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Abstract. When imaging with ultrasonic phased arrays, what do we actually image? What quantitative information is
contained in the image? Ad-hoc delay-and-sum methods such as the synthetic aperture focusing technique (SAFT) and
the total focusing method (TFM) fail to answer these questions. We have shown that a new quantitative approach allows
the formation of flaw images by explicitly inverting the Thompson-Gray measurement model. To examine the above
questions, we have set up a software simulation test bed that considers a 2-D scalar scattering problem of a cylindrical
inclusion with the method of separation of variables. It is shown that in SAFT types of imaging the only part of the flaw
properly imaged is the front surface specular response of the flaw. Other responses (back surface reflections, creeping
waves, etc.) are improperly imaged and form artifacts in the image. In the case of TFM-like imaging the quantity being
properly imaged is an angular integration of the front surface reflectivity. The other, improperly imaged responses are
also averaged, leading to a reduction in some of the artifacts present. Our results have strong implications for flaw sizing
and flaw characterization with delay-and-sum images.
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INTRODUCTION

The synthetic aperture focusing technique (SAFT) [1] and the total focusing method (TFM) [2] are commonly
used imaging algorithms used with phased array transducers. These methods are based on ad-hoc image formation
methods and do not offer much quantitative information about what flaw characteristics are being properly imaged.
To better understand these methods, we need to answer the following questions: can models provide an alternative
rational basis for imaging? What flaw properties are we imaging? What quantitative information is in the images?
Before we provide answers to these questions, a brief overview of SAFT and TFM will be given.

The synthetic aperture focusing technique, or SAFT, is an imaging algorithm that was originally developed for
scanning a single element transducer along a sample and collecting all of the pulse-echo signals. SAFT can also be
implemented with phased arrays by using the pulse-echo signals from each element to create an image that is
focused at every point in a 2-D grid of image points. The focusing is done by applying the appropriate time delays in
post-processing. An equation for a SAFT image can be given by

N
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where N is the number of elements in the array, X  is the position of the centroid of the n” element, Y is an image
point, and T'(X

The total focusing method, or TFM, works in a similar way. The primary difference is that TFM uses voltage
signals from all element pairs. A TFM equation can be written as

cn

Y) is the travel time between the n” element centroid and the image point.
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where, again, N is the number of elements, X, is the position of the centroid of the n transmitting element, X, is

the position of the centroid of the /” receiving element, and T is the travel time from the specified element centroid
to the image point Y .

TFM images are generally regarded as the “gold standard” for imaging since they are formed with all of the
possible element pairs in an array. However, like SAFT imaging, TFM imaging is an ad-hoc procedure formed
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directly from measured voltages so that the image is dependent on many other variables than the flaw itself, so it
cannot answer the fundamental questions posed above.

QUANTITATIVE IMAGING MEASUREMENT MODELS

This work will use a model-based approach to develop new quantitative imaging algorithms that generate images
that are a function of just flaw properties. We will explore the relationship between the new algorithms and
SAFT/TFM, as well as the physical optics far-field inverse scattering (POFFIS) approach. We will study the image
formation process to understand what SAFT and TFM are imaging, and we will create a software “test bed” to
simulate images from synthetic data using our new algorithm.
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FIGURE 1. Geometry for using a single element in pulse-echo (left) and for using an element pair in pitch-catch (right).

The imaging process will be developed as an inversion of an ultrasonic measurement model. Here, we will use
the Thompson-Gray measurement model with the Kirchhoff approximation, which will be suitable for the imaging
of small flaws. Schmerr et al. [3] also have developed a more general imaging algorithm by inverting a measurement
model of the Auld-type, which for small flaws reduces to the case we consider here. We will call imaging by the
inversion of measurement models of either type “imaging measurement models” or IMMs.

