
Modeling large nonuniform optical antenna arrays for metasurface
application

Tianyu Dong,1,2,a) Xikui Ma,1 and Raj Mittra2,b)

1State Key Lab of Electrical Insulation and Power Equipment, School of Electrical Engineering,
Xi’an Jiaotong University, Xi’an 710049, China
2Electromagnetic Communication Laboratory, Department of Electrical Engineering,
The Pennsylvania State University, University Park, Pennsylvania 16802, USA

(Received 8 May 2013; accepted 8 July 2013; published online 23 July 2013)

We analyze large non-uniform optical antenna arrays of nanorods, which form optical vortices,

axicons and lenses, by using a numerically efficient technique, called the Characteristics Basis

Function Method (CBFM). The efficiency is realized by deriving an accurate, efficient simplified

representation of nanorod, and by using the CBFM, which not only reduces the number of

unknowns significantly without sacrificing the computational accuracy, but also enables us to

handle large, truncated and non-uniform arrays. The method is numerically rigorous and includes

all of the mutual coupling effects to obtain accurate results. Furthermore, it is readily

parallelizable and can be generalized to handle more complex shapes of nanoantennas, without

any difficulty. VC 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4816351]

I. INTRODUCTION

Metamaterials (MTMs) that are made of subwavelength

composites (“meta-atoms”) have garnered a lot of attention

in recent years, because of their unique electromagnetic

properties that are unattainable in nature, with promise of

extraordinary functionalities and applications, such as nega-

tive refraction1 and invisibilities.2,3 Owing to the recent

advances in micro- and nano-fabrication techniques, many

prototypes of MTM have been demonstrated beyond micro-

wave frequencies, ranging from THz frequencies to infrared

and visible wavelengths.4

One of the most interesting metastructures is based on

the emerging concepts of optical antenna,5 with applications

in solar energy conversion,6 opto-electronics,7 biosensing,8

and imaging,9 to name a few. For instance, array of optical

antennas on a silicon chip can generate accurate pre-defined

patterns of light, which could be useful in 3D holography

displays and advanced medical imaging.10

A special class of MTMs, namely, 2D metamaterials,

also called metasurfaces, comprised optical antennas that

show promise in controlling electromagnetic waves, e.g.,

coupling propagating waves to surface waves.11 More

recently, it has been shown that it is possible to direct the

light at non-specular angles by controlling the phase depend-

ence of the field scattered at a interface.12,13 By properly

designing and arranging the symmetry-breaking V-shaped

optical antennas, it is possible to taper the phase of the scat-

tered field in a desired manner to realize such devices as an

optically thin axicon and lens,14 and a quarter wave plate.15

Also, observation of giant photonic spin hall effect by virtue

of V-shaped antennas has been reported.16 Additionally,

metamorphosing interfacial phase discontinuity ranging

from 0 to 2p can also be realized for circularly polarized

(CP) waves converted to its opposite helicity.17,18 Because

of their low loss stemming from their ultrathin geometry,

metasurfaces can be incorporated into planar photonics;

hence, they have the potential to lead to ultrathin devices

with a wide variety of functionalities.19

Simulation of nano-antennas for metasurfaces, comprising

of dispersive metallic nano structures and dielectric environ-

ments, plays an important role in the design of metasurface-

based devices. A whole host of methods, such as the Finite

Element Method (FEM), Finite Difference Time Domain

(FDTD) algorithm, Method of Moments (MoM), and the

Boundary Element Method (BEM), have been employed for

such simulation, after they have been tailored for plasmonic

applications.20–22 Even so, modeling large nano structures still

poses great challenges, because unlike uniform phased arrays,

or Frequency Selective Surfaces (FSSs), metasurfaces com-

prise nano-antennas that could in general be different in size,

shape, and orientation. Furthermore, the distribution of the ele-

ments of the array could either be deterministic, e.g., periodic

and aperiodic, or it could be random. As for periodical arrays,

such as FSSs, they too could be non-uniform, owing to fabrica-

tion tolerances. For such non-periodic geometries, we can no

longer solve the problem at hand by considering only a single

unit cell—owing to its non-periodic nature—to render the

problem manageable. Conventional numerical methods

become inefficient when analyzing large arrays and the size

they can handle is often limited by the available CPU time and

memory. When modeling the behaviors of nano-structures,

such as metasurfaces, it is not uncommon to simplify the

model by considering a miniaturized structure because of the

limitations of the simulation algorithm.18 Also, mutual cou-

pling effects between the elements in the array are often

neglected and other approximations are introduced to render

the problem manageable.14,23

The objective of the paper is to present a numerically

rigorous method to accurately model finite, non-uniform, and
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large plasmonic nanorod arrays, which show promise in

designing ultra-thin optical devices.

