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Abstract: A method is implemented to compensate for signal correlation in transmitting antenna arrays of
multiple-input multiple-output (MIMO) wireless communication systems. Based on the knowledge of the
transmitting channel covariance matrix, a de-correlation transform is designed to remove spatial correlation
and antenna mutual coupling in the transmitting antennas. Simulation results show that if there is no
correlation in the receiving antennas, this method can be used to realise capacities equivalent to those under
the independent and identically distributed (i.i.d.) channel conditions. Results reveal that when there is
correlation in the receiving antennas, compensation is more effective when the numbers of elements in the
transmitting and receiving arrays are large. For transmitting and receiving arrays with a fixed number of
elements, compensation is more effective when the antenna separation is small.

1 Introduction
Multiple-input multiple-output (MIMO) technique has been
suggested as a promising method to increase data transmission
rate in multipath environments [1]. However, it is also known
that signal correlation between the input ports or between the
output ports can limit the increase in channel capacity [2, 3].
Major contributions to signal correlation are the spatial
correlation and the mutual coupling effect between the
antenna elements in the transmitter or receiver [4–7]. In
previous studies ([8–10]), it was shown that when the
channel covariance matrix is known at the transmitter, an
optimum transmission strategy along the eigenvectors of the
covariance matrix could be derived to maximise the channel
capacity. In this paper, our aim is to introduce a method to
implement this strategy in practical MIMO transmitting
antenna arrays through a de-correlation transform which
compensates for (i.e. effectively removes) signal correlation
in the transmitting antennas. The implementation is studied
by computer simulation in which all antenna elements in the
transmitting and receiving arrays are analysed by the full-
wave moment method which takes into account antenna

mutual coupling effect, antenna terminal loading effect and
antenna gains. The random multipath signals are combined
with the deterministic response of the antenna elements to
form the random channel matrix whose elements give the
voltage ratios for output ports to input ports. The channel
matrix is normalised with respect to the average power
received by a single antenna in the receiver. This eliminates
the effect of total transmit power on the calculation of the
channel capacity. The average channel capacities and the
channel capacity distribution functions are obtained to
indicate the performance of this compensation method. The
obtained results also reveal the limitations imposed by the
receiving array on this compensation method, which
achieves the maximum ideal channel capacity only when
there is no correlation in the receiving array.

2 The compensation method
Consider a narrow-band MIMO system described by the
following equation

y ¼ Hxþ n (1)
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where y is the received signal vector, x is the input signal
vector passed (after a proper encoding process) to the
transmitting antennas, H is the channel matrix and n is the
Gaussian noise vector with independent noise at each
receiving antenna. Let there be nT transmitting antennas
and nR receiving antennas in the system. The elements of
the channel matrix H represent the path gains measured
from inputs ports of the transmitting antennas to the
output ports of the receiving antennas. That is, they
include spatial correlation, antenna mutual coupling and
loading effect of the antennas at both the transmitting and
receiving arrays. We also assume that the MIMO system is
a narrow-band system so that fading of H is flat across the
bandwidth and can be represented by a matrix of random
entries. Particularly, the elements of H can be modelled by
complex Gaussian random variables.

Consider the ith received signal yi in the vector y in (1),
that is

yi ¼ hT
irow � xþ ni , i ¼ 1, 2, . . . , nR (2)

where hirow ¼ [Hi1Hi2 . . . HinT
] is the ith row vector of H

and ni is the noise at the ith receiving antenna and the
superscript ‘T’ denotes the transpose operation. We form
the covariance matrix Ri of hirow. Assuming Ri is non-
singular, we can obtain its eigenvalue decomposition as
follows

Ri ¼ SLS
H (3)

where S and L are, respectively, the matrices containing the
eigenvectors and eigenvalues of the covariance matrix Ri, and
the superscript ‘H’ denotes the conjugate transpose operation.
When the separation between the transmitting and receiving
arrays is sufficiently large such that the position of a particular
antenna element in the transmitting or receiving array has
only a negligible effect on the average characteristic of the
channel response, Ri is independent of i [11] and we can
drop the subscript i. Note that R includes all the channel
correlation effects including spatial correlation and antenna
mutual coupling. From (3), hirow can be generated by the
following expression [12]

hirow ¼ GTL1=2ST
¼ GTB (4)

where G is a 1 � nT row vector containing independent and
identically distributed (i.i.d.) Gaussian random elements with
a zero mean and a unit variance and B ¼ L1=2ST. Now
consider a transformation to the input signal x effected by
the inverse transform of B such that

x! x0 ¼ B�1x ¼ L1=2ST
� ��1

x (5)

