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Abstract: Amethod for robust amplitude beamforming in linear antenna arrays is presented. The admissible tolerances on
the array excitations, described as real-valued intervals, are maximised regardless their nominal values, while
guaranteeing that the bounds of the radiated power patterns fit a-priori defined mask constraints. A set of
representative numerical results, concerned with different mask constraints as well as comparisons with state-of-the-art
approaches, is reported and discussed to assess the effectiveness of the proposed approach.

1 Introduction

For many years now, the design of phased arrays is one of the most
studied topic within the antenna community due to the wide number
of their applications. In some key areas, like communications and
radars, there is often the need of synthesising phased arrays with
directive beam patterns and low secondary lobes to effectively
suppress undesired signals/interferences troublesome for the
system reliability [1]. Towards this purpose, a wide set of design
techniques have been proposed in the literature to optimally set the
array excitations [2–4], although the antenna sidelobes turn out to
be significantly influenced by the accuracy in implementing these
latter [5, 6]. Due to this sensitivity/dependence, robust
beamforming methods for phased arrays have been introduced to
yield the desired performance with an high degree of reliability
through an ‘over design’ of the antenna layout and/or control
points. For instance, a method devoted to determine the average
sidelobe suppression achievable when dealing with Dolph–
Chebyshev excitations [7] and tolerance errors defined as a
percentage of the optimal weights has been proposed in [8].
Moreover, the computation of the array excitations that maximise
the gain of the nominal array, while keeping the pattern deviations
constant to random variations of the array control points around
their nominal values, has been addressed in [9] by modelling the
average power pattern as the superposition of the pattern generated
by the nominal array plus a ‘background’ power level proportional
to the antenna random errors. Such an approach has been
successively extended in [10] to take into account the correlations
among different error sources (e.g. amplitude, phase, and
positions). Under the hypothesis of random deviations from the
nominal weights, the direct optimisation of the performance of
phased arrays has been also addressed in a probabilistic sense [11].
More recently, another robust beamforming strategy has been
presented in [12] where a Monte Carlo method has been used to
determine the maximum tolerance errors on the element
excitations that still guarantee to fit the user-defined mask
constraints for 95%. Owing to the unavoidably high computational
burden, only a finite and limited number of error combinations,
among the whole infinite set of possibilities, can be contemplated
in such an analysis. To overcome this drawback, suitable
approaches based on the interval analysis (IA) [13, 14] have been
proposed in [15, 16]. Indeed, IA has been recently considered as a
powerful tool in several applicative areas of engineering
electromagnetics (e.g. the robust design of magnetic devices

[17, 18], the radar tracking [19], and the tolerance analysis of
reflector antennas [20]), thanks to its capability to naturally deal
with uncertainties and tolerance errors as well as to define
closed-form robust and reliable bounds by means of the arithmetic
of intervals. As for robust beamforming and assuming of a-priori
fixed tolerances, interval power patterns lying within mask
constraints have been yielded by optimising the values of the
nominal array amplitudes with a biologically inspired global
optimisation algorithm in [15] and, for pencil beam patterns,
through a deterministic convex minimisation procedure [16].

By taking inspiration from [12] and exploiting the features (i.e.
analytic and inclusive analysis) of the IA already assessed in
[15, 16], this paper is aimed at presenting a new approach,
preliminary introduced in [21], to the design of robust beamforming
networks of linear antenna arrays. Unlike [15, 16, 22, 23], the
tolerance errors, instead of the nominal excitations, are here
optimised to afford a radiation pattern fitting the user-defined
masks without a-priori assumptions on the nominal array
coefficients or the error distribution.

The outline of the paper is as follows. The problem is
mathematically formulated in Section 2 by defining the interval
power pattern as a function of the interval tolerance on the
amplitude excitations. Then, the synthesis approach is described in
terms of the optimisation of the excitation tolerances that
guarantee the IA-computed pattern bounds satisfy user-defined
constraints. In Section 3, a set of representative numerical results
is reported to validate the proposed method (Section 3.1) as well
as to assess its effectiveness in comparison with some
state-of-the-art robust beamforming techniques (Section 3.2).
Eventually, some conclusions are drawn (Section 4).