II. PHASE DISCONTINUITY OF A METASURFACE

We choose plasmonic nanorods for the array elements,

with spatially varying angles of orientation, which can gener-

ate interfacial phase change for circularly polarized waves,17

in a manner similar to the symmetry-breaking V-shaped ele-

ments,12,14 which we could also analyze by using the pro-

posed technique. When a circularly polarized wave

illuminates a nanorod whose axis has an angle c with respect

to the x axis, the scattered field can be expressed, for small

incident and observation angles, as17

Esca � E0ðûs þ û�seis2cÞ; (1)

where s ¼ 61 denotes the helicity of incident wave

(“þ”, “�” corresponds to right-handed (RCP) and left-

handed CPs (LCP), respectively, in accordance with the opti-

cal convention); and, û6s � x̂6isŷ represents the direction

of the polarization. It is evident that the opposite polarization

has the same amplitude and the interfacial phase discontinu-

ity / can be expressed as

/ ¼ 2c; (2)

which only depends on c, the orientation angle of the nano-

rod. We can achieve any desired phase distribution by

adjusting the orientation of the nanorods, and this property is

useful for designing novel reflection- and/or refraction-based

optical devices.

III. RESULTS AND DISCUSSIONS

For the first example, we consider an optical vortex

formed by plasmonic nanorods. Light can possess orbital

angular momentum (OAM), which causes a beam’s wave-

front to change direction in time. Because of the twisting,

the light waves at the axis itself cancel each other out, which

focuses the light to donut-shaped contours, rather than at a

point, while creating a point of zero intensity at the center.

Such properties present novel opportunities for scientific

research and technological applications, such as optical

tweezing,24 quantum computing,25 and cryptography encryp-

tion,26 to name a few.

In order to realize a helical wave front, we introduce an

azimuthal phase variation, i.e., expði‘/Þ, on the metasurface,

where ‘ is the topological quantum number (topological

charge) and / represents the azimuthal coordinate. Figure

1(a) exhibits the analyzed optical vortex with ‘ ¼ �1 and

Fig. 1(b) shows the corresponding in-plane phase retardation

introduced by the metasurface. The array consists of 40� 40

nanorods with length of 275 nm and radius of 10 nm that are

placed equally spaced across the xoy plane. The separation

distance between the centers of the neighboring elements is

500 nm. The orientation angles c0s are determined by using

Eq. (2). A RCP Gaussian beam is normally incident from the

top, whose waist is located on the metasurface; its radius is

10 nm, and its wavelength is k ¼ 1:55 lm.

Since such a finite array is obviously non-periodic; hence,

it cannot be modeled by using the traditional methods for sim-

ulating periodic structures, either by using Floquet theory,

which is no longer applicable, or by simply superimposing the

contributions of the individual elements since neglecting the

mutual coupling effects may introduce unacceptable levels of

error. Instead, we use the Characteristic Basis Function

Method (CBFM, see details in the Appendix A) by decompos-

ing the domain of the array into NBLKs ð¼ 40� 40 ¼ 1600Þ
small blocks, with each block containing only a single nano-

rod. For each small nanorod, we use a discretization Np ¼ 10,

which is quite adequate to represent the nanorod, as demon-

strated in Appendix B. We find that the second normalized

singular value is 2.3� 10�3 and the third one drops to

9.0� 10�5, inferring that only one primary Characteristic

Basis Function (CBF) survives after the singular value decom-

position (SVD) procedure if we chose the threshold to be

2.3� 10�3. Note that, in this example, since the geometries of

each divided elements are uniform except for the orientation,

we need only calculate the CBFs for just one block, and use

them subsequently for the other blocks without having to

recompute them.

We observe the scattered field for the cross-polarized

(LCP) components. The observation plane is 120 lm�
120 lm large, which is parallel to the metasurface and is

located at a distance of 400 lm below the array. Figure 2(a)

displays the intensity pattern calculated by using the CBFM,

which is essentially the same as the corresponding result

obtained by using the conventional MoM, shown in Fig.

2(c). The relative difference27 between the two results is

found to be is 0.39%. Doughnut-shaped patterns are gener-

ated and dark spots are observed at the center which corre-

spond to the phase singularity. The calculated patterns show

good agreement with the experimental results reported in

Ref. 12. We point out, once again, that the accuracy of the

results suffers if we neglect the mutual coupling effects, as is

evident from Fig. 2(e). Figures 2(b), 2(d) and 2(f) exhibit the

corresponding fringe patterns created by the interference of

the vortex beams and co-propagating Gaussian beams, respec-

tively, which identifies the topological charge28 ‘ ¼ �1.

For this example, the generation of the CBFs takes a

total time 0.62 s, since, as mentioned earlier, we only need to

evaluate them for a single block. The time to the reduced im-

pedance matrix takes almost the same time as that needed

for the conventional MoM, since only one CBF is retained

FIG. 1. (a) Schematic of an optical vortex. The nanorods are arranged so as

to generate a phase shift that varies from 0 to 2p. (b) Additional interfacial

phase dependence introduced by the optical vortex. The topological charge

is identified to be ‘ ¼ �1.
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after the SVD. Moreover, the CBFM requires 20.48MB

(¼ 1600� 1600� 2� 4 bytes, where the factor �2 arises

from the fact that the matrix elements are complex numbers,

and the factor �4 denotes single precision) to store the ma-

trix and 4.5 s to solve the problem. In contrast to this, the

conventional MoM consumes 2.048GB of storage and

requires 188.6 s of solve-time for the matrix, running on a

single processor. We mention that the results in this paper

have been generated on the HP ProLiant SL390s G7 Server,

which is equipped with 12 Intel X5670 2.93 GHz processors

and 48GB of RAM.

