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Abstract: The authors consider a linear relaying communication system using multiple antennas at a source, relay and destination.
They maximise the end-to-end signal-to-noise-ratio (SNR) to find the relay transformation (RT) and the source transmit
covariance (STC) matrices. For any given STC matrix, to maximise the SNR, they prove that the relay has to assign all its
power in the direction of the dominant eigenmodes of the source–relay and the relay–destination channels. They also find the
joint optimal rank-one matrices for the STC and RT. They prove that this solution also maximises the source–destination
mutual information among all rank-one matrices. Furthermore, they find the optimal power budgets allocated to the source
and relay that maximise the SNR under a constraint on the total transmit power of the system. This is a practical solution as
only three positive quantities need to be communicated among the nodes to calculate these optimal power budgets.
Interestingly, the authors computer simulations for multiple users reveal that the sum-rate significantly increases if users
selfishly maximise their own SNRs using the proposed method, instead of maximising their own capacity. Thus, they
conclude that the SNR-maximisation is spectrally more efficient as it consumes only the best subspaces and leaves the other
subspaces free.

1 Introduction

Using multi-input–multi-output (MIMO) relays has recently
attracted some attention, especially in the systems with
multiple antennas at the source (S) and/or destination (D).
Increasing the reliability of the communication link,
coverage and capacity of the communication system with a
fixed amount of power consumption are some of the
benefits of using the MIMO relays [1, 2].
Two common protocols used for signal relaying are

amplify and forward (AF) and decode and forward [3, 4].
We consider an AF (or non-regenerative) MIMO relay
communication system, where the nodes are equipped with
multiple antennas, the relay transmits a linearly transformed
version of its received signal vector. Design of the relay
transformation (RT) matrix has an important impact on the
communication between the source and destination nodes.
Considerable research has been done to design the RT
matrix in order to improve the system performance in
various aspects [4–9]. This transformation matrix in [5, 6]
is designed to maximize the channel capacity. In [7], the
RT matrix is proposed to increase the mutual information
assuming a fixed amount of power budget at the relay
station. Adjusting the quality-of-service (QoS) requirements
in terms of the received SNRs in a relay system with
multiple antennas is addressed in [8]. In [9], the authors
maximize the received signal-to-noise-ratio (SNR) subject
to power constraints and also zero-forcing and
minimum-mean-squared-error (MMSE) criteria. In [10, 11],

the problem of optimal MIMO relaying is addressed for
two-way communication systems.
In this paper, we design the source transmit covariance

(STC) and RT matrices by maximising the SNR. We find
the optimal RT matrix for a given STC matrix, find the
optimal STC matrix for a given RT matrix, and determine
the joint optimal solution for STC and RT matrices. It is
found that there always exist rank-one optimal STC and RT
matrices. This implies that the SNR maximisation leads to
consuming only the best subspaces of the channels with
rank one and leaves the other subspaces free. This SNR
maximisation, in return, allows other users to use the
empty subspaces, such that their cross-interferences are
minimised to achieve a higher rate compared with the case
in which each user selfishly maximises its own capacity and
uses more directions. We stress that the interference
alignment [12–14] is not in the scope of this paper. The
rank-one RT matrix that maximises the instantaneous SNR
is not optimum, in the sense of the single user link
capacity. However, for low SNRs or highly correlated
channels, our results reveal that the single user capacity
maximisation gives the same rank-one solutions.
Furthermore, under a rank-one constraint, we prove that the
maximisation of the source–destination (S–D) mutual
information results in the same solution provided in this
paper by the maximisation of the SNR. We also determine
the optimal power allocation for the source and relay under
a constraint on the total power transmitted in the system.
This method is practical, as it requires only three positive
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quantities to be communicated among nodes to calculate the
optimal power budgets. We use simulations to study the
advantages of the proposed method for multiple source–
relay–destination (S–R–D) triplets where each triplet
maximises either its own capacity or SNR, without
considering the other triplets. This selfish approach is
practical since relays are unaware of the channel state
information (CSI) of other triplets. The simulations reveal
that the sum-rate is significantly higher by maximising
individual SNRs than maximising individual capacities.
Throughout this paper, we show vectors and matrices with

boldface lowercase and uppercase letters, respectively.
Superscript H is used to show the Hermitian transpose of a
vector or a matrix, and tr(·) denotes the trace of a square
matrix. The i, jth entry of matrix A is shown by [A]i,j, and
we use A1:k to show a matrix consisting of arbitrary
permutation of the first up to the kth columns of A. Cm×n

represents the set of m × n dimensional complex matrices,
the k-dimensional identity matrix is denoted by Ik, and E[·]
is for the stochastic expectation. For any matrix X, we

denote RX =def XXH and lXi as the ith largest eigenvalues of
RX. Finally, we use A ≥ 0 to show that A is a positive semi
definite Hermitian matrix.

2 System model

We consider a two-hop quasi-static narrow-band relay
communication system with M transmit antennas at the
source and N receive antennas at the destination. The relay
is equipped with S receive and L transmit antennas. We
assume that the direct link between the source and
destination is weak/negligible, and the transmission to the
destination is performed in two hops. At the first hop,
signal vector s [ C

M is sent to the relay. The received
signal at the relay is

ri = Hs+ n (1)

where H [ C
S×M is the channel response matrix between the

source and relay, and n is the relay additive noise. In the
second hop, the relay transmits a linear transformation of ri,
which is ro =Wri to the destination, where W [ C

L×S is the
RT matrix. The received signal at the destination after
applying a combining matrix EH is given by

y = EH (GHro + v) = EHGHWHs+ EHGHWn+ EHv (2)

where GH [ C
N×L is the channel response between the relay

and the destination, and v [ C
N is the additive noise at the

destination. We assume that s, v and n are independent,
zero-mean circularly symmetrical vectors with covariance
matrices of E[ssH] =Rs, E vvH

[ ] = s2
vIN and E nnH

[ ] =
s2
nIS , respectively. Let us define the end-to-end

instantaneous SNR of the system by

SNR =def Es ‖ EHGHWHs ‖2[ ]
En,v ‖ EHGHWn+ EHv ‖2[ ]

= tr RHsW
HRGEW

( )
s2
ntr WHRGEW

( )+ tr RE

( )
s2
v

(3)

where RHs =def Es HssHHH[ ] = HRsH
H , RE =EEH and

RGE =def GEEHGH . The matrices RHs, RGE and noise
variances s2

n, s
2
v are required to be measured/known at the

relay and source in order to calculate the instantaneous
SNR (3). However, the average matrices RHs =
Es,H HssHHH[ ] = EH HRsH

H[ ]
and RGE = EG GEEHGH[ ]

are not random and depend on the array geometries.
Therefore one may use the average matrices without any
channel measurement in order to initially establish the
communication link and fine-tune the solution once RHs

and RGE are measured. All the expressions written in this
paper for the instantaneous SNR can be also employed for
the average SNR (defined as the ratio of the signal power
averaged over the distribution of H and G to the noise
power). In other words, the average SNR is obtained by
substituting RHs and RGE in (3) with RHs and RGE,
respectively. Maximisation of the average SNR leads to
some SNR loss; however, this maximisation does not need
the instantaneous CSI and significantly reduces the
overhead of the channel estimation. Note that the average
SNR is not the average of the instantaneous SNR over the
channel matrices. We must also emphasise that the optimal
design obtained using the average SNR criterion is only
useful in the absence of the channel measurements. As soon
as the communication link is established, the system shall
acquire more accurate channel information and update the
solutions maximising the instantaneous SNR to enhance the
performance of the system.