2 Mathematical formulation

Let us consider a linear antenna array of N elements, each one
controlled by a transmit/receive module whose amplitude (i.e. the
amplification/attenuation factor) is unknown even though
belonging to the interval of real values An (n = 1, …, N)

An = iAn
; sAn

[ ]
(1)

iAn
= inf An

{ }
and sAn

= sup {An} being the infimum (left
end-point) and the supremum (right end-point) of the admissible
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amplitude values, respectively. The width of the nth interval, given
by

vAn
= sAn

− iAn
, (2)

quantifies the tolerance range of each amplifier of the array, while the
interval mid-point

mAn
= iAn

+ sAn

2
(3)

Fig. 2 Robust beamforming method flowchart

Fig. 3 Descriptors of the power pattern mask

Fig. 4 Method validation (N = 20, d = l/2; uniform sidelobes mask: SLLU
=−20 dB, BWU = 0.24 [u], BWL = 0.09 [u], ΓL = 5 dB) – behaviour of the
cost function value in correspondence with the best particle of the swarm,
{M , W }( k)best W minb=1,...,B {F(W , M)( k)b }, versus the iteration index k

a Lower, Finf (M
(k)
best , W

(k)
best), and upper, Fsup(M

(k)
best , W

(k)
best), mask misfit terms

b Optimal tolerance width, v(k)
min W 1/F(k)

tol

Fig. 1 Descriptors of an interval complex value AF(θ)
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provides together with (2) a dual (with respect to (1)) description of
the nth amplitude interval An since iAn

= mAn
− (vAn

/2) and
sAn

= mAn
+ (vAn

/2).
Let us now determine the analytic expression of the interval power

pattern of the linear array, P(u), as a function of the descriptors of the
interval amplitudes, namely mAn

and vAn
(n = 1, …, N). The

(real-valued) interval power pattern function is defined as [22] (see
also Appendix)

P u( )W AF u( )| |2 (4)

AF(θ) being the (complex-valued) interval array factor (Fig. 1)
given by

AF(u) =
∑N
n=1

An e
j[b(n−1)d sin u+wn] (5)

where β = 2π/l is the free-space wavenumber, l is the wavelength, d is
the inter-element distance, θ is the angular rotation with respect to the
boresight direction orthogonal to the array axis, and jn, n = 1, …, N
is the set of error-free phase weights. The supremum and the infimum
of P(u) are equal to [22]

sP u( ) = mAFR u( )
∣∣∣ ∣∣∣+ vAFR u( )

2

( )2
+ mAFI u( )

∣∣∣ ∣∣∣+ vAF u( )
2

( )2
(6)

and (see (7)), respectively, being

mAFR u( )
vAFR u( )

{ }
=

∑N
n=1

mAn

vAn

{ }
cos b n− 1( )d sin u+ wn

[ ]
(8)

and

mAFI u( )
vAFI u( )

{ }
=

∑N
n=1

mAn

vAn

{ }
sin b n− 1( )d sin u+ wn

[ ]
. (9)

Let the user-defined radiation constraints be expressed as a pattern mask
defined by the lower L(θ) and the upper U(θ) bounds. To determine the
maximum tolerance error on the amplitude excitations still affording a

radiation pattern that fits the user-defined masks, the following cost
function is defined

F W , M( ) = atolFtol W( ) + ainfFinf W , M( ) + asupFsup W , M( ) (10)

and optimised by means of the particle swarm optimiser (PSO)-based
procedure in Fig. 2 according to the guidelines described in [15, 24],
W = {vAn

; n = 1, . . . , N} and M = {mAn
; n = 1, . . . , N} being the

problem unknowns, while αtol, αinf, and αsup are real-valued weighting
coefficients. Analogously to [15], the penalty terms