To keep the discussion simple we will only consider 2-D scalar problems where the Thompson-Gray
measurement model can be written as [4,5]

V(X,.X,,0)=s, (w)f)(”(xs,Yo,w)ﬂ”(x,,Yo,w)A(em;em,)-{ .,11 Pe \/—Sm‘kz} 3)
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which models the measured voltage, V(XS X, 03) , as a function of frequency, ®, for a sending element located at

X, and a receiving element located at X . This voltage is a function of the system function, s,(@w) [6], which
characterizes the electrical and electro-acoustic system effects, and the far-field scattering amplitude of the flaw,
A(e, ;e..). The [ﬁ(XS,YO,a)),IA’(Xr,YO,a))} terms are normalized pressure amplitudes for incident waves

scat
coming from the sending and receiving element (when it acts as a transmitter), respectively, and propagating to a
fixed point, Y,, near the flaw. The quantity /, is the length of an array element. The terms p, , ¢, , k, are the density,
wave speed, and wave number for the material surrounding the flaw, and p ,c , & are these same properties at the
receiving transducer. For the inspection of a flaw in a single medium, all of these quantities are identical. The terms
;¢ ky correspond to these properties for the flaw itself. Equation (3) is valid when the flaw is sufficiently small

so that the incident pressure field does not vary significantly over the flaw. It is this assumption that allows the
pressure amplitudes to be calculated at a single fixed point, Y,in the Thompson-Gray measurement model. If the
elements are each acting in a pulse-echo configuration radiating into the host material and we consider only the

specular reflections from the flaw surface as modeled by the Kirchhoff approximation [5], the measurement model
can be written as

V(X,.0) =5, (@) PX,.Y,,0)f 13 [ Ry () explik - Y'JdAY") )



where e is a unit vector in the incident wave direction (Fig. 1), and k =2k,e The position vector Y'is measured
from the fixed point, Y, and y.(Y') is the singular function defining the flaw surface. Note that in this small flaw
case the travel time from the element centroid to a general point, Y , near the flaw is given approximately by

T(X_,Y)=T(X_,Y,)+e-(Y-Y,)/c,. (5)
If we define the reflectivity of the flaw surface as
R(Y') = Ryyc(Y) (6)
where R,; is the normal incidence reflection coefficient between the flaw and host material,
¢y — P,C
R, = e e e 7)
P36 T Pr6y
the Fourier transform of the reflectivity can then be written as
R(K) = [ Ryyyc (Y explik - Y'IdA(Y"), (8)

which can be used to write Eq. (4) as

~ 2 —
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Equation (9) relates the measured voltage to the Fourier transform of the flaw reflectivity. Performing an inverse

Fourier transform will then give a pulse-echo image of the flaw reflectivity, /., (Y') , as
ViX,,o)
s (@[P(X,, Yy, o)

Since the division present in Eq. (10) can be contaminated by noise in real signals, a Wiener filter can be
implemented [6] to stabilize this process via

() =Ry, e (V) = | xpl—ik - Yk, (10)

V(X,,0)s, (@) P(X,, Yy o))

V,(X,.Y,,0)= . -
[ @IPX. Y0 [+ maxfs, @AY, 0

(In

letting Eq. (10) be written as

l
1, (Y= 87’;2 Y, w)exp[—ik - Y']dk. (12)

Equation (12) is an integration over k-space, but we can perform a change of variables so that the integration is over
frequency and element position instead. Performing the change of variables gives
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allowing Eq. (13) to be rewritten as
cos@ . ,
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Since we only have a finite range of frequencies and element positions the integration can be discretized:
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Equation (16) is what we will call the pulse-echo imaging measurement model. The quantity being imaged is the
reflectivity of the flaw surface, so the amplitude in the image is indeed a function of the properties of the flaw.

The pulse-echo imaging measurement model assumes that the same element acts in transmission and reception.
Instead of pulse-echo, we can consider the case where one element is used in transmission and the receiving element
is allowed to vary. This is known in seismology as the common source method [2]. In this case we can form an
image, I ,(Y',6.), of a generalized flaw reflectivity following very similar steps to the pulse-echo case [3]. If we

then integrate this common source image over a range of incident angles to all of the sending elements, we would
get an image, /,,,(Y') , formed using all combinations of elements acting in pitch-catch, which is the full matrix of

data. Equation (17) summarizes conceptually the steps in this case:
I1.,(Y',60)=R(Y";0, =fixed, 8, = varying)

' ’ (17)
I (Y) = [ 15 (Y',6,)d6),.
The full matrix imaging measurement model (see [ ] for more details of the derivation) can be written as
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where the division present can again be replaced with a Wiener ﬁlter.