Now the transformed input signal vector x0 instead of x
is passed to the transmitting array. Then the ith

received signal y0i becomes

y0i ¼ hT
i row � x

0
þ ni

¼ BTG � B�1xþ ni

¼ G � xþ ni

(6)

From (6), it can be seen that if the signal vector x0, instead of
x, is transmitted, at the receiver side, the channels at the ith
antenna appear to be completely uncorrelated (represented by
G), that is the i.i.d. case when the signal propagation
environment is rich in multipath scattering. We term B21

the de-correlation transform. Note that the result in (6)
applies to the received signals at every receiving antenna.

To implement the de-correlation transformation, we need
to obtain B from hirow first. Fig. 1 illustrates schematically the
implementation of the de-correlation transformation for the
case of nT ¼ 3. We let the de-correlation transform B21 be

B�1
¼

b011 b012 b013

b021 b022 b023

b031 b032 b033

2
4

3
5 (7)

As shown in Fig. 1a, the input signals x1, x2 and x3 are first
multiplied by the transformation gains given by the elements
of the de-correlation transform B21. Next they excite all the
three transmitting antennas simultaneously. Fig. 1b shows the
case without implementing the de-correlation transformation.
The three signals excite the transmitting antennas directly.

It is well known that correlation compensation methods,
such as this one, cannot be applied to the receiving
antennas which receive signals as well as thermal noise.
The reason is that any compensation operation made to the
received signals will also have the same effect on noise,
making it become correlated at different receiving ports.
This has the tendency to deteriorate the signal-to-noise
ratio (SNR), eliminating any improvement obtained in the
removing of correlation in the signals.

3 Computer simulation study
and discussions
3.1 Simulation model

The proposed compensation method is studied by computer
simulation. To demonstrate the effect of compensation on
signal correlation, we choose a typically rich multipath
environment which is modelled by the Clarke’s model [13].
In Clarke’s model, multipath signals arrive uniformly from
all directions in the azimuth plane at the receiving array.
Similarly, signals from the transmitting array leave equally
likely in all directions and they are scattered by scatterers
distributed evenly in all directions in the azimuth plane of
the transmitting array. This model has frequently been used
in previous MIMO channel simulations with some minor
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differences [2, 4, 14]. A simplified schematic drawing in
Fig. 2 helps illustrate this signal model. The consequence
of applying Clarke’s signal model is the Rayleigh fading
channels. A typical type of antenna elements which gives
rise to Clarke’s signal model in the presence of the scatters
distributed in all directions is the monopole antennas that
provide an omni-directional radiation pattern. In the
following study, we will use wire monopole arrays as both
the transmitting and receiving arrays.

To simulate the channel matrix elements, we use the
narrow-band approximation [15] in which all the
significant parts of the multipath signals arrive at a
receiving antenna within a time interval much shorter than

the coherent time of the channel. In computer simulation,
the far field radiated by a particular transmitting antenna,
for example the jth transmitting antenna (which is excited
by a unit voltage source), is spread over all directions in the
azimuth plane and scattered by scatterers distributed
around the antenna in the form of a circle (in the far-field
region, see Fig. 2). Each scatterer then acts as a secondary
source which produces a plane wave (at a distance far from
the scatterer) propagating in the direction of the receiving
array and with an amplitude proportional to the strength of
the far field radiated by the transmitting antenna in the
direction of this scatter. The amplitude of this plane wave
is then multiplied with a complex Gaussian random
number which models the random characteristic of the
channel. The sum of all the plane waves generated by the
scatterers is then the transmitted signal from this jth
transmitting antenna. When this antenna radiates in this
way in the presence of all other transmitting antennas
in the array, the correct mutual coupling effect, spatial
correlation as well as the loading effect of the terminal load
of this antenna are all taken into account.

