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Abstract: One way for an antenna to achieve an ultra-wideband (UWB) performance is to employ a log-periodic array (LPA),
which usually involves many scaled elements cascaded one after another. If an LPA is infinite at both ends (infinitely small at one
end and extended to infinitely large at the other end), it is obvious that the input impedance of the array is periodical over
frequencies. However, for practical antennas, infinite LPAs have to be truncated. The purely periodical performance will not
hold anymore. On the other hand, UWB LPA antennas are often very large in terms of the wavelength at the highest
operating frequency, which makes numerical simulation very time consuming. The author presents a theoretical analysis of
the periodicity of the input impedance of a general finite LPA. New periodicity formulas are verified by examples of the
Eleven antenna – a folded dipole LPA, with simulated and measured data. By using the new periodicity formula, the input
impedance of a large LPA antenna at higher frequencies can be predicted by its values at lower frequencies, which leads to
an efficient calculation when a numerical simulation is employed, and helps to have an efficient design of large LPA antennas.

1 Introduction

Log-periodic array (LPA) antennas have been widely used in
wideband applications since the first one was introduced
50 years ago [1–3]. They can provide a constant radiation
function and a low reflection coefficient over a wide-
frequency band, which are demanded in many applications.

Recent developments on LPA antennas can be summarised
by the representatively selected literatures of [4–12], where
different LPA antennas have been investigated for different
applications. Particularly, the next generation of ultra-
wideband (UWB) radio telescopes has drawn a lot of
attention for extensive research on UWB antennas [13],
such as in the square kilometre array (SKA) and the Very
Long Baseline Interferometry 2010 (VLBL2010) projects.

A new decade bandwidth feed for reflector antennas, the
Eleven feed [11], has been developed during recent years at
Chalmers University of Technology. The Eleven feed is a
cascaded log-periodic-folded dipole array, having a nearly
constant beamwidth with about 11 dBi directivity, a fixed
phase centre location and a simple geometry of a low profile.

Although LPA antennas have been investigated
intensively, some new questions still arise. For example, if
an LPA is infinite at both ends, infinitely small at one end
and extended to infinitely large at the other end, it is
obvious that both the radiation function and the input
impedance are periodical over frequencies. However, in
practice, infinite LPAs have to be truncated at both ends.
The pure periodicity of the performance does not hold
anymore. On the other hand, the size of most LPAs is quite
large in terms of the wavelength at the highest operating
frequency. A large computation time is therefore needed for

obtaining the performance when a numerical method is
employed.

The purpose of this paper is to derive a new formula of the
periodicity for the input impedance of a general finite LPA
antenna. By applying this formula, the input impedance of
a large LPA antenna at higher frequencies can be calculated
by its values at lower frequencies. When a numerical
approach is employed, this leads to a very efficient
impedance calculation, because the size of an LPA in terms
of the wavelength is smaller at a low frequency than that at
a high frequency.

In this paper, the theoretical derivation of the periodicity
formula is presented in Section 2. Then, an extension of
this theorem is derived in Section 3. Two examples are
presented in Section 4 with simulated and measured data
for verifying the theoretical analysis.

2 Periodicity of the input impedance

Without loss of generality, the diagram in Fig. 1 is used to
represent an N-element cascaded LPA, where the dipole
symbols indicate the radiation from elements. In the
analysis here, it is assumed that the excitation (feeding) port
is at the smallest radiation element of the array, which is
also the case in the most LPAs in practice.

2.1 Three state regions

In general, LPA antennas have three state regions [14]
(transmission-line, active and stop) over their operating
frequency band. We define the three regions in a stricter
way than that in [14] for the sake of the analysis here.
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2.1.1 Transmission-line region: Transmission-line
region at frequency f is such a region where the elements
do not radiate. This is because the size of the elements is
much smaller than the wavelength at f, and therefore the
elements function as a transmission line.

Since there is no radiation from the elements in this region,
no mutual couplings exist between them and the rest elements
in the LPA. Therefore the total ABCD matrix of this region
can be obtained by multiplication of all ABCD matrices of
each element in the region. Referring to Fig. 1, the total
ABCD matrix Ttrans of the transmission-line region at
frequency f, including elements from 1 to L, can be
expressed by

T trans(f ) =
∏L

i=1

T i(f ) (1)

where Ti( f ), (i ¼ 1, . . . , L) is the ABCD matrix of the ith
element in the LPA.

2.1.2 Active region: Active region at frequency f is such a
region where the elements radiate. Referring to Fig. 1, the
active region includes elements from L + 1 to M. Since
there are radiation from these elements and therefore mutual
couplings among them, we cannot simply multiply all
element ABCD matrices in this region to obtain the total
ABCD matrix of the region.