RELATIONSHIP BETWEEN IMM AND SAFT/TFM

The imaging measurement models developed here are closely related to SAFT and TFM. In fact, we can show that
SAFT and TFM are essentially filtered versions of the imaging measurement models. A discretized, frequency
domain SAFT equation can be written as

Iowr (Y)= 2Re(Af§iV(Xm, w,)exp(—2io, T(X,, ,Y))j. (19)
If we rewrite the pulse-echo imaging measu:e:;r::lnt model as
1o (Y) = ZR‘{Af ZZV(XWCO Ve (X, Yo, @,) exp(=2iw, T (XWY))] (20)
with m
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and T (X Y) given by Eq. (5), we can see that the pulse-echo IMM reduces to SAFT when F,, =1. In a similar

cn

way, the full matrix IMM can be written as
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When F,,, =1 the full matrix IMM reduces to TFM:
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Essentially, SAFT and TFM are filtered versions of the pulse-echo and full matrix imaging measurement models
where

Ty (Y) = 1pp (Y5 Fpp = 1)
Ly (Y) = 1y (Y5 Fpy =1)
so that both SAFT and TFM do not compensate for system function or beam propagation effects in forming their

images and also ignore other geometrical and frequency dependent terms inherently present in forming an image of
the reflectivity of the flaw.

(25

RELATIONSHIP TO PHYSICAL OPTICS FAR-FIELD INVERSE SCATTERING
(POFFIS) IMAGING

The pulse-echo imaging measurement model is very similar to imaging with the physical optics far-field inverse
scattering (POFFIS) approach. POFFIS, as originally developed by Bojarski, related the three-dimensional
characteristic function of a scatterer to the Fourier transform of its far-field normalized scattering amplitude [7].
Imaging characteristic functions, however, is problematic due to the limited bandwidth and aperture of real
measurements. Cohen and Bleistein overcame this difficulty by introducing the singularity function of the flaw
surface (the same singularity function present in our IMMs) to make POFFIS a practical imaging method [8]. In his
POFFIS approach, Bleistein modeled the incident fields as those due to omnidirectional point sources. If we

similarly model the incident fields as point sources but with a far field directivity, D(Oc,m) , the measured voltage
(see Eq. (4)) can be written as

2k, 1, exp(2ik,R )
ir 2 R
Inverting Eq. (26) then gives a generalized POFFIS-style image, [/
c, j R V(X,, )
4rl,? —iws,(0)[D(O., )]
Comparing this imaging measurement model with POFFIS [8] shows that POFFIS includes the same propagation
distance correction factor, R, but neglects the system function and directivity effects. Thus, our imaging

V(X,,0)=s,(o) [D(8,, )] R(K). (26)
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measurement model can be considered to be a generalization of POFFIS that properly removes these system and
beam contributions to the formed image. In addition, our results extend POFFIS-style imaging to the full matrix
capture case.

SOFTWARE TEST BED

Since the Thompson-Gray measurement model relates the measured voltage to the far-field scattering amplitude
of a flaw, our imaging measurement models can also be written in terms of that scattering amplitude. For both the
pulse-echo and full matrix cases we find

1,(v)=2 %RZZmS,/ Ale,—e,. 0, )exp[—ik,, Yo, (28)

m=1 n=1

(c0s0,), (cosd)),

w;" (1+co0s®,) -
(R.S‘O )n (RrO )l _lwm (29)

c

-A(e ‘Y'].
These forms are particularly useful for setting up a “software test bed” where we can simulate flaw images. In
particular we can use the method of separation of variables [5, 9] to solve for these far field scattering amplitudes
“exactly” for a cylindrical inclusion, giving us a means to demonstrate what these methods actually image. An
example of a simulated scattering amplitude signal is shown in Fig. 2.