At the receiver side, the received signal at a particular
receiving antenna, for example the ith receiving antenna, is
the sum of all the scattered signals from the scatterers
distributed around the antenna in the form of a circle (in
the far-field region, see Fig. 2). Each scatterer corresponds
to a plane wave source with a unit amplitude multiplied
with the sum of the transmitting plane wave generated by
all the transmitting antennas as described in the previous
paragraph. When this receiving antenna is excited by the
scattered signals from all the scatterers in this way and in
the presence of all other receiving antennas in the array, the
correct mutual coupling effect, spatial correlation as well as
the loading effect of the antenna terminal load are all taken
into account.

In mathematical form, the random channel gain from the
input port of the jth transmitting antenna to the output port
of the ith receiving antenna hij is then described by

hij ¼
1

G

XM
q¼1

Viq

XN

p¼1

EjpGpq

0
@

1
A (8)

where M and N are, respectively, the number of scatterers

Figure 1 Implementation of the de-correlation transformation
when there are three transmitting antennas

a De-correlation transformation
b No de-correlation transformation

Figure 2 Signal model at the transmitter and receiver used
in the computer simulations
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around the receiver and the transmitter. M and N have to be
sufficiently large in simulation. Ejp is the far-field strength (a
complex number) at the position of the pth scatterer with
the far field generated by the jth transmitting antenna. Vip is
the received voltage developed at the output port of the ith
receiving antenna because of the scattered signal from the
qth scatterer. Gpq is a zero-mean and unit-variance complex
Gaussian random number which is generated once for each
p and q. So for each realisation of hij, Gpq has to be
generated M � N times. In (8), G is a normalisation
constant which is equal to the average power received by a
single receiving antenna when all the transmitting antennas
are radiating. G is actually a constant accounting for the path
loss from the transmitter to the receiver. To find G, a single
receiving antenna is placed at the receiver side and the
average power it receives from all the transmitting antennas
is then numerically equal to G. Once hij is known for all
transmitting and receiving antenna pairs, the channel matrix
H is determined and the channel capacity is obtained by

C ¼
log2 [ det (I nR þ rHH H)] if nR � nT

log2 [ det (I nR þ rH HH )] if nR . nT

(
(9)

where r is the average SNR per each receiving antenna,
measuring at the output port of a receiving antenna. Note
that when there is no signal correlation, the capacity in (9)
can be maximised by using an equal power transmission
strategy. The use of the normalisation constant G in (8) and
the specification of the SNR r in (9) guarantee that the
average SNR at each receiving antenna is r when there is no
correlation among the receiving antennas. This specification
of the SNR is unaffected by the number of transmitting
antennas or the amount of total transmitted power. Note that
in (8) we have assumed that the far-field Ejp and the plane
wave source for exciting the receiving antennas to obtain the
voltage Vip are polarisation matched to the transmitting and
receiving antennas which are all aligned in the same direction.

3.2 Simulation results

We validate the simulation model first. This is done by
comparing our simulation results with those obtained by
measurements [4, 16]. In the following simulations, all
signals transmitted by the transmitting antennas (i.e. Ejp in
(8) ( j ¼ 1, 2, . . . , nT)) and all signals received by the
receiving antenna (i.e. Vip in (8) (i ¼ 1, 2, . . . , nR)) are
calculated by the moment method [17]. The well-known
thin-wire approximation is used in the numerical
calculation with each monopole antenna being divided into
20 segments over which the current distribution is
expanded by the piece-wise sinusoidal basis functions. The
Galerkin method is employed in the solution procedure.
The terminal loads connected to the transmitting and
receiving antennas are all equal to 50 V. Fig. 3 shows the
first comparison example in which the average channel
capacity of a 3 � 6 MIMO system [4] is obtained.
The measured values were obtained by Kildal and