Finf W , M( ) =
∫p/2
−p/2

L u( ) − iP u( )
( )

H L u( ) − iP u( )
{ }

du (11)

and

Fsup W , M( ) =
∫p/2
−p/2

sP u( ) − U u( )( )
H sP u( ) − U u( ){ }

du, (12)

H{°} being the Heaviside step function (H{°} = 1 when ° ≥ 0 and H{°} = 0,
otherwise), quantify the ‘mismatching’ of the interval power pattern, P(u),

Fig. 5 Method validation (N = 20, d = l/2; uniform sidelobes mask:
SLLU =−20 dB, BWU = 0.24 [u], BWL = 0.09 [u], ΓL = 5 dB) – widths of
the interval amplitudes, W ( k)

best , versus the iteration index k

Fig. 6 Method validation (N = 20, d = l/2; uniform sidelobes mask:
SLLU =−20 dB, BWU = 0.24 [u], BWL = 0.09 [u], ΓL = 5 dB)

a Plots of the optimal interval amplitudes, An,opt, n = 1, …, N
b Plots of the corresponding interval power pattern Popt(u)

iP u( ) =

0 if 0 [ AFR u( ) and 0 [ AFI u( )

mAF R,I{ } u( )
∣∣∣ ∣∣∣− vAF R,I{ } u( )

2

( )2

if 0 [ AF I,R{ } u( )

mAFR u( )
∣∣∣ ∣∣∣− vAFR u( )

2

( )2
+ mAFI u( )

∣∣∣ ∣∣∣− vAFI u( )
2

( )2
otherwise

,

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(7)
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with the mask constraints, while the remaining term in (10)

Ftol W( ) = 1

vmin
(13)

being vmin W minn=1,...,N {vAn
}, forces the maximisation of the admissible

amplitude tolerance to improve as much as possible the robustness of the
beamforming configuration.

It is worth observing that because of (11) and (12), the cost
function not only depends on W , but also M since the interval

amplitudes An, n = 1, …, N, need to be determined to compute the
interval power pattern bounds through (6) and (7). However, (13)
is only function of W and it does not depend on the nominal
excitation values or interval mid-points.

3 Numerical results

In this section, the robust beamforming method is first assessed by
means of representative results concerned with the design of linear

Fig. 7 Method validation (N = 20, d = l/2; reference pattern mask: SLLU =−20 dB, BWU = 0.24 [u], BWL = 0.09 [u], ΓL = 5 dB)

a, b Plots of the optimal interval amplitudes, An,opt, n = 1, …, N
c, d Plots of the corresponding interval power pattern Popt(u) when setting a sidelobe depression of 5 dB within u = [+ 0.35:+ 0.65] (Figs. 7a and c) and a sidelobe increment of 8 dB
at u = [ ± 0.80: ± 1.00] (Figs. 7b and d ) within the reference pattern mask

Table 2 Method validation (N = 20, d = l/2; non-uniform sidelobes masks) – convergence values of {M , W } and dAn
, n = 1, …, N/2

n 1 2 3 4 5 6 7 8 9 10

Sidelobe depression
vAn

0.0607
mAn

0.3630 0.3010 0.5414 0.6228 0.6163 0.7655 0.7679 0.8401 0.9697 0.9697
dAn

8.35 10.09 5.60 4.87 4.92 3.96 3.95 3.61 3.13 3.13
End-fire sidelobe increment

vAn
0.0849

mAn
0.5510 0.2399 0.6711 0.3820 0.7314 0.8286 0.7340 0.9576 0.9576 0.9576

dAn
7.7 17.69 6.32 11.11 5.8 5.12 5.74 4.43 4.43 4.43

Table 1 Method validation (N = 20, d = l/2; uniform sidelobes mask: SLLU =−20 dB, BWU = 0.24 [u], BWL = 0.09 [u], ΓL = 5 dB) – convergence values of
{M , W } and dAn

