.03 919

1.28 0.002 70.5 1.46 0.01 1698

… …

1.16 4 × 10–16 3 × 1014 0.16 10–15 1016

 = 0.05 km  = 0.19 km

mod1C
�

mod1C
�
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�
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�
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�
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�
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�
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1( )

z0
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The results of the simulation of the considered
problem are demonstrated in Tables 7–9. Comparing
the obtained data with the analogous ones given in
Sections 4.1.1 and 4.1.2, we can come to the conclu�
sion that, in the case of many useful modes, optimiza�
tion is more efficient. The reason is as follows: in this
case, for any observation point, there is a useful mode
the antinode of which is near this point. Consequently,
intensification of the total intensity of useful modes

during optimization takes place owing to this mode.
For example, the optimal vectors for the observation

point  are close to the vector  (Fig. 9); those for

the point , to the vector  (Fig. 11).

4.2. Optimization of an Oscillating Antenna

Consider the problems of optimization of the mode
composition of the field generated by a set of radiators
deflecting in horizontal planes. Let us return to the
problem from Section 4.1.1 on distinguishing of mode 1
against the background of all other modes, the prob�
lem parameters being the same (Fig. 3). It follows from
Eq. (9) that, for deflecting radiators, the optimal solu�

tions  even in case on one useful mode differ from

the mode ones . Thus, they are given in a separate
row in the next tables.

4.2.1. Random deflections of radiators. Random
deflections of individual radiators in a horizontal
plane will be simulated in the form 

 where {ξk, ηk, k = 1…K} are the
independent random quantities uniformly distrib�
uted at the section [0, 1], and  is the parameter
determining dispersion (a standard) of radiator
deflections. In this case, the mode intensities and
optimal excitation vectors depend of the radiator
deflections and, thus, they are random as well. This
is why the values listed in Table 10 should be consid�
ered as selected ones that correspond to the given
realizations of radiator deflections. In particular,
the ratios J in the case of a mode excitation method
and the coefficients ,  for the optimal solutions
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Fig. 3. A scheme of positioning of antennas and observation
points over the waveguide depth in the problem of distin�
guishing mode 1 against the background of modes 2–9.
Asterisks mark the positions of the radiators for three
types of antennas, rhombs mark the observation points:

no. 1—  km, no. 2—  km. Contrary
to parasitic modes, useful mode 1 is marked with a bold
line.
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ods of antenna excitation. A long antenna, depth

0.05 km, the observation point is  km (the left
one in Table 1).
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Fig. 5. Solutions to the problem of distinguishing mode 1
against the background of modes 2–9 normalized by

. From left to right: , , . A long antenna,

depth 0.05 km, the observation point is  km (the
right one in Table 1).
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are random. Moreover, the power ratios J for the
optimal solutions are no longer optimal, are deter�
mined only by a type of the solution and do not
depend on radiator deflections.

4.2.2. An inclined antenna. Regular deflections of
antenna array radiators from the vertical axis are sim�
ulated as follows:

Here  are the parameters that determine the
antenna inclination. The results of the solution of
this problem are listed in Table 11. Comparison of

/ /1 1

1 1
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2 ( 1), 2 ( 1),
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Fig. 6. A scheme of positioning of observation points in the
problem of distinguishing mode 3 against the background
of modes 1, 2 and 4–9 (Section 3.1). Asterisks mark the
positions of the radiators, rhombs mark the observation

points: no. 1—  km, no. 2—  km.
Contrary to parasitic modes, useful mode 3 is marked with
a bold line.
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Fig. 7. A scheme of positioning of antennas and observa�
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against the background of modes 1 and 4–9. Asterisks
mark the positions of the radiators; rhombs mark

the observation points: no. 1—  km, no. 2—

 km. Contrary to parasitic modes, useful
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Tables 1, 10 and 11 shows that the parameters of mode
tuning and the optimal solutions depend on the
antenna inclination. Moreover, as in the previous
problem, the ration of intensities of useful and inter�
fering modes J for the optimal solutions are deter�
mined only by the solution type and do not depend on
the antenna deflection (Figs. 12, 13).