In the above configuration, owing to the relative large

spacing (500 nm) between the above metasurface transmits

through an increased amount of light, and the conversion effi-

ciency is about 1.5% (see Appendix C for details). Since the

mutual coupling effects are weak, the results neglecting the

mutual coupling effects [see Figs. 2(e) and 2(f)] are not

expected noticeably from the results obtained by using the

proposed CBFM [see Figs. 2(a) and 2(b)], and those derived

by employing the conventional MoM [see Figs. 2(c) and

2(d)]. However, if we decrease the spacing between nanorods

from 500 nm to 303 nm, without changing the dimensions of

the optical vortex aperture whose size is 20 lm� 20lm, the

mutual coupling effect would become more significant. We

use the same excitation but locate the observation plane at a

distance of 200 lm below the metasurface, rather than 400 lm

as we did previously. As shown in Fig. 3, the field intensity

distribution obtained by neglecting the mutual coupling

effects [see Fig. 3(c)] is now quite different compared with

that obtained from the proposed method [see Fig. 3(a)], which

is essentially the same as the result obtained from the conven-

tional MoM [see Fig. 3(b)]. This demonstrates, once again,

that neglecting mutual coupling effects may yield inaccurate

results and, hence, should be avoided. In addition, it is evident

that the dark spot remains at the center as light propagates af-

ter impinging on the optical vortices, as shown in Figs. 2 and

3, where the observation planes are located at a distance of

400 lm and 200 lm below the metasurfaces, respectively.

Though the aperture size of the optical vortex remains the

same, the transmission efficiency of the denser optical vortex

array increases to �3.7% when the spacing is 303 nm.

As illustrated in the Appendix A, dividing the original

array into smaller domains can be done in an arbitrary manner;

hence, the CBFM can handle perturbations or non-uniform

geometries in a natural way, without resorting to approxima-

tions. For the next example, we consider an array with a sun-

flower phyllotaxis pattern, as shown in Fig. 4(a). This metasur-

face was created by arranging the nanorods such that the n-th

nanorod is located at ðqn; hnÞ, with the coordinates of the loca-

tion governed by the Fermat’s spiral, as follows:

qn ¼ L0

ffiffiffi
n
p

; (3a)

hn ¼ ng; (3b)

where g ¼ 2pð1� 1=uÞ; u is the golden ratio; L0 ¼ 250 nm

is a scaling constant. There are NBLKs ¼ 1600 nanorods

FIG. 2. Far field intensity pattern of an optical vortex carrying topological

charge ‘ ¼ �1, calculated by (a) the CBFM; (c) conventional MoM and

(e) neglecting the mutual coupling effects, respectively; (b), (d), and (f),

respectively, the calculated interferogram of the vortex beam originated

from the corresponding method. The observation plane is located at a dis-

tance of 400 lm below the optical vortex array.

FIG. 3. Far field intensity pattern of an optical vortex carrying topological

charge ‘ ¼ �1, calculated by using (a) the CBFM; (b) conventional MoM

and (c) neglecting the mutual coupling effects, respectively. The array has

the same size as that analyzed in Fig. 2, while the spacing between nanorods

is 303 nm instead of 500 nm. The observation plane is located at a distance

of 200 lm below the optical vortex array.

FIG. 4. (a) Schematic of a Fibonacci spiral nanorod array, creating an opti-

cal vortex; (b) interfacial phase retardation introduced by the metasurface.
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whose orientations are tangential to the spiral. The metasur-

face also introduces an azimuthal phase gradient, as shown

in Fig. 4(b), creating an optical vortex, with ‘ ¼ 2.

Moreover, the radius of the nanorods is 10 nm while their

lengths vary randomly from 265 nm to 285 nm. The metasur-

face is illuminated by an LCP Gaussian beam, whose waist

radius is w0 ¼ 10lm. The wavelength for this simulation is

k ¼ 1:55lm.

In common with the previous example, we first divide the

array into NBLKs ¼ 1600 blocks, with each block containing

only a single nanorod. Unlike the previous example, we need

to generate the CBFs for all blocks because the geometry of

each block could be different in general. The generation of

CBFs takes 133.4 s for 1600 blocks, when using a server with

12 processors. The far fields of the opposite cross-polarized

wave (RCP) are computed over a 200lm� 200lm large

plane, at a distance of 400 lm below the metasurface. Figure

5(a) displays the field intensity distribution of the array,

derived by using the CBFM, when the lengths of the elements

are distributed randomly. The pattern calculated by using the

conventional MoM is plotted in Fig. 5(c), derived at a relative

high computational cost; yet the difference between the two

results is only 0.69%. Figures 5(b) and 5(d) plot the phase dis-

tribution of the Esca
x components for the random array, derived

by using the CBFM and conventional MoM, respectively. It is

evident that the metasurface generates a spiral wavefront,

leading to an optical vortex. As a reference, Figs. 5(e) and 5(f)

present the intensity pattern and the phase distribution of Esca
x ,

respectively, for the corresponding metasurface comprising

uniform length rods, i.e., l0 ¼ 275 nm. In this example, the

calculated conversion efficiency of the array, comprised uni-

form length nanorods is approximately 3.7%, while it reduces

to 2.3% for random length case. This is because some of the

nanorod antennas scatter fields at off-resonance frequencies,

and this, in turn, reduces the efficiency, as explained in

Appendix C.