3 MIMO relay and source SNR optimisation

In this section, we design the STC and RT matrices by
maximising either the instantaneous received SNR or the
average SNR, subject to a power constraint at the source
and relay nodes. As it was mentioned earlier, the
instantaneous and average received SNR have the same
formula, and depending on the available CSI, we can
maximise either the instantaneous or average SNR. The
average SNR calculation requires second order statistics of
H and G; whereas, the instantaneous SNR needs the
instantaneous CSI. The STC and RT matrices (Rs, W) for
maximising the instantaneous SNR in (3) are the solution to

[W , Rs] = argmax
W ,Rs

SNR (4)

s.t. E[‖ro‖2] ≤ Pr, tr(Rs) ≤ Ps, Rs ≥ 0

where E ‖ro‖2
[ ]

is the relay transmit power; Pr and Ps are the
maximum power budgets for signal transmission from the
relay and source, respectively. The relay’s transmitted signal
is

ro = Wri = WHs+Wn (5)

Hence, the transmit power E ‖ro‖2
[ ]

is given by

E ‖ro‖2
[ ] = tr WRHsW

H( )+ s2
ntr WWH( )

(6)

Lemma 1: The solution to (4) makes its first constraint active
and (4) is equivalent to

[W , Rs] = argmax
W ,Rs

SNR (7)

s.t. E[‖ro‖2] = Pr, tr Rs

( ) ≤ Ps, Rs ≥ 0
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Proof: Assume to the contrary that W is a solution to (4) for
which the first constraint is inactive, that is,

P(W ) = tr WRHsW
H( )+ s2

ntr WWH( )
, Pr. We consider

the scaled solution γW where γ is a real constant. The

maximum value for γ is
������������
Pr/(P(W ))

√
for which the

constraint is active, P
������������
Pr/(P(W ))

√
W

( ) = Pr. Any larger

value for γ violates the constraint. For γW, the end-to-end

SNR is

SNR(gW ) = g2tr RHsW
HRGW

( )
g2s2

ntr WHRGW
( )+ Ns2

v

(8)

It is easy to check that SNR(γW) is increasing in γ2, and
(∂SNR(γW))/(∂γ2)≥ 0. Thus, SNR(γW) in (8) is maximised
when γ takes its maximum value, which makes the
constraint E ‖ro‖2

[ ] ≤ Pr in (4) active; and this contradicts
our assumption that P(W) < Pr. □
Using (6) and (3) in (4), we have to obtain W and Rs from

[W , Rs] = argmax
W ,Rs

tr RHsW
HRGEW

( )
s2
ntr WHRGEW

( )+ tr RE

( )
s2
v

s.t.
tr WRHsW

H( )+ s2
ntr WWH( ) = Pr

tr(Rs) ≤ Ps, Rs ≥ 0

{ (9)

To better understand the solution to (9), we first study two
related optimisation problems: (A) optimisation of W for a
given Rs and (B) optimisation of Rs for a given W. □

3.1 Optimal RT matrix given the STC matrix

The optimisation of W for a given Rs is written as

W = argmax
W

tr RHsW
HRGEW

( )
s2
ntr WHRGEW

( )+ tr(RE)s2
v

s.t. tr WRHsW
H( )+ s2

ntr WWH( ) = Pr (10)

Theorem 1: Any optima for the non-convex problem in (10)
have the following singular value decomposition (SVD)
with probability one

W = UGEPGSP
H
HV

H
Hs (11)

where PG and PH are L × L, and S × S dimensional
permutation matrices, respectively; and S is an L × S
diagonal matrix with non-negative singular values
x = [x1, . . . , xmin {L,S}]

T as its diagonal components. The
matrices VHs and UGE are obtained from the eigenvalue
decompositions (EVDs) of RHs and RGE, as

RHs = VHsdiag(l
Hs)VH

Hs

RGE = UGEdiag lGE( )
UH

GE

(12)

where VHs [ C
S×S and UGE [ C

L×L contain the

eigenvectors of RHs and RGE, respectively; and

lHs = lHs
1 , . . . , lHs

S

[ ]T
, lGE = lGE1 , . . . , lGEL

[ ]T
where lHs

1 ≥ · · · ≥ lHs
S ≥ 0 and lGE1 ≥ · · · ≥ lGEL ≥ 0.

Proof: See Appendix 1. □

For some special cases of RHs, RGE and relay format, the
optimal PG, PH and S are determined in [15] when E = IN
and Rs∝ IM. In this paper, we find the optimal matrices in a
general case. The optimal RT matrices used in [3, 6] to
maximise the capacity are in the form of (11). The relaying
matrix, reported in [16], which minimises the trace of the
mean-squared-error matrix under some predefined SNR
requirements, also has the structure of (11). In [17], the
optimal RT matrices for a multi-hop MIMO relay system
are proposed using a linear MMSE receiver to guarantee a
predetermined QoS criteria. The optimal RT matrices for
this approach also are in the form of (11). In [7], it is
proved that the RT matrix (11) maximises the mutual
information for a given available transmission power at the
relay station. It is also shown in [18, 19] that (11) is the
optimal structure for Schur-convex objectives.
Substituting (11) in (10) leads to

max
S,PG ,PH

tr(PH
Hdiag(l

Hs)PHS
HPH

Gdiag(l
GE)PGS)

tr SHPH
Gdiag(l

GE)PGS
( )

+ tr(RE)s2
v/s

2
n

(13)

s.t. tr(SPH
Hdiag(l

Hs)PHS
H )+ s2

ntr(SS
H ) = Pr

Since PH
Gdiag(l

GE)PG = diag lGE
g

( )
and PH

Hdiag(l
Hs)PH =

diag(lHs
h ) are diagonal where lGE

g = PGl
GE and

lHs
h = PHl

Hs, we can write (13) as

max
x,g,h

∑min {S,L}
i=1 lHs

hi
lGEgi x

2
i∑min {S,L}

i=1 lGEgi x
2
i + tr RE

( )
s2
v/s

2
n

s.t.
∑min {S,L}

i=1
lHs
hi

+ s2
n

( )
x2i = Pr

(14)

where g and h are the arbitrary permutations over (1, …, L)
and (1, …, S), respectively. To solve this optimisation
problem, we have to determine both x and proper
permutations. The following theorem determines the power
allocation strategy for optimal relaying.