Rosengren [4]. The receiving array is a monopole array
with six antennas arranged in the form of a circular array.
Scatterers around the receiving array are distributed only in
the upper hemisphere. They are placed evenly along three
horizontal circles at elevation angles of u ¼ 90, 60 and 308,
respectively. The number of scatterers along the circles at
u ¼ 90, 60 and 308 are, respectively, 10, 8 and 6. Therefore
M ¼ 24 in (8). The transmitted signals from the three
transmitting antennas are modelled by three i.i.d. Gaussian
random numbers with a unit variance and a zero mean.
This is because in [4], the three transmitting antennas were
placed far apart and assumed to be uncorrelated. The
average channel capacity is obtained over 3000 channel
realisations. It can be seen from Fig. 3 that our simulation
results are in close agreement with the measurement values.
Fig. 4 shows the second comparison example in which the
complementary cumulative distribution functions (ccdf ’s) of
the channel capacities of a 10 � 10 and a 2 � 2 MIMO
systems are simulated and compared with the measured
values obtained by Wallace and Jensen [16]. Both
transmitting and receiving arrays are uniform linear
monopole arrays. Scatterers around the transmitting and
receiving arrays are placed along a horizontal circle. Fifty
scatterers are used at both the transmitting and receiving
arrays, that is M ¼ N ¼ 50. The ccdf’s are obtained with
3000 channel realisations. It can be seen from Fig. 4 that
our simulation results are also in relatively good agreement
with the measurement values.

3.2.1 10 � 10 MIMO system with antenna
separation ¼ 0.25l: Next, we use the simulation

Figure 3 Simulated average channel capacity of a 3 � 6
MIMO system in comparison with the measured values
obtained in [4]

The six receiving antennas are wire monopoles and arranged in
form of a uniform circular array. The monopoles are with a
length ¼ 0.35l and wire radius ¼ 0.7 mm. The signals from the
three transmitting antennas are modelled by three i.i.d.
Gaussian random numbers with a unit variance and a zero
mean. The operation frequency is 900 MHz. The average SNR
per receiving antenna is r ¼ 15 dB. Each simulation result is
obtained from 3000 channel realisations
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model to investigate the effect of applying the compensation
method to de-correlate the signals transmitted by a
transmitting array. In the first example, the change of the
ccdf of a 10 � 10 MIMO system after compensation for
the channel correlation at the transmitter side is shown in
Fig. 5. This system is same as the 10 � 10 MIMO system
studied in [16]. Both the transmitting and receiving arrays
are uniform linear monopole arrays with a fixed length of
2.25l and an inter-element spacing of 0.25l. The

monopole antennas are with a length ¼ 0.28l and a wire
radius ¼ 0.4 mm. The operation frequency is 2.45 GHz.
The average SNR per receiving antenna is r ¼ 20 dB. The
numbers of scatterers encircling the transmitting and
receiving arrays are M ¼ N ¼ 50 (same for the subsequent
examples). In the simulation, we first obtain the covariance
matrix R in (3) (subscript i dropped) with the expectation
values calculated by 3000 channel realisations (same for the
subsequent examples). Then we calculate the de-correlation
transform matrix B21 as in (4). With B21, we modify the
excitation of the transmitting antennas in the way shown in
Fig. 1a and re-calculate the channel matrix H. The capacity
ccdf is then generated. In Fig. 5, we label the ccdf’s with
three types of channels: the coupled (i.e. un-compensated)
channels, the compensated channels and the i.i.d. channels.
It can be seen that the ccdf with compensated channels
shifts towards the right, indicating that the capacity has
increased. We find that the increase in the average capacity
is about 10%. However, when compared with the ccdf
obtained with i.i.d. channels, the increase in the capacity is
small. As mentioned in Section 2, the de-correlation
transform removes all the correlations between the different
transmitting channels. Hence, the difference between the
capacity with i.i.d. channels and that with compensated
channels must be because of the correlation in the receiving
array. This will be seen in the last example.