2.1.3 Stop region: The stop region at frequency f is the
region after the active region, where there is no radiation
from the elements because of the null currents on the
elements. The null currents on the elements in the stop
region are the result of the following fact. The current passed
through the previous element and the current induced by
mutual couplings from the active elements are of the same
amplitude and 1808 out of phase, as depicted in Fig. 2. In an
ideal case, the current on the elements in the stop region
vanishes. More realistically in practice, the level of the
element current in the region is low. Referring to Fig. 1, we
have

Ii(f ) ≃ 0, i ≥ M + 1 (2)

It should be noted that not all LPAs have the three regions. The

configuration of the radiation elements in an LPA should
satisfy certain conditions to have the three regions [15]. Most
LPAs in practice satisfy the conditions. For the analysis in
the paper, we assume that the LPA has these three regions.

2.2 Properties and theorem

When an LPA has the above-defined three regions, we have
the following properties and theorem.

Property I: If elements i and i + 1 are in the transmission-line
region, because of the log-periodic scaling of the geometry,
we have

T i+1(f /k) = T i(f ) (3)

where k is the scaling factor of the LPA. Therefore we have

T i+1(f /ki) = T1(f ) (4)

Property II: If the active region at frequency f includes
elements from L + 1 to M, then the active region at
frequency f/k will include elements from L + 2 to M + 1
because of the log-periodic scaling of the geometry. From
this geometry scaling and the fact that the stop region does

Fig. 2 Transmission current and induced current because of
mutual couplings

Fig. 1 Block diagram presentation of a general N-element cascaded LPA. Vi and Ii (i ¼ 1, . . . , N + 1) are port voltages and currents
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not affect the currents on the elements in the active region, we
have

Zin,L+2(f /k) = Zin,L+1(f ) (5)

where Zin,L+2 and Zin,L+1 are the input impedance at input
ports of element L + 2 and L + 1, respectively.

Theorem: Assume that an LPA antenna has an operating
frequency band from flow to fhigh, and in this frequency
band there always exist the above-defined three regions.
Then, if frequencies f and f/kn are both in the frequency
band, we have

Zin(f /kn) = T (n)(f , k) ⊕ Zin(f ) (6)

where

T (n)(f , k) = A(n) B(n)

C(n) D(n)

[ ]
=

∏n−1

i=0

T1(f /kn−i) (7)

and operation ⊕ means that

T (n)(f , k) ⊕ Zin(f ) = A(n) · Zin(f ) + B(n)

C(n) · Zin(f ) + D(n)
(8)

Proof: Referring to Fig. 1, the transmission-line region
includes elements from 1 to L at frequency f. Then, we have

V1(f )
I1(f )

[ ]
=

∏L

i=1

T i(f )
VL+1(f )
IL+1(f )

[ ]
(9)

From (9), we can obtain the relation between the input
impedance of the array Zin ¼ V1/I1 and the input impedance
at the port of the active region Zin,L+1 ¼ VL+1/IL+1 as

Zin(f ) =
∏L

i=1

T i(f ) ⊕ Zin,L+1(f ) (10)

At frequency f/k, the transmission-line region therefore
includes elements from 1 to L + 1, and we have

V1(f /k)

I1(f /k)

[ ]
=

∏L+1

i=1

T i(f /k)
VL+2(f /k)

IL+2(f /k)

[ ]

=by(3)
T1(f /k)

∏L

i=1

T i(f )
VL+2(f /k)

IL+2(f /k)

[ ]
(11)

From the above, we can obtain

Zin(f /k) = T1(f /k)
∏L

i=1

T i(f ) ⊕ Zin,L+2(f /k)

=by(5)
T1(f /k)

∏L

i=1

T i(f ) ⊕ Zin,L+1(f )

=by(10)
T1(f /k) ⊕ Zin(f ) (12)

By the same procedure, we have

Zin(f /kn) =
∏n−1

i=0

T1(f /kn−i) ⊕ Zin(f )

= T (n)(f , k) ⊕ Zin(f )

(13)

Variation of the theorem:We can re-write the theorem in (6)
as follows

Zin(f ) = T (n)(f , k) ⊖ Zin(f /kn) (14)

where T (n)( f,k) is the same as defined in (7) and operation ⊖
means that

T (n)(f , k) ⊖ Zin(f /kn) = D(n) · Zin(f /kn) − B(n)

A(n) − C(n) · Zin(f /kn)
(15)

The above formula states that the input impedance of an LPA
at a high frequency can be calculated by its value at a low
frequency and the ABCD matrix of the first element over a
band from the lower frequency to the higher frequency.
When we use a numerical electromagnetic solver to obtain
the input impedance of a large LPA over a wide frequency
band, we need only simulate (i) the whole geometry of the
LPA antenna up to a much lower frequency than the
highest operating frequency (for example, the one-third of
the highest frequency) and (ii) a simple geometry that
includes only the first element over the whole frequency
band, instead of simulating the whole geometry over the
whole band (often large computation time). Therefore the
theorem in (14) provides an efficient calculation.