Theorem 2: A solution to (14) is the dominant mode
excitation (DME) as follows

x21 = · · · = x2F = Pr

F lHs
1 + s2

n

( )
xF+1 = · · · = xmin {L,S} = 0

⎧⎨⎩ (15)

where F = min FHs
1 , FGE

1

{ }
shows the multiplicity of the

dominant mode lHs
1 , lGE1

( )
, and FHs

1 and FGE
1 show the

multiplicity of the dominant eigenvalue of RHs and RGE,
respectively. The solution is not unique and has the
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following general form

∑F
i=1 x

2
i =

Pr

lHs
1 + s2

n

xF+1 = · · · = xmin {L,S} = 0

⎧⎨⎩ (16)

Proof: Lagrangian for (14) can be written as

L = C +
∑min {S,L}

i=1

h lHs
hi

+ s2
n

( )
x2i − Pr

( )
(17)

where

C =
∑min {S,L}

i=1 lHs
hi
lGEgi x

2
i∑min {S,L}

i=1 lGEgi x
2
i + tr(RE)s2

v/s
2
n

is the objective function in (14) and η is the Lagrange
multiplier associated with the equality constraint in (14).
Setting ∂L/∂xm = 0 leads to

xm
lHs
hm
lGEgm − lGEgm C∑min {S,L}

i=1 lGEgi x
2
i + tr(RE)s2

v/s
2
n

+ h lHs
hm

+ s2
n

( )( )
= 0

(18)

Note that, here, the Lagrange multiplier method only provides
the first-order necessary conditions for the optimal solution.
From (18), we should either have xm = 0 or

lHs
hm

− C
( )

lGEgm + h lHs
hm

+ s2
n

( )
× tr RE

( )
s2
v

s2
n

+
∑min {S,L}

i=1

lGEgi x
2
i

( )
= 0

(19)

Let J be the set of indices of non-zero elements of x, for
which (19) is valid. Multiplying both sides of (19) by x2m
and taking the summation over all m [ J , we can easily
obtain

h
∑
i[J

lGEgi x
2
i + tr RE

( )s2
v

s2
n

( )
= − tr RE

( )
s2
v

s2
nPr

C (20)

Substituting (20) in (19), for all m [ J , we must have

C = lHs
hm
lGEgm

lGEgm + tr RE

( )
lHs
hm

+ s2
n

( )
s2
v/ Prs

2
n

( ) (21)

The right-hand side of (21) is an increasing function of lHs
hm

and lGEgm . Therefore to maximise the objective function C,
we should only take the largest eigenvalues, which are lHs

1
and lGE1 . This simply means that we must have xm = 0 for
m > F. Under this condition, we must have∑F

i=1 x
2
i = Pr/ lHs

1 + s2
n

( )
to satisfy the power constraint. □

Furthermore, the maximum achievable SNR is given by

sup
W
s.t. E[‖ro‖2]≤Pr

SNR = Prl
Hs
1 lGE1

s2
nPrl

GE
1 + tr RE

( )
s2
v lHs

1 + s2
n

( ) (22)

Theorem 3: reveals that all the power must be invested in the
direction of the dominant eigenvectors of the source–relay
(S–R) and relay–destination (R–D) channels’ correlation
matrices. Thus, using Theorem 2, an optimal RT matrix for
(15) is

W o =
��������������

Pr

F lHs
1 + s2

n

( )√
U1:F

GE V 1:F
Hs

( )H
(23)

where columns of V 1:F
Hs consist of any permutations of the first

F eigenvectors of RHs (eigenvectors are corresponding to the
dominant eigenvalue of RHs), and U

1:F
GE is defined similarly. A

special solution is obtained in [20] for the case that only one
data stream is sent from the source to the destination. There,
using some proper beamforming at both the source and
destination nodes, it is shown that the DME with F = 1
gives the RT matrix that maximises the SNR.

Remark 1: If we maximise the instantaneous SNR to design
the RT matrix, then we have F = 1 with probability one. In
this case, the optimal relaying matrix is unique. In addition,
the solution to (14) is given by x2i = Prd(i− 1)/ lHs

1 + s2
n

( )
,

lHs
h1

= lHs
1 , and lGEg1 = lGE1 where δ(.) is the Kronecker

delta. However, the solution to (14) is not unique when F >
1. In this case, one can allocate arbitrary powers to the
dominant modes, provided that the power constraint in (16)
is satisfied. For instance, similar to the case F = 1, we may
allocate all the power to the first dominant mode, or equally
distribute the power to all the dominant modes as in (15).

3.2 Optimal STC matrix given the RT matrix

The optimisation problem in this case can be written as

Rs = argmax
Rs

tr RHsW
HRGEW

( )
s2
ntr WHRGEW

( )+ tr RE

( )
s2
v

s.t. tr Rs

( ) ≤ Ps, Rs ≥ 0

(24)

Only the numerator of the objective function of (24) depends
on Rs. Thus, (24) leads to

Rs = argmax
Rs

tr RsH
HWHGEEHGHWH

( )
s.t. tr(Rs) ≤ Ps, Rs ≥ 0

(25)

As Rs and HHWHGEEHGHWH are Hermitian positive
semi-definite matrices, we have

tr RsH
HWHGEEHGHWH

( ) ≤ ∑M
i=1

lE
HGHWH

i lsi

≤ lE
HGHWH

1 tr(Rs)

≤ lE
HGHWH

1 Ps

(26)
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The upper bound in (26) is achieved using Rs = Psqq
H where

q is the unitary dominant eigenvector of
HHWHGEEHGHWH, that is, the source allocates all its
power to the direction of the dominant mode of the
equivalent channel. The SNR improvement using this
optimal solution, compared with Rs = Ps/MIM, is

10 log10
MlE

HGHWH
1∑M

m=1 l
EHGHWH
m

( )
≤ 10 log10 (M )dB

For example, changing Rs results in no improvement in the
SNR when all the eigenvalues of REHGHWH are equal.
In (24) or (25) the relay power constraint is not considered.