, n = 1, …, N/2

n 1 2 3 4 5 6 7 8 9 10

vAn
0.0826

mAn
0.4975 0.3682 0.4585 0.6203 0.6497 0.7507 0.8262 0.9587 0.9587 0.9587

dAn
8.30 11.22 9.01 6.66 6.36 5.50 5.00 4.31 4.31 4.31
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arrays with secondary lobes having uniform and non-uniform
behaviours. Successively, a comparative assessment is carried out
by considering benchmark examples from the literature, namely
[15, 16]. In all examples, the optimisation of the two sets of
unknown parameters, W = {vAn

; n = 1, . . . , N} and
M = {mAn

; n = 1, . . . , N}, is addressed through the PSO with the
following calibration setup [24]: B = N (B being the swarm
dimension), w = 0.4 (w being the inertial weight), C1 =C2 = 2.0
(C1 and C2 being the cognitive and the social acceleration
coefficients, respectively), and K = 5 × 103 (K being the maximum

number of iterations). All simulations have been performed on a
standard laptop PC at 2.4GHz CPU with 2GB of RAM by
running a non-optimised software. As for the weighting
coefficients in (10), they have been chosen equal to αinf = αsup = 1
and αtol = 10−5. This latter value has been selected since the
threshold Φ = 10−5 has been found in [15] to be satisfactory to
yield an interval power pattern fitting the mask constraints, thus it
is expected that the optimisation acts on the tolerance parameter,
ωmin, mainly after the pattern bounds satisfaction.

3.1 Method validation

Let us consider a linear array of N = 20 d = l/2-spaced elements. The
power pattern mask has been chosen as shown in Fig. 3 by setting
SLLU =−20 dB, BWU = 0.24[u], BWL = 0.09[u], and ΓL = 5 dB
(u = sinθ). Due to the symmetric constraints and the main lobe
directed along boresight, θ0 = 0° (u0 = 0), the phase weights turned
out to be jn = 0, n = 1, …, N as (5). Under these hypothesis, only
the amplitudes of half elements of the array (n = 1, …, N/2) have
been optimised. Without loss of generality, the admissible values
of these coefficients have been assumed normalised and the lower
threshold of the minimum tolerance width has been set to ωlb =
0.05 to keep (13) finite.

Fig. 4 shows the behaviour of the cost function during the
optimisation process. The values of the cost function terms in
correspondence with the global best solution of the swarm, namely

M , W{ }(k)best W arg min
b=1,...,B

F W , M( )(k)b

{ }
, (14)

are given versus the iteration index, k, until convergence (i.e. k = K)
is reached after 14min. More specifically, the misfits with the lower

Fig. 8 Method validation (N = 20, d = l/2; reference pattern mask:
SLLU =−20 dB, BWU = 0.24 [u], BWL = 0.09 [u], ΓL = 5 dB) – behaviour of
v( k)
min versus the iteration index k in case of non-uniform power pattern masks

Fig. 9 Comparative assessment (benchmark case [15]: N = 26, d = l/2; uniform sidelobes mask: SLLU =−20 dB, BWU = 0.22 [u], BWL = 0.10 [u], ΓL = 5 dB)

a, b Plots of the optimal interval amplitudes, An,opt, n = 1, …, N
c, d Plots of the corresponding interval power patterns, Popt(u), synthesised with the method in [15] (Figs. 9a and c) setting davg = {1, 5, 8, 10}% and the proposed approach (Figs. 9b and d)
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(11) and the upper (12) mask constraints are reported in Fig. 4a,
while the tolerance width (i.e. the inverse of (13)) is displayed in
Fig. 4b. As it can be observed (Fig. 4b), the minimum tolerance

width, v(k)
min = minn=1,...,N W (k)

best

{ }
, k = 1, …, K, increases after the

first iterations throughout the whole optimisation process until
vopt = v(K)

min = 8.26× 10−2 that is an increment of almost 65%
with respect to its initial value, ωlb.