For the third example, we consider an optical axicon,29

which can create a non-diffractive ring-shaped beam, which

retains a constant ring thickness over a radial distance. The

axicon can be used to generate an approximation of a Bessel

beam with a collimated Gaussian beam input, which is useful

for a variety of research and medical application, e.g., cor-

neal surgery,30 optical coherence tomography,31 and particle

micromanipulation.32

Unlike the ultrathin axicon reported in Ref. 14, we use

straight nanorods to realize the metasurface, as displayed in

Fig. 6. In order to form a conical wavefront of light that trav-

els through the metasurface, the phase delay has to increase

linearly with the distance from the center. For a given radius

q on the metasurface, the phase retardation is to satisfy

/ ¼ 2p
k

q sin H; (4)

where H ¼ tan�1ðRa=DOFÞ, Ra is the radius of the metasur-

face, and DOF is the depth of focus of the axicon.

We analyze an axicon with a radius of Ra ¼ 20lm, con-

sisting of NBLKs ð¼ 5; 024Þ nanorods with varying orienta-

tions, as determined by using Eqs. (2) and (4). Each nanorod

is identical in length, which is 275 nm, and has a radius of

10 nm. The axicon is illuminated by a RCP Gaussian beam,

whose waist radius is w0 ¼ 40lm; and its wavelength is

k ¼ 1:55lm. Following the approach discussed previously,

we simply divide the array into NBLKs smaller problems,

each of which consists a single nanorod. As we see from

Fig. 7, the reduced impedance matrix is strictly diagonally

dominant. Hence, we do not need to perform any permuta-

tions while computing an LR factorization. Furthermore,

iterative methods, such as the Gauss-Seidel algorithm, are

not expected to experience convergence problems, when

dealing with such matrices, even if they are large.

Figure 8 plots the computed field intensity of the

designed axicon, which is located at z¼ 0. As illustrated in

Fig. 8(a) [see the bright bands in the colored figures], light

FIG. 5. (a) and (c), respectively, far field intensity distribution of the

Fibonacci optical vortex with random length variation of nanorods, calcu-

lated by the CBFM and the conventional MoM; (b) and (d) the correspond-

ing phase distribution of Esca
x ; (e) and (f) far field intensity pattern and Esca

x

phase distribution of the Fibonacci array with an uniform nanorod length

(l0 ¼ 275 nm), respectively.
FIG. 6. Schematic showing the design of the axicon. (a) Geometry of the an-

alyzed axicon. (b) The phase profile for the axicon.
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does not spread out as it propagates within the axicon’s depth

of focus (DOF¼ 50 lm), while achieving an approximation

of non-diffracting properties. Also, as shown in Fig. 8(b),

which displays the intensity distribution at the z ¼ �33 lm

plane, the beam forms rings of increasing diameters over the

radial distance, while preserving their thicknesses, thus

closely replicating the properties of a Bessel beam. Figure

8(c) captures the intensity profile along the x-axis of the ge-

ometry shown in Fig. 8(b). The calculated conversion effi-

ciency for the simulated axicon is approximately 1.7%.

Finally, to demonstrate the ability of the proposed

method to model large plasmonic arrays, we analyze a flat

lens comprised NBLKs ¼ 31; 428 elements, as depicted in

Fig. 9(a). Such an optically thin lens could, in principle, offer

the possibility of equipping pint-sized cameras. In order to

form a focus at a distance such that all light arrives there in

phase, additional phase retardation should be introduced to

compensate for the phase lead introduced by the disparity in

the physical paths. For a focal length f, the phase dependence

/ as a function of the radius of q can be expressed as

/ ¼ 2p
k

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ f 2

p
� f
�
; (5)

which correspond to hyperboloidal type of radial phase dis-

tribution, as shown in Fig. 9(b). Once the phase profile has

been determined, the orientation angles can be obtained from

Eq. (2).

The lens, whose diameter is 100 lm, is located at the

z¼ 0 plane, and its designed focal length is f¼ 200 lm. It is

illuminated by an RCP plane wave whose wavelength is

k ¼ 1:55lm. Figure 10 shows the results calculated by using

the CBFM. As we see from Fig. 10(a), light is confined to

the focal region for the normal incidence case, as desired.

Because the array is finite, the maximum of the spot is

located at z ¼ �196.1 lm, rather than the designed value

z ¼ �200 lm. Once the reduced impedance has been filled,

we can solve for multiple excitations by using the same ma-

trix, without generating a new one for each incident angle,

which, in turn, results in significant time saving. Figure 10(b)

plots the field intensity of the xz cut-plane of the meta-lens at

FIG. 7. Modulus of the reduced impedance matrix of dimension NBLKs

�NBLKs ¼ 5024� 5024 for the axicon problem. The inset presents the

zoom-in view of the first 100 � 100 sub matrix. Note that the values of the

matrix elements have been normalized to 1.