If we consider the relay power constraint, the optimisation
problem can be written as

Rs = argmax
Rs

tr(RsA)

s.t.
tr(RsB) = c

tr Rs

( ) = Ps, Rs ≥ 0

{ (27)

where A =def HHWHGEEHGHWH , B =def HHWHWH and
c =def Pr − s2

ntr WWH( )
are some known parameters. The

above optimisation problem is a semi-definite program [21],
and this convex problem can be solved by using efficient
numeric methods, for example, see [22].

3.3 Joint optimal STC and RT matrices

Here, we jointly optimise W and Rs as (9). Note that the
criteria in (9) is maximised with respect to W for a given
Rs, and the maximum achievable SNR is given in (22).
Thus, we only need to maximise (22) with respect to Rs.
Note that for any function f (a, b) and under appropriate
constraints, we have

argmax
a,b

f (a, b) = argmax
a

{max
b

f (a, b)}.

In (22), lHs
1 is the only term which depends on Rs. Since the

SNR criterion in (22) is an increasing function of lHs
1 , the

optimal Rs shall maximise lHs
1 . Obviously, under the

constraint tr(Rs)≤ Ps, the upper bound for lHs
1 is

lHs
1 ≤ tr RHs

( ) = tr RsRHH

( ) ≤ lH1 tr Rs

( ) ≤ lH1 Ps (28)

Therefore, using (22) and (28), the following is the maximum
achievable SNR for (9) (see (29))

This upper bound is achieved when the relay received signal
belongs to the subspace of the dominant eigenvalue of RH

(where RH =HHH), and the source and relay allocate all
their transmit powers to the directions of dominant
eigenvectors of RHH (where RHH = HHH) and RGE,
respectively. The functions in (22) and (29) are similar,
where substituting lHs

1 for Psl
H
1 in (22), we obtain (29).

Note that the optimisation problem in (24) is different from
the one in this section. The optimal Rs in Section 3.2

depends on a given relay matrix W; whereas, the optimal Rs in
this section only depends on the R–D channel matrix, as the
relay matrix is also optimised. Furthermore, the optimisation
problem in this section has an additional constraint on the relay
power compared with the problem in (24).
Let us compare the maximum achievable SNRs in (22)

using the uniform power allocation Rs = Ps/MIM with the
achievable SNR using Rs

opt given in (29). We define the
SNR improvement as

J =def 10 log10
SNR Rs

opt( )
SNR Ps/MIM

( )( )

where SNR Rs
opt( )

is the achievable SNR of the system
provided in (29). For Rs = Ps/MIM, we can use
lHs
1 = Psl

H
1 /M in (22) to find the expression of the

achievable SNR(Ps/MIM). Using this result and (29), we can
express J as

J = 10 log10 (M )

+ 10 log10 1−M − 1

M
1+ SNRrd +tr(RE)

tr(RE) SNRsr

( )−1
( )

(30)

where SNRrd = Prl
GE
1 /s2

v and SNRsr = Psl
H
1 /s

2
n are the link

SNRs for the R–D and the S–R, respectively. Therefore we
conclude that an improvement of up to 10 log10(M )dB in
the SNR is achieved by optimising the STC matrix
compared with using uniform power allocation Rs = Ps/MIM.
Furthermore, the amount of this improvement tends to
10 log10(M)dB as

tr(RE)+ SNRrd

tr(RE) SNRsr
� 1

Therefore the source optimisation contributes more
improvement if the R–D link quality is better compared
with that of the S–R.

Remark 2: Following the same procedure as Section 3.3, we
can obtain the optimal combining matrix at the destination by
maximising (29) over E as

max
E

lGE1
tr RE

( ) (31)

where the above problem can easily be obtained by dividing
the numerator and denominator of (29) by lGE1 . Similar to
(28) we have

lGE1 ≤ tr RGE

( ) = tr RERGH

( ) ≤ lG1 tr RE

( )
(32)

Consequently, lGE1 /tr(RE) ≤ lG1 and this upper bound is
achieved when RE∝ eeH where e is the unit-length
dominant eigenvector of RGH .

Remark 3: The above results show that there exists a rank-one
optimal solution for Rs and W. In addition, for the

sup
Rs ,W

s.t. E[‖ro‖2]=Pr , tr(Rs)≤Ps,Rs≥0

SNR = PrPsl
H
1 l

GE
1

s2
nPrl

GE
1 + tr RE

( )
s2
v Psl

H
1 + s2

n

( ) (29)
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instantaneous matrices RGE and RHs, the largest eigenvalues
often have a multiplicity of one. For example, for complex
Wishart matrices (Rayleigh fading), the multiplicity is one
with probability one. This implies that the SNR
maximisation requires the use of the signal subspaces with
rank one. As a result, each user consumes only the best
one-dimensional (1D) subspaces and does not transmit
(receive) any power in (from) other directions.
Consequently, in the context of a system with multiple
users, other users and relays can make use of other
subspaces. In a multi-user environment, the SNR
maximisation is spectrally more efficient than the
maximisation of the capacity. As in the former method, by
aligning the subspaces allocated to different users, their
cross-interferences are reduced [14]. Furthermore, for high
noise power or when the channels’ elements are highly
correlated, the capacity optimisation also results in the same
rank-one solutions (the maximisation of the SNR criterion
also becomes optimum in terms of the capacity of a single
user). Using the proposed optimal rank-one matrices, the
link between the source and destination is equivalent to a
single-input–single-output system. Therefore the SNR in (3)
is closely related to the error rate performance.

Theorem 4: Maximising the mutual information between y
and s over all rank-one matrices W for E = IN gives the
same solution as maximising the SNR, without such a rank
constraint.

