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INTRODUCTION

A phased array is a system of emitters in which the
amplitudes and phases of currents provide the interfer�
ence of the emitted wave giving rise to the total radia�
tion field that represents a high�directivity beam. The
beam direction and shape depend on the amplitude–
phase distribution of currents in the emitters. Below,
we consider an interesting problem of the phased�
array or interference theory that represents an impor�
tant radio physical problem. It involves the calculation
of the amplitude–phase distribution of currents in the
emitters that allows independent control of the main
lobe and the blind spot on the directivity pattern in
which the antenna gain significantly decreases. The
solution to this problem is practically important, since
it provides the suppression of the active interference
source.

An antenna with a controlled directivity pattern is
known as an adaptive antenna or adaptive array [1].
The directivity pattern of the adaptive array that works
in the presence of interference is formed using two
(main and additional) patterns. The total directivity
pattern results from the subtraction of the additional
pattern from the main pattern. In this case, the
antenna gain substantially decreases along the direc�
tion toward the noise source [2–4]. The method
necessitates the application of two simultaneously
controlled arrays. Such a disadvantage is eliminated in
the method that is based on a decrease in the level of
the side lobes along the given direction, which can be
implemented using a single array with a specific
amplitude–phase distribution. Various algorithms
(e.g., least mean square procedure [5, 6]) are
employed for the calculation of such a distribution.
The above problem of the independent control of the
main lobe and the blind spot on the directivity pattern
of the antenna is not a problem of the development of
an adaptive array, since it does not involve the analysis

of the negative feedback circuits that provide adapta�
tion to external conditions [7]. Nevertheless, the pro�
posed method for the formation of the blind spot at the
noise direction can be used as a significant component
of the integral adaptive antenna system.

The algorithms are simplified if the directivity pat�
tern is expanded in terms of the Kotel’nikov functions
(sinc functions) [8–10]. Such an array can be used in
the noise�immune communication systems, radars,
and GPS receivers [11].

Below, we consider a method to control the direc�
tivity pattern. The results can be employed in specific
structures that work in a relatively wide frequency
range.

1. ORIGINAL DISTRIBUTION
OF CURRENTS AND THE CORRESPONDING 

DIRECTIVITY PATTERN

We consider a phased array with the current ampli�
tude distribution in the channel separator that repre�
sents a cosine function with a pedestal (Fig. 1a):

(1)

Here, M is the number of emitters in the array and
q = 0, 1, 2, …, M – 1. In the calculations, we use M = 63
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To simplify the representation of the directivity pat�
tern, we use angular coordinate θ instead of general�
ized coordinate u:

(3)

Here, d is the distance between the neighboring emit�
ters and λ is the wavelength.

Figure 1b shows the directivity pattern as a function
of coordinate θ.

2. CONTROL OF THE DIRECTIVITY PATTERN

To start the control of the directivity pattern, we fix
positions of the main lobe α and blind spot β. Then,
the positions are recalculated from angular coordinate
θ to coordinate u using the formulas

(4)

(5)

To obtain the blind spot on the directivity pattern, we
multiply function F(u) by function Z(u) given by
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where δ = sinγ and γ is the width of the blind spot

in degrees.
Parameter a determines the depth of the dip. In the

absence and in the presence of the dip, parameter a is
equal to and less than unity, respectively. In this work,
we assume that a = –1.

The multiplication of expressions (2) and (6) yields
a prototype of the directivity pattern with the blind
spot:

(7)
Note that expression (7) makes it possible to calcu�

late both a variation in the field amplitude in the far�
field zone and a phase variation when a < 0.

To synthesize the distribution of currents that cor�
responds to the directivity pattern with the blind spot
(expression (7)), we employ the expansion in terms of
the Kotel’nikov functions

(8)

where variable u is given by expression (3) and M is the
number of emitters in the array, which is used in for�
mulas (1) and (2). Such functions are also known as
sinc functions: Sinc(u).