FIG. 8. Calculations results by using the CBFM. The results showing the (a)

xz (longitudinal) and (b) xy (lateral) cross sections of the far-field intensity

distributions. (c) Plots of the intensity along the x axis on y ¼ 0, z ¼ �33 lm

plane. Note that a square-root color scale is used for the far-field intensity

distributions in (a) and (b).

FIG. 9. (a) Schematic of the design of the lens with a focus of 200 lm. (b)

Hyperboloidal radial phase distribution introduced by the metasurface.

FIG. 10. Calculations results for the lens by using the CBFM. Longitudinal

cross section of the field distribution for the (a) normal incidence and (b)

oblique incidence, respectively. The same reduced impedance matrix is used

for multiple excitations, lending to considerable time-saving. (c) and (d)

Transverse cross sections of the field distribution at the spots corresponding

to (a) and (b), respectively.
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y¼ 0, for the oblique incident angle hinc ¼ 5�. We observe

that the focal beam tilts as desired. Figures 10(c) and 10(d)

show the corresponding xy cross-section of the field distribu-

tion at the spots. The calculated conversion efficiency for the

simulated lens is about 1.9%.

If we were to use the conventional method and Np ¼ 10

unknowns for each element, it would require ½31; 428� 10

�ð31; 428� 10þ 1Þ=2� � 2� 4 bytes � 395GB of memory

to store the impedance matrix, even when we use only single

precision, and only store the upper triangular part of the

impedance matrix by taking advantage of the symmetry

property of the matrix. Furthermore, the solve-time of the

matrix would increase dramatically, since it behaves as

O½ðNBLKs � NpÞ3�. In contrast to this, only ½31; 428� 1

�ð31; 428� 1þ 1Þ=2� � 2� 4 bytes � 3:95GB of memory

is needed to store the reduced impedance matrix, since only

a single post-SVD CBF survives and NCBFs
p is only 1.

Solving the reduced matrix takes only about 6 min on a sin-

gle processor. Presently, without any optimization, filling the

reduced impedance matrix is the most time-consuming part

in our simulation. However, it is worthwhile to point out that

it is possible to accelerate this step significantly, e.g., by

using fast matrix generation techniques.33,34 In addition,

both the complexity as well as the CPU time could be further

reduced by sub-dividing the array into a smaller number of

blocks and employing the sparse matrix algorithm.35 We

plan to explore these avenues in the future.

IV. CONCLUSIONS

In this paper, we have introduced a computationally

efficient algorithm, called the CBFM, which reduces both

the CPU time and the memory to render large problems

manageable. We have used this algorithm to analyze large
non-uniform plasmonic antenna arrays for metasurface appli-

cations, including optical vortices, axicons and lenses. We

have demonstrated that the use of thin-wire type of approxi-

mation for the nanorod, for the case when the aspect ratio of

the length of the nanorod and its diameter is large, increases

the computational efficiency significantly without sacrificing

the accuracy, as we have shown by comparing the present

results with those derived by using commercial FEM simula-

tions. We have also demonstrated that the proposed method

is accurate as well as efficient for modeling nonuniform

arrays, and has the capability of handling very large arrays in

a numerically efficient manner. The proposed method lends

itself to convenient parallelization, which enables one to

reduce the CPU run-time even further by utilizing multiple

processors. The method presented herein can be readily

generalized to handle arrays comprised nanoantennas with

complex shapes, and is suitable for rapid designing of meta-

surfaces for a variety of applications.
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APPENDIX A: CBFM

The conventional MoM needs to solve a dense, complex

linear system of equations, and the associated impedance

matrix Z has the dimensions of N � N, where N is the num-

ber of unknowns. The burdens of storage and CPU time

increase as OðN2Þ and OðN3Þ, respectively, with the number

of degrees of freedom (DoFs) N. As the dimension of the

array increases, the conventional MoM faces a considerable

burden when handling large matrices and attempts to reduce

this burden by neglecting the mutual coupling effects leads

to inaccurate results, as we have pointed out before in Sec.

III. Moreover, the large size matrices are not tractable by

direct solvers, while using iterative methods often leads to

convergence problems because the matrix is ill-conditioned.

In contrast to the conventional approach to dealing with

large problems directly solving the entire array, as shown in

Fig. 11(a), which leads to a large number of unknowns, the

CBFM35,36 begins by dividing the original large array into

several blocks, say NBLKs, where the unknown current distri-

bution in each block is represented in terms of macro-basis

functions, called the CBFs, and this enables us to use the

direct solvers once again, even for very large problems. To

generate the CBFs, each block is illuminated by a set of plane

waves, with both the TE and TM polorizations that impinge

on the block at different incident angles covering the entire

360�, as shown in Fig. 11(b). The number of incident angles

(Ninc
p ) is deliberately chosen to be greater than the number of

unknowns (Np) for each block (Ninc
p > Np), so that the CBFs,

so constructed, could be used later for waves incident at an ar-

bitrary angle, without having to regenerate them. Next, the set

of current distribution is obtained for different angles for each

small problem by solving the matrix equations

ZpIp;q ¼ Vp;q; p ¼ 1…NBLKs; q ¼ 1…Ninc
p ; (A1)

where Zp is an Np � Np matrix.