3.2.2 3 � 3 MIMO system with antenna
separation ¼ 0.15l: The next example is a 3 � 3
MIMO system with an antenna separation of 0.15l. The
monopole antennas are with a length ¼ 0.25l and a wire
radius ¼ 0.4 mm. The operation frequency is 2.45 GHz
and the average channel SNR per each receiving branch is
r ¼ 20 dB. Fig. 6 shows the change in the ccdf of channel

Figure 5 Simulated ccdf’s of the channel capacities of a
10 � 10 MIMO system with coupled, compensated and
i.i.d. channels

The antennas are monopoles with a length ¼ 0.28l and a wire
radius ¼ 0.4 mm. The arrays are uniform linear arrays with array
lengths fixed at 2.25l. The average SNR per receiving antenna is
r ¼ 20 dB and the operation frequency is 2.45 GHz

Figure 6 Change in the ccdf of channel capacity with
compensated channels for a 3 � 3 MIMO system with
monopoles antenna arrays

The monopole antennas are with a length ¼ 0.25l and a wire
radius ¼ 0.4 mm. The operation frequency is 2.45 GHz and the
average channel SNR per each receiving branch is r ¼ 20 dB.
The antenna separation is 0.15l for both the transmitting and
receiving arrays

Figure 4 Simulated ccdf’s of the channel capacities of a
10 � 10 and a 2 � 2 MIMO systems in comparison with
the measured values obtained in [16]

All the antennas are monopoles with a length ¼ 0.28l and a wire
radius ¼ 0.4 mm. The transmitting and the receiving arrays are
identical and in the form of uniform linear arrays with a fixed
array length of 2.25l for both systems. The operation frequency
is 2.45 GHz. The average SNR per receiving antenna is
r ¼ 20 dB. Each simulated ccdf curve is obtained by 3000
channel realisations
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capacity after compensation. We find that the increase in the
average capacity is about 7.5%. Compared with the first
example, it suggests that compensation is more effective
with larger transmitting and receiving arrays.

The reason for the de-correlation transform being able to
compensate for the channel correlation can be seen in
Fig. 7. Fig. 7a shows the element patterns for the
transmitting antennas before compensation, that is, the
coupled element patterns [18]. Fig. 7b shows the element
patterns after compensation, that is, after implementation
of the de-correlation transform. An important observation
from Fig. 7b is that the compensated element patterns are
spatially orthogonal whereas those in Fig. 7a are not.

3.2.3 3 � 3 MIMO system with different antenna
separations: In Fig. 8, we further investigate the effect of
compensation when antenna separation is changed. In this
figure, the variations of the average channel capacities with
antenna separation for the 3 � 3 MIMO system studied in
the second example are shown. Results shown are for three

cases: the coupled channels, the compensated channels and
the i.i.d. channels. It can be seen that the smaller the
antenna separation, the more effective is the compensation
method. We also see from Fig. 8 that the average capacity
with compensation only at the transmitter side is still far
below that of the i.i.d. case. The reason for this is that
correlation still exists in the receiving array.

3.2.4 3 � 3 MIMO system with negligible
correlation at the receiving antennas: In Fig. 9, we
investigate the case when there is no signal correlation in the
receiver side. The simplest method to do this is to separate
the receiving antennas sufficiently far from each other so that
correlation between them can be neglected. As shown in
Fig. 9, the average channel capacities of the 3 � 3 MIMO
system studied in the last example are indeed almost the same
as that for the i.i.d. case after compensation for the correlation
in the transmitting array. The antenna separation in the
receiving array is 2.0l and correlation among the receiving
antennas is almost zero. This example demonstrates that this
compensation method can completely remove signal

Figure 7 Antenna element patterns under the de-correlation transformation for the three transmitting antenna case

a Coupled element patterns without de-correlation transformation
b Coupled element patterns with de-correlation transformation
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correlation in the transmitting array and if there is no correlation
in the receiving array, the i.i.d. channel capacity can be obtained.

4 Conclusions
A method has been implemented to compensate for signal
correlation in MIMO transmitting antenna arrays. Based
on the optimum transmission strategy for MIMO systems,
a de-correlation transform has been designed to remove
spatial correlation and antenna mutual coupling in the

transmitting array. Simulation results show that this
method can completely remove signal correlation in the
transmitting arrays and if there is no correlation in the
receiving array, the i.i.d. channel capacity can be obtained
under the rich multipath scattering condition. Results also
reveal that when there is correlation in the receiving array,
compensation is more effective with larger transmitting and
receiving arrays. For transmitting and receiving arrays with
a fixed number of elements, compensation is more effective
when antenna separation is small.
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