The above system of functions is orthogonal and
satisfies the following condition:

(9)

Consequently, the directivity pattern can be
expanded in terms of the Kotel’nikov functions and
represented as [7–9]

(10)

where Np are Kotel’nikov samples.
Thus, the Kotel’nikov samples are calculated using

the following formula:
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Fig. 1. Original (a) distribution of currents and (b) direc�
tivity pattern.
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estimated with the aid of integration in expression (9)
with R and –R as the integration limits. The calcula�
tions show that, in most cases, integral (9) differs from
zero or unity by less than 10–3 for any integer p and l
and R = 20.

The resulting Kotel’nikov samples are recalculated
into the distribution of currents using the formula
from [8]

(12)

Then, the distribution of the complex amplitudes
of currents is used to calculate the phase shifts with the
aid of the evident expression

(13)

Figures 2a and 2b demonstrate the results that are cal�
culated with formulas (12) and (13) for β = 20° and
–20°, respectively, and α = –30°.

We assume that the tilted phase front of the original
directivity pattern in the absence of the blind spot is
given by

(14)

Then, the correction that is needed for the formation
of the blind spot can be calculated. The difference of
the phases given by formulas (13) and (14) is written as

(15)

The distribution of the current amplitudes that is
needed for the formation of the blind spot is deter�
mined by expression (12). The distributions of the cur�
rent amplitudes given by formulas (12) and (1) can be
compared:

(16)

Figures 3a and 3b show the results that are calcu�
lated with the aid of formulas (15) and (16) for β = 20°
and –20°, respectively, α = –30°, and the given
parameters of the directivity pattern.

3. CONSTRUCTION OF THE DIRECTIVITY 
PATTERNS USING THE CALCULATED 

DISTRIBUTION OF COMPLEX CURRENTS

Using the known distribution of the complex cur�
rents, we calculate the resulting directivity pattern
with the aid of the known formula

(17)

which takes into account both phases and amplitudes
of the complex currents.
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Figures 4a and 4b present the directivity patterns that
are calculated with formula (17) for β = 20° and –20°,
respectively, and α = –30°.

Note an important advantage of the above method
to control the directivity pattern of the antenna array,
which is the independence of the positions of the main
lobe and blind spot. The positions of the main lobe and
blind spot become really independent when the
crosstalk of the neighboring emitters is eliminated or
substantially suppressed. A mutual coupling matrix
(MCM) [7] in the power�supply circuit of the emitters
is used in the existing methods for the compensation of
the crosstalk. The methods for the MCM implemen�
tation can be found in [7]. In addition, note that the
metamaterial elements [12] in the phased�array struc�
ture allow the suppression of the crosstalk of the
neighboring emitters.

Consider the scenario in which the phases of the
currents in the emitters are controlled and the original
distribution of the current amplitudes in the channel
separator is not corrected. In this case, the directivity
pattern is calculated as
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Fig. 3. Phase difference and the amplitude ratio of the currents relative to the tilted phase front and the original distribution of the
current amplitudes.
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(18)

This formula takes into account only the phases of
the complex currents and the original distribution of
currents in the channel separator serves as the distribu�
tion of the current amplitudes.

CONCLUSIONS

An important radio physical problem that involves
the calculation of the amplitude–phase distribution of
currents in the emitters that provides the independent
control of the main lobe and blind spot on the direc�
tivity pattern in which the antenna gain substantially
decreases is analyzed. The solution to this problem is
important for the practical applications, since it allows
the suppression of the active interference. In practice,
the interference of the waves that are emitted by the
array is controlled. The main lobe and the blind spot
are formed using the synthesis of the complex ampli�
tudes of currents in the emitters. Also note that the
synthesis employs a large amount of calculations and
is time�consuming. To reduce the preparatory work
that is needed for the formation of the desired directiv�
ity pattern, the corresponding distributions of the
amplitudes and phases of currents in the emitters must
be preliminary calculated and stored in memory of the
control units of the phased array.
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