Next, in order to derive the primary CBFs, an SVD algo-

rithm is employed to eliminate the redundant solutions, and to

retain only a few linearly independent CBFs that survive, say

FIG. 11. Demonstration of the characteristic basis function method. (a) A fi-

nite non-uniform array is illuminated by an arbitrary polarized wave; (b)

each element is isolated and illuminated by a bunch of plane waves with dif-

ferent angles for both polarizations. The number of incident waves should

be overestimated to get the primary CBFs.
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ICBF
p;q , which represents the q-th CBF for the p-th block. It is

worthwhile to mention that, in general, the normalized singu-

lar values decrease rapidly, with a sharp cutoff, once they go

down below a certain threshold.35 As a result, the number of

post-SVD CBFs, NCBFs
p , is relatively small, typically much

smaller than the number of unknowns Np, i.e., NCBFs
p 	 Np.

In common with the conventional MoM, the current dis-

tribution on the rods can be expanded as a linear combina-

tion of these CBFs, as follows:

IðuÞ ¼
XNBLKs

p¼1

XNCBFs
p

q¼1

apqICBF
p;q ðuÞ; (A2)

where apq represents the unknown weight of the q-th CBF

for the p-th element. Next, to obtain these weights, we con-

struct a reduced impedance matrix, by following the usual

recipe for the conventional MoM, except that we use the

generated CBFs ICBF
p;q ðuÞ for the basis and testing functions,

rather than the low-level basis functions. This leads us to the

equation for the reduced matrix

½Zreduced
p0q0;pq �½apq� ¼ ½Vreduced

p0q0 �; (A3)

where

Zreduced
p0q0;pq ¼ hICBF

p0;q0 ;Zq0q � ICBF
p;q i; (A4)

and

Vreduced
p0q0 ¼ �hICBF

p0;q0 ;E
inc
q0 i: (A5)

In Eq. (A4), Zq0q is the sub-coupling matrix of the original

conventional MoM, which links the blocks q0 and q; and

h�; �i represents the inner product defined on the correspond-

ing blocks. Finally, the solution of the reduced matrix

Zreduced
p0q0;pq yields the desired weights apq that we are seeking.

The use of the CBFM reduces the computational burden

of the original problem when we follow the above procedure,

which involves (i) solving NBLKs small problems with

NBLKsOðN3
pÞ operation complexity and generating the corre-

sponding primary CBFs, which is highly parallelizable

because each block can be analyzed separately; (ii) filling

the reduced impedance matrix according to Eq. (A4); and

(iii) solving the reduced matrix Eq. (A3) for particular exci-

tations given by Eq. (A5) to obtain the current distribution

on the nanorods of the array. We reiterate the fact that filling

the reduced matrix can be accelerated, by using techniques,

such as sparse matrix approach,35 where only the “near-

field” interactions are included. The complexity of solving

the entire problem in memory and CPU time reduces from

O½ðNBLKs � NpÞ2� and O½ðP � NpÞ3� to O½ðNBLKs � NCBFs
p Þ2� and

O½ðNBLKs � NCBFs
p Þ3�, respectively, because NCBFs

p 	 Np, typ-

ically by orders of magnitude. Furthermore, techniques, such

as the Adaptive Cross Approximation (ACA), can also be

incorporated to further reduce the memory requirements and

CPU time needed to solve the reduced matrix problem.37

In summary, compared with the well-established con-

ventional MoM based Characteristic Basis Function Method

proposed herein has several advantages: (i) it splits the

original problem into smaller sub problems and forms much

smaller “impedance matrix”, resulting in a less memory

requirement for storage and a reduction in CPU time for

solving linear equations; (ii) the splitting processing is arbi-

trary, which implies the proposed method is highly paralle-

lizable, hence it can be accelerated by utilizing multiple

processors; (iii) the mutual coupling effects between anten-

nas are rigorously included regardless of the decomposition

of the geometry, improving the accuracy of the results; (iv)

the proposed technique handles non-periodic plasmonic con-

figurations in a natural way without an increase in the com-

plexity; (v) when the antennas have a simple geometry, such

as nanorods, the number of characteristic bases are relatively

small, which further reduces the complexity of the original

problem. An efficient and accentuate representation for

nanorods is introduced in the Appendix B below.

APPENDIX B: ONE-DIMENSIONAL REPRESENTATION
OF THE INDUCED CURRENT ON A NANOROD

The geometry considered in this paper is that of nano-

rod, as displayed in Fig. 12(a), whose length and radius are

l0 and r0, respectively. If the aspect ratio 2r0=l0 is sufficiently

small (r0 	 l0), the axial current flow is the dominant com-

ponent and the current flow in the lateral direction, as well as

the transverse components of the current density, can be

neglected. Furthermore, it can be assumed that the current

density distribution is uniform across the cross section of the

nanorod. Under these approximations, we can use the thin

wire model for the nanorod,38,39 and the boundary condition,

JðrÞ ¼ rEtotðrÞ, can be rewritten as

�ix�0ð�r � 1Þ½Einc þ Esca� ¼ IðuÞ=ðpr2
0Þ; (B1)

where the volume current density J(r) reduces to a line cur-

rent I(u) flowing along the axis of the nanorod [see the black

(solid) line in Fig. 12(b)].