Proof: The mutual information between y and s is [6]

I (y; s) = log det I + 1

s2
n
RHs I − S−1( )( )( )

(33)

where S =def IN + s2
n/s

2
vW

HRGW . Here, we consider the
power constraints tr(Rs) = Ps and E ‖ro‖2

[ ] = Pr and
maximise I (y; s) over the space of rank-one matrices W as
follows

max
Rs,W

I (y; s)

s.t.Rank(W ) = 1, E ‖ro‖2
[ ] = Pr, tr Rs

( ) = Ps

(34)

Using the SVD W = βabH and bHb = aHa = 1, it is easy to
write

I (y; s) = log 1+ aHRGab
2/s2

v

1+ aHRGab
2s2

n/s
2
v

bHRHsb

( )
(35)

Thus, problem (34) is equivalent to

max
Rs,a,b,b

2

bHRHsb

1+ aHRGab
2s2

n/s
2
v

( )−1

s.t.
tr(Rs) = Ps, b

Hb = 1, aHa = 1

b2 bHRHsb+ s2
n

( ) = Pr

{ (36)

Using the last constraint in the numerator of (36), we can

rewrite the problem as

max
Rs,a,b,b

2

Pr − b2s2
n

1+ aHRGab
2s2

n/s
2
v

( )−1

s.t.
tr(Rs) = Ps, b

Hb = 1, aHa = 1

b2 = Pr b
HRHsb+ s2

n

( )−1

{ (37)

In (37), to find a, we only need to maximise aHRGa under the
constraint aHa = 1. Thus, a must be the dominant eigenvector
of RG. Since the objective function in (37) is a decreasing
function of β2, we shall choose the minimum value for β2.
Using b2 = Pr b

HRHsb+ s2
n

( )−1
, the minimum β2 is

achieved when b is the dominant eigenvector of RHs.
Consequently, the optimal RT matrix, W, is identical to
(23) for F = 1. By substituting the optimal values for a, b
and β2 in (36), it can be checked that the objective function
is increasing in lHs

1 . Thus, similar to Section 3.3,
maximising I(y;s) under a rank-one constraint for W
requires the source to allocate all its transmit power to the
direction of dominant eigenvector of RHH . □

4 Optimum power budget allocation

Using a total available transmit power PT, we aim to optimise
the transmit powers Ps and Pr from the source and relay,
respectively, by maximising the end-to-end SNR

max
W ,Ps,Pr

SNR

s.t.E[‖ro‖2] ≤ Pr, Ps + Pr = PT, Ps ≥ 0, Pr ≥ 0
(38)

The solution to (38) provides the highest achievable SNR for
a bounded amount of interference for other neighbouring
users since the amount of interference contribution that this
source–relay pair produces for other users is related to the
total transmitting power PT. Assuming Rs = Ps/MIM and
using (22), we simplify (38) as

max
Ps,Pr

Ps

Ms2
n

( )
Prl

H
1 l

GE
1

Prl
GE
1 + Ns2

v/s
2
n Psl

H
1 /M + s2

n

( )( )
s.t. Ps + Pr = PT, Ps ≥ 0, Pr ≥ 0

(39)

Note that when we replace s2
n in (29) withMs2

n, we obtain the
objective function of (39). Thus, the results of this section can
easily be applied to the system with the optimal STC matrix.
Substituting Pr = PT− Ps in (39), the optimal Ps can be

computed from

Ps◦ = argmax
Ps

Q(Ps), s.t. 0 ≤ Ps ≤ PT (40)

where

Q(Ps) =def
PsPT − P2

s

Ps NlH1 s
2
v/ Ms2

n

( )− lGE1
( )+ PTl

GE
1 + Ns2

v
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The second derivative of Q(Ps) with respect to Ps is

∂2Q(Ps)

∂P2
s

= −2M2Ns2
v/s

2
n PTl

H
1 +Ms2

n

( )
PTl

GE
1 + Ns2

v

( )
PsNs2

v/s
2
nl

H
1 +MlGE1 PT − Ps

( )+MNs2
v

( )3
(41)

It is seen that for all Ps∈ [0, PT], we have ∂
2Q(Ps)/∂P

2
s ≤ 0.

In addition, we have Q(0) = Q(PT) = 0. Thus, the ‘Rolle’s
theorem’ (which is a special case of the ‘mean value
theorem’) implies that there exists a Ps∈ [0, PT] satisfying
∂Q(Ps)/∂Ps = 0. There are two roots for ∂Q(Ps)/∂Ps,
where only one of them satisfies ∂2Q(Ps)/∂P

2
s ≤ 0. As a

result, the optimal power budgets are

Ps◦ =
MPTl

GE
1 +MNs2

v −
��
D

√

MlGE1 − Ns2
vl

H
1 /s

2
n

(42)

Pr◦ = PT − Ps◦ (43)

where D =def MN PTl
GE
1 + Ns2

v

( )
PTl

H
1 +Ms2

n

( )
s2
v/s

2
n.

For the case lH1 / Ms2
n

( ) = lGE1 / Ns2
v

( )
, the above optimal

solutions are undefined. However, for such a case, it is easy to
show that we must have Ps◦ = Pr◦ = PT/2. We can rewrite
(42) as

Ps◦ =
1+ rrdPT −

���
D′√

rrd − rsr
(44)

where D′ =def 1+ PTrrd
( )

1+ PTrsr
( )

, rsr =def lH1 / Ms2
n

( )
and

rrd =def lGE1 / Ns2
v

( )
. This equation shows that the source or

relay does not need to know lH1 , l
GE
1 , s2

n, s
2
v , M , N and the

optimal powers can be determined as a function of only
three parameters rsr, rsr, PT

( )
. In other words, the optimal

powers are determined as a function of the link qualities of
the best modes and the total power. In addition (44) reveals
that when both link qualities are poor, the equal power
allocation is close to optimal and we obtain Ps◦ � PT/2 as
(ρsr, ρrd)→ (0, 0).

Lemma 2: Optimum source power budget is a decreasing
function of the S–R channel quality ρsr and is an increasing
function of the R–D channel quality ρrd.

Proof: From (42) we obtain

∂Ps◦
∂rsr

=
rrdPT + 1
( )

2
���
D′√

− PT(rrd + rsr)− 2
( )

2 −rrd + rsr
( )2 ���

D′√

= − rrdPT + 1
( )

P2
T

2 2
���
D

′√
+ PT(rrd + rsr)+ 2

( ) ���
D′√ ≤ 0

Similarly, we can prove ∂Ps◦/∂rrd ≥ 0. Since Ps◦ = PT − Pr◦,
we have ∂Pr◦/∂rsr ≥ 0 and ∂Pr◦/∂rrd ≤ 0. Thus, the optimal
relay power budget, Pro, is decreasing in ρrd and is increasing
in ρsr.
This is intuitively expected since as one of the link qualities

degrades, we expect that the allocated power to that link be
increased to compensate for the degradation. □

5 Simulation results

For computer simulations, we generate the channel matrices
H and GH to be zero-mean circularly symmetric complex
Gaussian (ZM-CSCG) with correlation matrices [23, 24]