CONCLUSIONS

The vectors  for an inclined antenna
depend on  and on the deflection of individual
radiators in the horizontal plane  (see Eq. (2)). As

( )
( )

,
0

m l rζ
�
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0r
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a result, the solutions to problems (6)–(16) also

depend on these parameters: . This
means that for the optimal fields to be generated the
radiator, excitation coefficients at different observa�
tion points should be chosen in a different manner
and for the optimal field composition to be pre�
served it is necessary to adjust the tuning depending
on the variations in the radiator positions. The last
condition imposes a limitation of the rate of solu�
tion of the corresponding optimization problems: it
is to be sufficiently high to provide for optimal tun�
ing in real time.
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modes 2 and 3 against the background of modes 1 and
4–9. Intensities (dB) of modes during mode  (the

upper plot) and optimal  (the lower plot) methods of
antenna excitation. A long antenna, depth 0.05 km, the

observation point is  km (the right one in Table 7).
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The numerical solution of the problems of optimi�
zation of the mode composition of a field in a shallow�
water oceanic waveguide set in Section 3 points to the
fact that a number of factors affect the efficiency of
optimization, i.e., a substantial increase in the ratio J
of useful and parasitic mode during preservation of the
useful mode level. First, these are the dimensions  of
the antenna array systems related to the waveguide
depth (for the radiators positioned every half�wave�
length). Second, this is the position of the observation
point with respect to antinodes and nodes of useful
modes. A general conclusion is as follows: optimiza�
tion is effective near the antinodes of useful modes at

.
In the case of a vertical antenna, optimal methods

of excitation are usually inferior to the mode ones as
far as intensities of useful modes  are concerned,
but are superior in the intensity ratio . As
for inclined antennas, optimal excitations are usually
superior to the mode ones in both parameters. In addi�
tion, contrary to the second ones vertical antennas are
characterized by stable values of J at variations in the
radiator positions.
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APPENDIX

This section gives a summary of the basic methods
of a numerical solution of problems (12) and (13).
Consider the problem

(18)

where M and L are the specified disjoint sets of mode

indices. Assume that at some value of  the functional
is positive. Then, with an increase in the norm of the

vector , the functional only increases. Thus, the

solution of the problem  in this case has the max�
imum possible norm . If the functional is not every�

where positive, the zero vector  at which the
functional is zero is one of the solutions to the problem.
Any methods described below in Sections A.1–A.3 can
be used for solving problem (18). It follows from the
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results of Section A.4 that the solution to problem (12)
can be reduced to the solution of the family of prob�
lems (13) over the parameter .

A.1. The Method of Conditional Gradient Descent

Taking into account the simplicity of an analytical
description of functionals (12) and (13), the methods
of gradient descent can be applied for solving corre�
sponding problems. For the gradient of the functional

 over the complex�conjugate variable , we have
the expression

Since the variable  does not change in the entire
space but only on a closed set £, the extremum should
be sought for using the method of a conditional gradi�

ent [12]. A new approximation  is found from the

old  according to the rule

(19)

where  is the normal�

ized value of the functional gradient at the point .
The scalar  is chosen from the condition

(20)

The initial step is ; then the step is fragmented
until condition (20) is met. The convergence of
sequence (19) to the problem solution and the conver�
gence rate depend on how successfully the initial vec�

tor  and the initial step  are chosen.