In order to numerically solve Eq. (B1), the nanorod is

discretized into N segments, as shown in Fig. 13(a). Next,

the axial current I(u) is expanded as a summation of the basis

functions bnðuÞ, as follows:

IðuÞ ¼
XN

n¼0

ûnInbnðuÞ; (B2)

where In is the n-th unknown coefficient, and ûn represents

the current direction at the n-th segment. It is well known

that the metals are no longer perfect electric conductors

FIG. 12. (a) MoM or BEM representation of a single nanorod; (b) one

dimensional (thin-wire) approximation of a nanorod.
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(PECs), but are plasmonic in nature at infrared and optical

frequencies. Hence, the case of PEC rods for which current

vanishes at the end of the rods, the current distribution on a

nanorod does not go to zero at the end, but it supports addi-

tional charges instead. Although the choice of basis functions

is somewhat arbitrary, certain choices for these functions

enhance the numerical efficiency of the method. For this rea-

son, instead of choosing delta functions for bases as was

done in Ref. 38, our choice for the basis bn is the sinusoidal

function, as defined below:

bnðuÞ ¼ sin½bðH � ju� unjÞ�; un�1 
 u 
 unþ1; (B3)

where b is the propagation constant of the surface charge

wave.40 The reason for making this choice is that it leads to

an analytical expression for the radiated field, in a conven-

ient manner, bypassing the need to evaluate it by performing

a convolution with the dyadic Green’s function. Note that

Eq. (B3) is still valid for the first and last segment, if we

define u�1 ¼ u0 and uNþ1 ¼ uN , respectively.

As shown in Fig. 13(b), a u-directed short current fila-

ment of length H is located at the origin of a cartesian {u, v,
w}-coordinates, which carries a half-sinusoidal current

distribution

IðuÞ ¼ ûImsin½bðH � uÞ�; 0 
 u 
 H; (B4)

and its radiated fields at a point (u, v, w) are given by

Eu¼
iImg
4p

eibR1

R1

�cosðbHÞe
ibR0

R0

� usinðbHÞð1� ibR0Þ
eibR0

bR3
0

" #
;

(B5a)

and

Evjw ¼
�iImgvjw

4pðv2 þ w2Þ � ðu� HÞ e
ibR1

R1

� ucosðbHÞ e
ibR0

R0

�

þ sinðbHÞ½ibR0u2 þ ðv2 þ w2Þ� e
ibR0

bR3
0

�
; (B5b)

where g denotes the wave impedance; R0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ w2 þ w2
p

and R1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðu� HÞ2 þ v2 þ w2

q
.

Next, we apply the Galerkin method to the Eq. (B1). By

evaluating the inner product of the basis functions ûmbmðuÞ
and both sides of Eq. (B1), on the interval ½um�1; umþ1�, we

can obtain N þ 1 linear equations with N þ 1 unknowns In,

which read

½Zmn�½In� ¼ ½Vm�; (B6)

where the elements Zmn of matrix are given by

Zmn ¼

ðumþ1

um�1

ûmbmðuÞ � Esca
mmðuÞdu

þ

ðumþ1

um�1

½bmðuÞ�2du

ix�0ð�r � 1Þpr2
0

;

m ¼ n

ðumþ1

um�1

ûmbmðuÞ � Esca
mnðuÞdu

þ

ðun

um

ûmbmðuÞ � ûnbnðuÞdu

ix�0ð�r � 1Þpr2
0

;

jm� nj ¼ 1

ðumþ1

um�1

ûmbmðuÞ � Esca
mnðuÞdu; others;

8>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>:

(B7)

and

Vm ¼ �
ðumþ1

um�1

ûmbmðuÞ � Einc
m ðuÞdu: (B8)

In Eq. (B7), Esca
mnðuÞ is the scattered field at the m-th segment

which is radiated by the n-th piecewise sinusoidal current

segment ûnbnðuÞ (basis function), and which can be eval-

uated analytically by using Eq. (B5). It should be mentioned

that, in order to avoid the singularities when evaluating the

fields which radiated by itself in Eq. (B5), the boundary con-

ditions are applied on the surface of the nanorod, as depicted

by the brown (dashed) line in Fig. 12(b), while the current is

assumed to be located at the center of the rod.

To verify our approximation, we analyze a gold nanorod

with a length of l0 ¼ 275nm and a radius of r0 ¼ 10nm. The

nanorod is located at the origin and is aligned in x-direction.

An x-polarized plane wave is assumed to be incident from

the z-direction. The scattered electric field is observed at the

point (0, 0, 1 lm). Figure 14 plots the frequency responses,

computed by the proposed method, and by the commercial

FIG. 13. (a) Mesh and basis functions for MoM; (b) half-sinusoidal short

dipole current radiation.

FIG. 14. Comparison among the results obtained by using the simplified

method of moments with the utilization of sinusoidal base functions, the

commercial finite element method (COMSOL MULTIPHYSICS), and the conven-

tional method of moments with the employment of Delta basis functions.
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finite element method solver, COMSOL MULTIPHYSICS, as well

as by the conventional MoM with Delta base function,38

respectively. It is evident that the three responses agree very

well with each other. However, in contrast to the number of

DoFs which is 5.5� 105, in COMSOL, our MoM based method

proposed herein only needs 10 unknowns, while the conven-

tional MoM needs more than 50 unknowns. One conse-

quence of this is that the simulation using the approximation

takes about 3 s for 41 frequency samples, as compared with

�8 h required by COMSOL and �8 s required by the conven-

tional MoM with Delta base function.