E[HHH ]
[ ]

i,j
= J 0 |i− j|dH

( )
for i, j = 1, . . . , S

E[GGH ]
[ ]

i,j
= J 0 |i− j|dG

( )
for i, j = 1, . . . , L

where J 0(·) is the zero-order Bessel function of the first kind,
dG and dH are proportional with the carrier frequency and with
the transmit and receive antenna separation vectors at relay,
respectively. Note that when Rs = Ps/MIM, the received total
powers over these channels are equal to the transmit
powers. The additive noise vectors in the assumed system
are considered to be spatially and temporally white
ZM-CSCG. The matrices used in this section are: (i) the
conventional AF transform W∝ I [7]; (ii) matched filter
(MF) W∝GHH [25]; (iii) MMSE matrix [26]; (iv)
modified analogue relaying (MAR) matrix [3] or the best
unitary excitation (BUE) matrix [15]; (v) water-filling (WF)
in the direction of the channels’ eigenmodes [6]; (via)
DME, when the F-CSI is available at the relay, and an
equal power is allocated to the source and relay; (vib)
DME, when the relay has the F-CSI, and the optimal
powers are allocated to the source and relay; (vic) DME,
when the relay has the P-CSI (the relay only knows E
[HRsH

H] and E[GEEHGH]), and the source and relay have
an equal transmit power budget; (vid) similar to (vic), but
with the optimal power allocated to the source and relay.
We have to stress that when the relay has the F-CSI, the

matrices UGE and VHs used in (23) and the lGE1 , lH1 used in
(42) and (43) are the eigenvectors and the corresponding
eigenvalues of GEEHGH and HRsH

H, respectively. Also,
in the case where the P-CSI is available at the relay,
UGE, l

GE
1

( )
and VHs, l

Hs
1

( )
are the eigenvectors and

eigenvalues of E[GEEHGH] and E[HRsH
H], respectively.

In our simulations, for the relaying schemes (i) to (vib), the
relay has the F-CSI, and for the schemes (vic) and (vid),
the P-CSI is available at the relay (in this case, the RT
matrix is designed to maximise the average SNR).
Here, we briefly compare the computational complexity

(CC) of various relaying schemes used in this section, and
we show that the CC of the proposed DME is much less
than that of the MMSE, WF and BUE (or MAR) methods.
We mainly consider the computationally demanding
operations, such as the matrix inversion, multiplication and
EVD. Note that for computing the MF and MMSE
matrices, we must have M = N, and the WF matrix in [6] is
derived only for S = L. The MF matrix only requires the
calculation of GHH that needs LSN complex
multiplications. The MMSE matrix (see (13) in [26]) is
computationally more expensive as it requires the
calculation of GHH, HHH, GGH and the inversion of S × S
and L × L dimensional matrices. Moreover, to obtain the
MMSE relay matrix, we need to calculate the multiplication
of three L × L, L × S and S × S dimensional matrices and
calculate the roots of a 2Mth-order polynomial [26]. For the
WF, BUE and DME relay matrices, the calculation of RGE

and RHs is required. Since the singular vectors of the WF
and BUE matrices are the eigenvectors of RGE and RHs, the
EVD of these L × L and S × S matrices are required for the
WF and BUE methods (see [27, Section 5.4.5] for the order
of the CC). The CC of the WF matrix is higher than that of
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the BUE, as in the WF, the singular values of the relay matrix
are the solutions of the water filling equation [6, see (49) and
(50)]. The bisection or Newton’s methods may be used to
obtain the singular values of the WF matrix. Finally, the
proposed DME only requires the dominant left singular
vectors of GE and HRs. Thus, its CC is significantly less
than all other methods (except for the MF method) since
computing the dominant singular vector of a matrix can be
performed using some efficient approaches, for example,
the power method [27, Section 7.3.1].
In all the simulations except for Fig. 6, we haveM =N = L =

S. We useE = IN and Rs = Ps/MIMwhen these two matrices are
not optimally designed. The mean of the instantaneous SNR
and the instantaneous capacity averaged over 7000
independent channel realisations are shown in Figs. 1 and 2
as a function of dH when dG = dH, PT = 2, and M = 4. In this
simulation, various noise powers at the relay and destination
are assumed. The results confirm that the DME matrix (23)
gives the maximum SNR, and it is seen that the proposed
method for assigning the power budget to the relay and the
source significantly increases not only the SNR, but also the
system capacity. The study of the system capacity and SNR
reveals that the DME matrix with the P-CSI is a proper
relaying approach when the channels are highly correlated

(when dH and dG are small). It is also seen that the capacity
obtained with the DME is near to that with the WF when the
channels are highly correlated or the noise variance is high.
Fig. 3 shows the effect of the power budget allocation and

the STC matrix. As expected, the best performance is
achieved by the joint optimisation of the power budget and
matrices. However, the performance gain from this
optimisation depends on the noise power and channels
conditions. For s2

n = 4, s2
v = 0.25, we observe an

improvement of about 5.4 dB for the STC design. This is
because (N + SNRrd)/(NSNRsr) becomes a large number,
and as discussed in Section 3.3, we expect the performance
improvement to be around 10 log10(M ) = 6 dB.
Fig. 4 shows the empirical probability density function

(pdf) of the instantaneous SNR for the two sets of the noise
variances and uncorrelated channel matrices, E[HHH] =
E[GGH] = I4. This figure reveals that the achieved SNR
(which is a function of the random channels) exhibits a
log-normal distribution. We observe that the optimisation of
both Rs and the power budgets results in a significant shift
to the distribution of the achieved SNR. Note that the
widths of these distributions are almost equal.
In previous simulations, M = 4; Fig. 5 shows the effect of

the number of antenna on the pdf of the achievable SNR of

Fig. 1 Average of the instantaneous SNR as a function of dH (left) and average of the instantaneous capacity as a function of dH (right) for
s2
n = 6 dB and s2

v = −6 dB

Fig. 2 Average of the instantaneous SNR as a function of dH (left) and average of the instantaneous capacity as a function of dH (right) for
s2
n = −6 dB and s2

v = 6 dB
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the system for uncorrelated channels, M =N = L = S,
s2
n = 10 dB and s2

v = −10 dB. This figure shows that the
optimization of both Rs and the optimal power allocation
results in a shift in the pdf of the SNR, which is equivalent
to 4.05, 6.81 and 8.35 dB improvement in the mean of the
achieved SNR for M = 2, M = 4 and M = 6, respectively.
Obviously, this improvement is more than 10 log10(M )dB.
As the number of antennas increases, the proposed
optimisation methods result in more significant
improvement. Note that for the large values of (N +
SNRsrd)/(NSNRsr), we have shown that the source
optimisation shall lead to approximately 10 log10(M )dB
improvement in the SNR; for this simulation, 2.93, 5.88
and 7.56 dB improvements in the mean of the SNR are
achieved, respectively, for M = 2, M = 4 and M = 6. We also
observe that the empirical pdf of the achieved SNR
accurately fits a log-normal distribution for large M, such as
M = 4 and 6. Fig. 5 also shows that the widths of these
estimated pdfs decrease as the number of antenna increases.
Particularly, in a jointly optimised system, the mean of
10 log10(SNR) is increasing in M; whereas, its variance is
decreasing. This simply means that the joint optimisation of
the involved variables results in the significant improvement
of the outage probability performance of the system.
Fig. 6 shows the average of the instantaneous SNR of the