3 Extension of the periodicity theorem

In practice, there are always feeding networks or other circuits
that are not of log-periodic structure connected to LPA
antennas, as shown in Fig. 3. We use T0( f ) to represent a
feeding network as

T0 = A0 B0

C0 D0

[ ]
(16)

Then, the total input impedance at the feeding port p0 can be
expressed as

Zin0(f ) = T0(f ) ⊕ Zin(f )

= T0(f ) ⊕ {T (n)(f , k)⊖Zin(f /kn)} (17)

This states that in order to obtain the input impedance of an

Fig. 3 Diagram of LPA antenna with a feeding network

IET Microw. Antennas Propag., 2012, Vol. 6, Iss. 10, pp. 1117–1122 1119
doi: 10.1049/iet-map.2011.0599 & The Institution of Engineering and Technology 2012

www.ietdl.org



LPA antenna with a feeding network, instead of simulating
the whole structure over the whole band of ( flow,fhigh), we
can simulate the following three parts: as shown in Fig. 3:
(i) only the feeding network over the whole band of
( flow,fhigh); (ii) only the first element of the LPA over the
whole band of ( flow,fhigh); and (iii) the whole log-periodic
structure over the band of ( flow,f1), where f1 ¼ fhigh (e.g.
f1 ≤ fhigh/3). Then by using (17), we can calculate the input
impedance of the whole LPA antenna over the whole band
efficiently.

The criterion of choosing f1 is that the element with the
operating frequency of f1 should have at least five-element
spacing to the low-frequency-end board of the array, such
as the case in this paper.

4 Examples

Two examples of the Eleven antenna are presented here to
verify the analysis in Sections 2 and 3. The basic geometry
of the Eleven antenna is two parallel dipoles separated by
half-wavelength over a ground plane, referred to as the 11
configuration and the reason for the name of the antenna.

For convenience, the reflection coefficient G is used for the
verification, instead of using the input impedance Zin, with the
relation between them as

G(f ) = Zin(f ) − Z0

Zin(f ) + Z0

(18)

where Z0 is the characteristic impedance of the transmission
line at the input port.

4.1 Simulation of a 14-pair-folded-dipole Eleven
antenna without feeding network

Fig. 4 shows the configuration of a 14-pair folded-dipole
Eleven antenna, modelled in CST Microwave Studio [16].
Referring to Fig. 5a, the definition of the different
dimensions can be obtained by corresponding data in both
Table 1 and Fig. 5a.

The S matrix of a single-folded dipole can be obtained
analytically [17]. However, for simplicity and convenience,
the numerically simulated results are used here. Fig. 5b
shows the simulated S parameters of the first-folded dipole
of the array. It can be seen that the first-folded dipole
functions as an almost perfect transmission line up to

6 GHz (very low reflection coefficient and almost 0 dB
transmission coefficient). Above 6 GHz, it starts radiating
gradually. However up to 15 GHz, the transmission loss of
the first-folded dipole is still better than 20.5 dB, which
means that the dipole can still be considered as a good
transmission line up to 15 GHz.

Fig. 6 shows the simulated and calculated results of the
reflection coefficient of the Eleven antenna with the port
impedance of Z0 ¼ 200 V by the following two methods:
(i) CST-full simulation of the whole geometry over
2–18 GHz (solid line); and (ii) CST simulations of the
whole geometry over 2–4.8 GHz and only the first dipole
over 2–18 GHz, and then using (14) and (18) to predict the
reflection coefficient over 4.8–18 GHz (dash line). It can be
seen that the agreement between these two methods is very
good up to 15 GHz. The average error of the peak values
(11 peaks from 4.8 to 16 GHz) is about 1.6%. At the
frequencies above 15 GHz, the discrepancy starts to
increase, since the first dipoles starts to radiate, not as a
transmission line anymore at these higher frequencies.