A.2. The Rayleigh Method

Problem (18) is closely connected with the
known classical problem from the spectral theory of
matrices [13] on stationary values of the Rayleigh
ratio. It is evident that in the theoretical analysis it is
sufficient to restrict oneself to the case of . Let

us write the functional  differently. Assuming

, , and , we
have

where  is the Hermite matrix on the order of 
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result, we obtain the following representation of the
functional

(21)

where  is the Rayleigh ratio for
the matrix α. If the functional maximum is positive,
the solution of the problem is always reached at the

boundary of the set £, where  and,
thus, owing to (21) the problem is equivalent to the
following one:

(22)

Hence, the solution to problem (18) can be obtained
from the theory of problem (22). Let us give the main
result of the latter. Let  be the maximal

eigenvalue of the Hermite matrix  and  be the

eigenvector with the norm  corresponding
to it. This vector is the solution to problem (22) and
the corresponding value of the functional is

A.3. The Lagrange Method

Considering the set of vectors 
to be linearly independent, let us consider problem (18)
for . Let us show that this solution is a linear com�

bination of the vectors . Let us construct the
Lagrange function

where  are the Lagrange correlation coefficients
(real numbers that are not simultaneously zero). For

the vector  to be optimal, it is necessary for the
Lagrange function gradient to be zero over the conju�

gate vector  (the Euler equation),

(23)

from which follows the above statement.

Thus, the solution to Eq. (18) can be sought in the
form

(24)
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2 2
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� � �
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0

max.
C C

R C
α

=

→
�

�

max 0µ >

α maxC
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max 0C C=
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1 max max 0.J C C= µ
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ζ
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+λ =

∑ ∑*

� � � � � �
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( ) ( )
max 0 ,m l

m l

m M l L

C C x y
∈ ∈

⎧ ⎫⎪ ⎪
= ζ + ζ⎨ ⎬

⎪ ⎪⎩ ⎭
∑ ∑

� � �

where  are complex expansion
coefficients normalized by the condition

(25)

Since  and , we get from Eq. (23) that
 and, thus, we can consider that  Then,

from Eqs. (23) and (24) we have

(26)

For a linearly independent set , all coeffi�
cients in zero vector expansion (26) are zero. Hence,
after substitution of Eq. (24) into Eq. (26), we get a set
of equations for the coefficients 

(27)

where . Introducing the coefficient vec�

tor  and a corresponding matrix of the coef�
ficients , we write set of equations (27) in a matrix
form

(28)

hence, it follows that  is the eigenvalue of the matrix
S and z is the eigenvector that meets normalization
condition (25). As follows from Eq. (26), the corre�
sponding value of the functional has the form

(29)

Thus, problem (18) is also reduced to the solution of
spectral problem (25)–(28) and the selection of one of
its solutions for which functional (29) is maximal.

A.4. Method of Reduction

This section shows how the problem of the maxi�
mum of the functional�ratio can be reduced to a fam�
ily of more elementary problems for the difference�
functionals. The method is based on the following
statement proved in [15].

Lemma. Let  be the functionals
continuous on a compact set K of the matrix space and

 be a positive number

{ }, | ,m lx y m M l L∈ ∈
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s x s y l L
∈ ∈

∈ ∈
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∑ ∑

( ) ( ),l m
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,Sz z= λ

λ

( ) 2 22 2
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Let us consider the extremum problems

(30)

(31)

Let  be the solution to problem (30) and  be the
solution to problem (31) .
Then

and, thus,  is the only solution to the equation
. The extrema of the functionals  and
 are reached at one and the same point,

namely . The solution to problem (31)
continuously depends on  at any finite section .

It follows from the lemma that it is possible to
reduce the solution of extremum problem (30) to the
solution of problem (31) for . The value of the
numerical parameter  required for it can be found
as the only solution to the equation . it is clear
that such a reduction can be efficient only when prob�
lems (31) are simpler to solve as compared to problems
(30), e.g., when the numerator and the denominator
of the functional J are linearly�quadratic functionals.
In this case, the functional Jβ is also a linearly�qua�
dratic one. Thus, the problem of searching for a global
extremum of the nonlinear functional J in the liner
space of a large dimensionality can be reduced to a
more elementary problem of searching for a global
extremum of a quadratic functional and a further solu�
tion of this equation with respect to one unknown
quantity that does not also require a hard computa�
tional burden.
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