DME against s2
n using the F-CSI for unequal number of

antennas at the different nodes where channel matrices are
uncorrelated, s2

n = s2
v . In all the other simulations, we have

M = S = L = N. This figure shows the amount of the
improvement gained from the nodes optimisation in the
DME method. For example, the achievable SNR is
increased by more than 3 dB by optimising the source. This
figure reveals that the achievable SNR of the system is an
increasing function of the number of the relay’s antennas.
For instance, the achievable SNR increases almost 2 dB
when the number of relay’s antennas is increased from [S =
2, L = 3] to [S = 4, L = 5].
We now evaluate the proposed method in a multi-user

environment for K multi-antenna S–R–D triplets in the
system. For all nodes, we consider the same number of
antenna elements, Mi = Li = Si =Ni =M. We assume that all
the additive noise vectors have the same power, and equal
power is transmitted from all sources and relays;
s2
v,i = s2

n,i = s2
v = s2

n and Ps,i = Pr,i = Ps = Pr = 1 for all i =
1, …, K. All the elements of all the channel matrices are
generated as independent of each other with ZM-CSCG
distribution. The relays have only the knowledge of their
own forward and backward channels, and they either use
the DME or WF matrix for the relaying. We assume that
the S–R channels are orthogonal. This orthogonality can be

Fig. 3 Average of the instantaneous SNR as a function of dH for various s2
n and s2

v when the DME with the F-CSI is used

Fig. 4 Empirical pdf of x = 10 log10SNR in dB for the uncorrelated
channels when s2

n = −6 dB, M = N= L = S = 4, PT = 2 and the
optimal relay matrix (DME) is used

Fig. 5 Empirical pdf of the instantaneous x = SNR for the
uncorrelated channels when s2

n = 10 dB, s2
v = −10 dB, M = N=

L = S, PT = 2 and the optimal relay matrix (DME) is used

Fig. 6 Average of the instantaneous SNR of the DME with F-CSI
as a function of s2

n for various number of antennas at the nodes,
when all the channel matrices are uncorrelated and s2

n = s2
v .
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achieved by assigning different subcarriers in orthogonal
frequency division multiplexing systems or assigning
orthogonal codes to the sources and relays. As a result,
each relay amplifies the signal corresponding to only one
source (there is no cross-interference at the relays).
However, the cross-interferences at the destinations are
taken into account. We assume that all signals have
Gaussian distribution and express the sum-rate as

C =
∑K
i=1

Ci =
∑K
i=1

log2det IN + RGH
i,iW iH i,isi

R−1
I ,i

( )
where si is the transmitted signal from the ith source with
E sis

H
i

[ ] = Ps/MIM , Wi is the RT matrix at the ith relay,
Hi,j is the channel matrix between the jth source and ith
relay, GH

i,j is the channel matrix between the jth relay

and ith destination with E H i, jH
H
k,l

[ ]
= d(i− k)d(j − l)IM ,

E Gi, jG
H
k,l

[ ]
= d(i− k)d(j − l)IM for i, j, k, l = 1, …, K, and

RI ,i = s2
vIN + s2

n

∑K
j=1

RGH
i,jW j

+ Ps

M

∑K
j=1,j=i

RGH
i,jW jH j,j

Fig. 7a shows the average of the sum-rate over 5000
independent simulation runs as a function of the number of
users K in the system. The proposed rank-one DME
relaying matrix is used in this simulation for s2

v =
s2
n = −15 dB. This figure shows that the sum-rate increases

as the number of users K increases for K≤M. However, for
K >M, because of the impact of the cross interferences, the
sum-rate decreases as K increases. We conclude that in this
simulation, the best number of triplets is the number of
antennas. Fig. 7b shows the sum-rate of two systems in
terms of the number of triplets and for different noise levels
and M = 4. In the first system, each relay, without
considering the other triplets, maximises its own link
capacity by using the WF matrix. In the second system, the
proposed DME is used at each relay ignoring the other
triplets and the individual link SNRs are maximised. We
observe that at low SNRs, the performances of these
systems are similar. This is because the WF matrix tends to
the DME matrix as SNR reduces. For a single user K = 1,
the first system is designed to be optimal and outperforms
the second, particularly for small noise variances.
Interestingly, the second system significantly outperforms

the first one in a multi-user environment. This is because
the DME gives a rank-one matrix, that is, each relay emits
power only in a 1D subspace. As a result, significantly
fewer cross-interferences among triplets are produced using
the DME. Therefore maximising the link SNR is a better
method than maximising the link capacity in the multi-user
scenario where triplets are unaware of each other and
selfishly attempt to improve their own link.

6 Conclusion

In this paper, we considered a relay communication system
equipped with multiple antennas. The relay forwards a
linear transformation of its received signal to the
destination. We optimised the STC and relaying weights by
maximising the end-to-end SNR of the system, assuming
different constraints on the transmitted powers. We have
proved that for a given STC matrix, to maximise the SNR,
the relay has to assign all its power in the direction of the
dominant eigenvectors of the S–R and R–D channel
matrices. Given the RT matrix, we derived the optimal STC
matrix. Finally, we have jointly optimised the STC and RT
matrices to maximise the SNR. By optimising the STC
matrix, we obtain about 10 log10(M ) dB improvement in
the SNR. Moreover, we proved that there always exist
rank-one matrices for the STC and RT that maximise the
SNR. Using this optimal solution, the signals are
transmitted only over the best channel subspaces, and the
other directions are left empty, which could be utilised by
other users. We showed that the maximisation of the mutual
information (between the source and destination) over all
rank-one relaying matrices gives the same solution obtained
by the SNR maximisation without such a rank constraint.
We also found the optimal power allocation among the
source and relay, given a total transmit power budget. The
optimal allocated budgets can be calculated only as a
function of the total available power and the link qualities,
where the channel link quality is proportional to the ratio of
the channel’s dominant eigenvalue to the noise power at the
output of the channel. Using computer simulation, we
evaluated the effect of the STC and RT matrices on the
end-to-end SNR and capacity of the system. We observed
that when the elements of the channel matrices are highly
correlated, the average and instantaneous SNR
maximisation leads to a similar result. At low SNRs and for
the correlated channels, the SNR maximisation is optimal in