Figure 15 further compares the thin-wire representation,

employing the sinusoidal base functions proposed herein, and

the Delta base function, that were used in Ref. 38. Figure

15(a) shows that, when the number of DOFs is greater than 3,

the use of sinusoidal basis functions used herein achieves con-

sistent results as the number of DOFs is increased, and the

results consistent with those obtained from the commercial

FEM code, as shown in Fig. 14, because the sinusoidal basis

functions are able to accurately represent the current distribu-

tion.41 However, when the Delta base function is used, the cal-

culated frequency response of the scattered field exhibits a

red-shift as we increase the mesh density, as is evident from

Fig. 15(b). This is because that smaller the mesh size, the fat-

ter are the line segments used to represent the nanorod, and

the nanorod appears to be longer than its physical length if the

same radius is used. Hence, the resonance red-shift occurs

when the number of DOFs is increased, since the simulated

nanorod becomes longer. Furthermore, in order to get the

same results, the proposed approach presented herein, requires

much fewer DOFs to represent the nanorod, usually by orders

of magnitude, and it requires much less memory than that

needed when we employ Delta function type of basis.

Note that, we use the Drude model for gold, given by

�rðxÞ ¼ �1 �
x2

p

x2 þ ixcp

; (B9)

where �1 ¼ 9:5; �hxp ¼ 8:95 eV, and �hcp ¼ 0:069 eV (�h is

the reduced Planck’s constant). We mention here that these

parameters have been retrieved from Ref. 42.

APPENDIX C: CONVERSION EFFICIENCY OF
METASURFACES

Figure 16 shows the energy flow when a metasurface is

illuminated by circularly polarized waves. As pointed out in

Sec. II, the scattered field of a nanorod, illuminated by a cir-

cularly polarized field, comprised two main parts. The first

one of these with the opposite helicity provides the phase

discontinuity which only depends on the rotation angle. The

second, with the same helicity, does not contribute to the

artificial phase variation, and is filtered out. Consequently,

the conversion efficiency of such metasurfaces is limited. In

our simulation, numerical polarization filters are used after

lights go through the metasurfaces. Besides the reflected and

transmitted waves, antennas themselves absorb energy. The

conversion efficiency further reduces because the metallic

antennas are lossy at the infrared frequencies, as implied by

the Drude model [see Eq. (B9) in the Appendix B].

In order to calculate the conversion efficiency, or the

transmission efficiency, we can simply calculate the incident

power flow across the metasurface area, and we integrate the

Poynting vector of the cross polarized components over a

cross section parallel to the metasurface (probe surface) after

lights go through it. That is,

gefficiency ¼
Pjprobe surface

Pjmetasurface area

; (C1)

where P ¼
Ð

An̂ � SdA represents the power through the sur-

face A; n̂ is the norm vector of A; S ¼ 0:5� Re½E�H�� rep-

resents the Poynting vector; and the superscript ð�Þ� denotes

a conjugation. Once the current distribution of the metasur-

face is determined, the scattered electric field at any location,

whether it is located near or far from the array, can be

obtained by using Eq. (B5). Similarly, the magnetic fields

radiated by the same current filament [see Appendix B], as

shown in Fig. 13(b), are given by

Hu ¼ 0; (C2a)

FIG. 15. Comparison between the results obtained by using the method of

moments with employment of (a) the sinusoidal basis functions and (b) the

Delta basis functions, respectively, where different number of degrees of

freedoms are used.

FIG. 16. Power flow of lights after impinging on a metasurface comprised

nanorods with different orientation angles.
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Hv ¼
wIm

4pbðv2 þ w2Þ
eibR1

R1

� cosðbHÞ e
ibR0

R0

�

þ i � 2u sinðbHÞ e
ibR0

R2
0

�
; (C2b)

and

Hw ¼ �
vIm

4pbðv2 þ w2Þ
eibR1

R1

� cosðbHÞ e
ibR0

R0

�

þi � 2u sinðbHÞ e
ibR0

R2
0

�
: (C2c)

In our simulations, we have Gaussian beam illumination,

and, hence, the input energy is confined within a certain

region instead of spreading over the entire space. After light

goes through the arrays and the polarization filters, it is con-

fined within a bounded region, for all the simulated metasurfa-

ces of interest here, viz., optical vortices, axicons and lenses.

Hence, the probe surface does not need to be too large to cap-

ture the power converted by the metasurfaces.

Since the scattering amplitudes of light of the opposite

helicity are identical [see Eq. (1)], the conversion efficiency of

the opposite polarization is independent to the orientation of

the nanorods, but is determined by the geometry, and the effi-

ciency is the highest at the resonance point of the nanorods.

One may increase the transmission efficiency by using low

loss metals or by decreasing the spacing between the antennas.

In the latter case, the mutual coupling effects become signifi-

cant, and our proposed method herein provides a rigorous and

efficiency way to render such problems manageable and also

reduces the computational burden significantly.
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