The signals in Fig. 2 were obtained by calculating the separation of variables expressions for the scattering
amplitudes from 0-20 MHz, with a cosine-squared window tapering the response to zero over the range 10-20 MHz.
This gave us the ability to simulate very wide band responses where the various wave contributions could be readily
identified. Signals from the front and back surfaces, for example, can be seen in Fig. 2 as well as a creeping wave

IFM(Y’)—Afo A, 2Re§:ii
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signal. Several reverberations of the back wall and creeping wave signals also exist but are small and outside of the
time window shown in Fig. 2. The creeping wave signals present are consistent with a wave that strikes the front
surface at a critical angle and then travels around the flaw at the wave speed of the flaw [10,11,12].

Simulations were done for cylindrical inclusions of varying properties relative to the host material. The
inclusions were located one inch away from a 32 element linear array with a 1mm pitch. Three cases will be shown
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FIGURE 2. Simulated scattering amplitude from cylindrical inclusion.
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FIGURE 3. Simulated images from a cylindrical inclusion with a wave speed ratio of 1.05.

here, defined by the ratios of wave speed and density between the flaw and the host materials. For a given case, the
wave speed ratio and density ratio will be the same. The wave speed ratio determines the relative position of features
in the images, while the density ratio influences the amplitudes of the features shown.

For weak scatterers, like the simulated inclusion shown in Fig. 3 (the transducer is located outside the
region imaged in the —z direction), we see the front surface is imaged properly and the back surface image is located
slightly in the wrong position due to the small difference in wave speed between the host and the flaw. Creeping
wave artifacts also exist (by “artifact” we mean features that are not being imaged properly), although they are not
seen here as they are outside the region where the image is displayed. For more realistic, strong scatterers, like the
inclusion imaged in Fig. 4, only the front surface is being imaged properly; the back surface and creeping waves are
artifacts.
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FIGURE 4. Simulated images from a cylindrical inclusion with a wave speed ratio of 1.5.

The back surface and creeping wave artifacts show up in the pulse-echo image, but for the full matrix case the
angular averaging effects of the full matrix IMM effectively eliminate the creeping wave. For both the pulse-echo
and full matrix images, the back surface artifact show as an image well inside the flaw since these responses
propagate in the flaw at its higher wave speed but are imaged as if they always travel at the wave speed of the
surrounding host material.
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FIGURE 5. Simulated images from a cylindrical inclusion with a wave speed ratio of 2.0.

An interesting example when the wave speed of the flaw is exactly twice that of the host is shown in Fig. 5. In
this case the back surface appears as a point reflector located at the center of the flaw, and the amplitude of this
reflector is greater than that of the front surface. This clearly demonstrates that only the front surface of the flaw is
being imaged correctly with the IMM and that the other responses seen will appear as fictitious reflectors. Both
SAFT and TFM will provide filtered versions of these same responses.

CONCLUSIONS

To create images with phased arrays that are quantitatively indicative of the properties of the flaw, we have
inverted the Thompson-Gray measurement model to form what we have called imaging measurement models. These
imaging measurement models include corrections for the ultrasonic system and wave propagation effects so that the
quantity imaged is a function of only flaw properties. It was shown that the IMMs are generalizations of both the
SAFT and TFM methods and are also closely related to the POFFIS imaging approach. The method of separation of
variables was used to simulate exact scattering responses for several cases of cylindrical inclusions, and these
responses were used as inputs for the imaging measurement models. These simulations allowed us to demonstrate
conclusively that only the front surfaces of the inclusions are consistently imaged properly with delay-and-sum
methods. Since the front surface response alone is generally inadequate to provide information on the flaw



dimensions, methods that deduce sizes of inclusions from delay-and-sum images are not well founded unless the
flaw is illuminated from both “front” and “back” surface directions or unless the flaw is a weak scatter. We should
note that similar IMMs can also be developed for cracks that image the crack tip diffractions. In that case, single-
sided imaging can provide quantitative crack size information.
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