Another interesting outcome is outlined by the plots in Fig. 5
where the entries of the vector W (k)

best are shown at various steps of
the optimisation process. At the beginning, the tolerance errors on
the array elements are different. In some cases, there are elements
having tolerances twice the minimum value, v(k)

min. Throughout the
PSO optimisation, v(k)

min increases and the differences among the
tolerances minimise. Towards the convergence, all array elements
have almost the same tolerance value.

Fig. 6a and Table 1 give the values {M , W}opt defining the
optimal interval amplitude coefficients Aopt, while the
corresponding interval power pattern, Popt(u) (i.e. its upper and
lower bounds), is shown in Fig. 6b. As expected, the mask
requirements are fully satisfied (Fig. 6b). To give a quantitative
indication on the robustness of the optimised beamforming
networks, the following index has been computed:

dAn
= vAn

2
× 1

mAn

( )
× 100, n = 1, . . . , N (15)

for each element of the array (Table 1) along with its average,

davg = 1/N
∑N

n=1 dAn
. Having in mind that the lowest robustness

corresponds to δavg = 0.0, we have in our case δavg = 6.50.
The second example deals with masks having non-uniform upper

bounds, U(u), as shown in Figs. 7c and d. With reference to the
mask of the previous example, a sidelobe depression of 5 dB has
been set within the angular range u = [± 0.35: ± 0.65] in the first test
case, while the second one considered a sidelobe increment of 8 dB
close to the end-fire direction at u = [± 0.80: ± 1.00]. After 12min,
the PSO-optimised amplitudes turned out to be as shown in
Figs. 7a and b with values reported in Table 2. As it can be
observed, the upper bounds sP u( ) of the synthesised interval power
patterns follow the staircase behaviour of U(u) with sidelobe
depressions (Fig. 7c) or an increase of the sidelobe level close to
end-fire (Fig. 7d ), while always sP u( ) . iP u( ) ≥ L(u), ∀[u [ −1:1].
Concerning the minimum width v(k)

min shown in Fig. 8, it increases
during the optimisation whatever the test case at hand, even though
the value at the convergence turns out to be higher for Fig. 7b than
that in correspondence with Fig. 7a, due to the lighter sidelobe
requirements (Fig. 7d ). Likewise the previous example, all elements
of the array present at convergence an equal tolerance error that
amounts to ωopt = 6.07 × 10−2 (Fig. 7a) and ωopt = 8.49 × 10−2

(Fig. 7b), respectively, with an enhanced robustness of almost 21
and 70%, respectively, with respect to the tolerance initialisation.
Quantitatively, the average tolerances amount to δavg = 5.16 and
δavg = 7.28 for the beamforming configurations in Figs. 7a and b,
respectively. By observing the optimised distributions of the
interval amplitudes, there is a smooth transition between adjacent
elements in Fig. 7a, while sharper variations arise in Fig. 7b.

3.2 Comparative assessment

For comparison purposes, let us refer to the IA-based approaches
presented in [15, 16]. Concerning the latter, it is worthwhile
remembering that the values of the nominal excitations have been
optimised under the hypothesis of fixed tolerance errors, thus the
resulting value of dAn

, computed as in (15) by substituting mAn
with the nominal value, turns out to be equal for all array elements
and a-priori fixed to dAn

= davg. Differently, the proposed
approach is aimed at maximising the amplitude tolerance widths,
vAn

, n = 1, …, N, and therefore the value of δavg, to look for the
most robust beamforming setup fitting the pattern masks.

The first comparative benchmark example deals with mask
constraints L(u) and U(u) set as in [15] (i.e. SLLU =−20 dB,
BWU = 0.22 [u], BWL = 0.10 [u], and ΓL = 5 dB) and a
half-wavelength array of N = 26 elements. In [15], four different
simulations have been run by a-priori setting
dAn

= davg = {1, 5, 8, 10}, to yield the interval amplitude
excitations and the corresponding interval power patterns shown in
Figs. 9a and c, respectively. From the pattern plots, one can notice
that the solution optimised when δavg = 1 fully lies within the
lower and upper masks, but its bounds are far from the mask
limits. This means that larger excitation uncertainties can be
admitted. Indeed, the interval pattern for tolerances as δavg = 5 still
works, while larger deviations from the nominal value (starting
from δavg = 8 and more significantly when δavg = 10) turn out to be
unsatisfactory. On the contrary, the proposed approach allows one
to yield the solution in Figs. 9b and d having an average tolerance
of δavg = 10.8 (ωopt = 8.54 × 10−2).