It took 41 266 s (11 h 27 m 46 s) by the first method (full-
CST simulation) and 6318 s (1 h 45 m 9 s) by the second
method (using the new periodicity theorem) on a same PC
(AMD Athlon dual core Processor 4400, 2.3 GHz, 4.00 GB
RAM). The computational efficiency has been increased
more than 6 times by using the new periodicity theorem.

Fig. 4 Configuration of the 14-pair Eleven antenna

Fig. 5 CST-simulated S parameters of the first-folded dipole in the 14-pair Eleven antenna

a Definition of dimensions
b Simulated data
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4.2 Simulation and measurement of a 1–10 GHz
Eleven antenna with feeding network

The 1–10 GHz linearly polarised Eleven antenna, made of
metal strips on a thin Kevlar sheet and supported by a foam
structure, was reported in [8] and is shown here in Fig. 7.
Its dimensions can be found in [8].

The antenna consists of a simple centre feeding network
(non-log-periodic structure, see the CST modelling shown
in Fig. 8) and a pair of 21-folded-dipole LPAs. The first
two-folded dipoles were designed by different parameters
from the rest 19 dipoles, which makes these two dipoles a
non-log-periodic structure compared with the rest 19
dipoles (Fig. 8a). Therefore we include these two dipoles in
the non-log-periodic feeding network shown in Fig. 8b. The
port definitions are shown in Fig. 8c, where the centre
dielectric cylinder and the ground plane are hidden for
clarity. The port impedance Z0 is 100 V at port 1 and
200 V at port 2. A symmetry plane of perfect magnetic
conductor (PMC) is employed in the y–z plane in the
modelling.

Since the metal strips and the Kevlar sheet are very thin (35
and 20 mm thick, respectively), we can assume that they have
infinitely thin thickness. The relative permittivity of the foam
is very close to 1; so its effect is negligible. Therefore the rest
19-folded-dipole-pair LPA is a purely log-periodic structure.

The reflection coefficient of the antenna is obtained by
using the new periodicity theorem in the following steps:

Fig. 8 Feeding network of the 1–10 GHz Eleven feed modelled in CST MWS, which includes the first two non-log-periodic dipoles

a Centre part
b Feeding network
c Port definitions

Fig. 9 Simulated S parameters of the feeding network of the
1–10 GHz Eleven antenna

Fig. 6 Simulated and calculated reflection coefficient of the 14-
pair Eleven antenna

Fig. 7 Prototype of 1–10 GHz linearly polarised Eleven antenna

Table 1 Dimensions of dipole i (i ¼ 1, . . . , 14) of the 14-pair

folded-dipole array with a scaling factor k

Li, mm li, mm Wi, mm S1i, mm

5.26ki21 4.34ki21 0.27ki21 0.46ki21

S2i, mm hi, mm Di, mm k

0.57ki21 13.3ki21 4.12ki21 1.24
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1. CST simulation of the feeding network including the two
first dipoles over 1–13 GHz to obtain T0( f ). Fig. 9 shows the
simulated magnitudes of the S parameters of this feeding
network.
2. CST simulation of the third dipole of the LPA over 1–
13 GHz to obtain T n( f,k). Fig. 10 shows the simulated
magnitudes of the S parameters, where we can see that this
dipole functions as a good transmission line up to 10 GHz.
3. CST simulation of the pure LPA (from dipole 3 to 21) only
over 1–4.3 GHz.
4. Using (17) and (18) to calculate the reflection coefficient
over 4.3–13 GHz (the dashed line in Fig. 11).

Fig. 11 shows the result of the present method (the dashed
line), together with the measurement data (dotted line) and the
full-CST simulation data of the whole geometry over 1–
13 GHz. The average error of the peak values (10 peaks
from 4.3 to 12 GHz) is about 2.7%. It took 19 234 s (5 h
20 m 34 s) by the full-CST simulation and 3505 s (0 h 58 m
5 s) by using the new periodicity theorem on a same PC
(AMD Athlon dual core Processor 4400, 2.3 GHz, 4.00 GB
RAM). The computation time for the present method is less

than one-fifth of the time for the full-CST simulation. It can
be seen that the present method by applying the new
periodicity formula can predict the input impedance of a
large LPA antenna accurately and efficiently.

It should be noted that the present method gives an efficient
calculation of the input impedance when a numerical
simulation, not only for CST MWS, is involved.

5 Conclusion

In this paper, a new periodicity theorem for the input
impedance of a general large LPA antenna has been
derived. By using this theorem, the input impedance of a
large LPA antenna can be obtained very efficiently when a
numerical simulation is involved, such as more than 5–6
times faster computations for the cases in this paper.
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