Fig. 7 Average of the sum-rate as a function of the number of the users K when all the channels are uncorrelated, s2
n = s2

v , and all the nodes
have M antennas

a Performance of the DME for s2
n = −15 dB

b Performance of the DME and WF for M = 4
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terms of the capacity of a single user and is spectrally
efficient. In the multi-user scenario, interestingly, we
observed that the link SNR maximisation results in a
significant increase in the sum-rate compared with the link
capacity maximisation, where users selfishly try to optimise
their own link qualities.
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9 Appendix

9.1 Appendix 1: Proof of Theorem 1

Proof: We define the Lagrangian function for (10) as

L = tr RHsW
HRGEW

( )
tr WHRGEW
( )+ tr RE

( )
s2
v/s

2
n

+ m tr WRHsW
H( )+ s2

ntr WWH( )− Pr

( ) (45)

where μ is the Lagrange multiplier for the constraint in (10).
Setting ∂L/∂WH = 0 leads to

a1RGE + mIL
( )

WRHs = a2RGE − ms2
nIL

( )
W (46)

where a1 = tr WHRGEW
( )+ tr RE

( )
s2
v/s

2
n

( )−1
and

a2 =
tr RHsW

HRGEW
( )

tr WHRGEW
( )+ tr RE

( )
s2
v/s

2
n

( )2
Note that the equality constraint in (10) is not linear, and
consequently, the optimisation problem is not convex.
Thus, (46) is a necessary condition for the optimal W, and
the optimal relay matrix must satisfy (46). Using the EVD
of RHs and RGE in (12), we can express (46) as

a1diag lGE( )+ mIL
( )

W̃diag lHs( )
= a2diag lGE( )− ms2

nIL
( )

W̃

where W̃ =def UH
GEWVHs. Thus, for i = 1, …, L and j = 1, …, S

we have

a1l
GE
i + m

( )
lHs
j − a2l

GE
i + ms2

n

( )
[W̃ ]i,j = 0 (47)

Using the above equation, we prove that

(1) Each column of W̃ contains no more than one non-zero
element

if [W̃ ]m,n = 0, we prove that [W̃ ]k,n = 0, ∀ k ∈ {1, …, S}
\{m}. We assume that [W̃ ]m,n and [W̃ ]k,n are nonzero. From
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[W̃ ]m,n = 0 and (47) we have

a1l
GE
m + m

( )
lHs
n − a2l

GE
m + ms2

n = 0 (48)

which leads to m = lGEm a2 − a1l
Hs
n

( )( )
/ lHs

n + s2
n

( )
. From

W̃
[ ]

k,n
= 0 and (47), we obtain

a1l
GE
k + m

( )
lHs
n − a2l

GE
k + ms2

n = 0 (49)

Substituting m = lGEm a2 − a1l
Hs
n

( )( )
/ lHs

n + s2
n

( )
in (49)

leads to

lGEk − lGEm
( )

a1l
Hs
n − a2

( ) = 0 (50)

The probability of lGEk − lGEm
( ) = 0 is zero. Thus,

a1l
Hs
n − a2 = 0 with probability one and we must have

lHs
n = a2

a1
=

tr diag lHs( )
W̃

H
diag lGE( )

W̃
( )

tr W̃
H
diag(lGE)W̃

( )
+ tr(RE)s2

v/s
2
n

with probability one. There may be some W̃ which satisfy
(47) with more than one nonzero element in the nth
column. However, we show that such a matrix is a
non-optimal extremum. From lHs

n = a2/a1, we have
m = lGEm a2 − a1l

Hs
n

( )( )
/ lHs

n + s2
n

( ) = 0. Using μ = 0 in

(47), we have a1l
GE
i lHs

j − lHs
n

( )
W̃
[ ]

i,j
= 0 for all i, j. The

probability of lHs
j − lHs

n = 0 is zero for j≠ n and

a1l
GE
i = 0; thus, we must have [W̃ ]i,j = 0 for all j≠ n, that

is, all columns of W̃ are zero excluding the nth column. For
such a matrix, we can rewrite (10) as

max
{[W̃ ]i,n}

lHs
n

∑min {S,L}
i=1 lGEi [W̃ ]i,n

∣∣∣ ∣∣∣2∑min {S,L}
i=1 lGEi [W̃ ]i,n

∣∣∣ ∣∣∣2+tr RE

( )
s2
v/s

2
n

s.t. lHs
n + s2

n

( ) ∑min {S,L}

i=1
[W̃ ]i,n

∣∣∣ ∣∣∣2= Pr

(51)

which is equivalent to the following optimisation problem

max
{|[W̃ ]i,n|2}

∑min {S,L}

i=1

lGEi [W̃ ]i,n

∣∣∣ ∣∣∣2
s.t. lHs

n + s2
n

( ) ∑min {S,L}

i=1
[W̃ ]i,n

∣∣∣ ∣∣∣2= Pr

(52)

The solution for this linear programming problem is

[W̃ ]i,n

∣∣∣ ∣∣∣2= Prd(i− 1)/ lHs
n + s2

n

( )
. Thus, except for the

(1, n)th element, all the other elements of W̃ are zero,
which is in contradiction with the assumption that [W̃ ]m,n
and [W̃ ]k,n are non-zero.

(2) Each row of W̃ contains no more than one non-zero
element

if [W̃ ]m,n = 0, we prove that [W̃ ]m,q = 0, ∀ q∈ {1, …, S}
\{n}. Assume that [W̃ ]m,n = 0 and [W̃ ]m,q = 0. Since

[W̃ ]m,n and [W̃ ]m,q are non-zero, from (47), we conclude
(48) and

a1l
GE
m + m

( )
lHs
q − a2l

GE
m + ms2

n = 0 (53)

By subtracting (48) from (53) we have

a1l
GE
m + m

( )
lHs
q − lHs

n

( )
= 0 (54)

Since the probability that lHs
q = lHs

n is zero, from (54), we
have m = −a1l

GE
m with probability one. Substituting this μ

in (48) leads to s2
na1 + a2

( )
lGEm = 0, which is impossible

since s2
na1 + a2 . 0 and lGEm = 0. Therefore

[
W̃

]
m,n

and[
W̃

]
m,q cannot be non-zero, simultaneously.

Thus, W̃ has up to one non-zero element in each column
and each row. Therefore by permutations of the columns
and rows of W̃ , we can convert it to a diagonal matrix S.
Therefore we have W̃ = PGSP

H
H , where PH and PG are the

permutation matrices. Finally, using the definition of W̃ , we
have W = UGEW̃VH

Hs and (11). □
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