Let us now consider the method in [16] where the robust
beamforming synthesis of pencil beams has been recast as the
maximisation of the peak value of iP u( ) subject to the upper bound
U(u) on the secondary lobes of sP u( ). Owing to the convexity of
the problem, the unique global optimum of the cost function at
hand has been computed with a deterministic method [16], but
analogously to [15], a key limitation for some engineering
applications is still the a-priori assumption on the value of δavg.
For a fair comparison, the new approach under analysis has been
run on the same test in [16] with N = 20, d = l/2, and δavg = 5, by
defining a pattern mask including the interval power pattern
synthesised with the convex optimisation [16] (i.e. SLLU =−21.5 dB,
BWU = 0.25 [u], BWL = 0.10 [u], and ΓL = 5 dB). At the PSO

Fig. 10 Comparative assessment (benchmark case [16]: N = 20, d = l/2;
SLLU =−21.5 dB, BWU = 0.25 [u], BWL = 0.10 [u], ΓL = 5 dB)

a Plots of the optimal interval amplitudes, An,opt, n = 1, …, N
b Plots of the corresponding interval power patterns, Popt(u), synthesised with the
method in [16] setting δavg = 5% and the proposed approach

IET Microw. Antennas Propag., 2016, Vol. 10, Iss. 2, pp. 208–214
213& The Institution of Engineering and Technology 2016



convergence, the minimum tolerance error was equal to ωopt =
6.57 × 10−2 and the robustness of the beamforming architecture
has been increased to δavg = 5.44. For completeness, the arising
interval amplitudes, An, n = 1, …, N, and the corresponding
interval pattern, P(u), are shown in Figs. 10a and b, respectively,
along with the results in [16].

4 Conclusions

The design of robust linear arrays radiating reliable power patterns
regardless the uncertainties on the amplitude coefficients of the
beamforming network has been addressed. The amplitude
tolerance has been maximised without a-priori hypothesis/
assumptions on the error distribution or reference/nominal
excitations, while forcing the bounds of the arising power pattern
to satisfy user-defined mask-power constraints. Towards this end, a
hybrid approach integrating the PSO for optimising the amplitude
tolerances and the IA-based analysis for analytically defining the
inclusive interval bounds of the power pattern has been presented.
The numerical assessment has shown that the proposed approach
provides a powerful tool for designing robust beamforming
weights and effectively compares with the state-of-the-art
literature, thanks to its capability to directly encompass the
maximisation of the admissible tolerance error in the optimisation
step.

Future advances, out-of-the scope of this paper, are expected in
planar array synthesis and optimisation of other descriptors of the
array control points (e.g. element phases or positions).
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7 Appendix: absolute value of a complex interval

Given the complex interval AF(θ) =AFR(θ ) + jAFI(θ), AFR(θ) and
AFI(θ) being its real-valued interval real and imaginary parts, the
corresponding absolute value is defined as

AF(u)
∣∣ ∣∣ = �������������������

AF2
R(u)+ AF2

I (u)
√

(16)

where the square of X WAFkR,Il u( ) is given as

X 2 =
min iX , sX

{ }( )2
; max iX , sX

{ }( )2[ ]
if 0 � X

0; max iX , sX
{ }( )2[ ]

if 0 [ X

⎧⎨
⎩ (17)

and the square root of Y W AF2
R u( ) + AF2

I u( )( )
is

��
Y

√
= ���

iY
√

;
���
sY

√[ ]
(18)

with iY ≥ 0.
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