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In this paper, behavior of dipole arrays for Ultra-Wideband (UWB) signals is inves-
tigated using an approach in the frequency domain. Energy formulas and correlation
coefficient expressions are derived for an array of thin dipoles at the transmitting
side and one dipole at the receiving side. Beam-scanning characteristics of UWB
dipole arrays are also investigated in the same manner. Different element lengths are
used in the array to improve the detection and beam-scanning capabilities. Derived
frequency domain expressions can easily be evaluated numerically, allowing us to
obtain reasonably accurate results. This approach which is an alternative to numeri-
cal methods in time domain serves as a different viewpoint and will be a significant
step to make progress in UWB antenna design.
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1. Introduction

For many years, antenna design has been one of the most challenging issues for
researchers in Ultra-Wideband (UWB) communications. Antennas designed for UWB
pulse transmission and reception are required to work effectively over a wide frequency
range and design process becomes more demanding when compared to that of typical
narrowband antennas. Since UWB signals cover a very large frequency range, conven-
tional antenna parameters should be adapted according to this range.[1] For example,
considering energy patterns rather than power patterns would be more reasonable to fig-
ure out the system characteristics over that range.[1,2] Additionally, characteristic of
received signal at the receiver is important for understanding the overall performance
of the system. As the antenna alters the pulse shape, mechanism for detecting the signal
must take into account the signal deterioration at the receiver. In general, one would
prefer the received pulse to be as similar to the transmitted one as possible. Therefore,
correlation coefficient between the signal shapes becomes important and needs to be
examined to predict detection characteristics. Eventually, correlation coefficients
together with energy patterns are important parameters to capture the energy and detect
the pulse at the receiver.

UWB antenna behaviors have usually been investigated by means of numerical meth-
ods and simulation programs.[2–5] Alternatively, in some studies, only experimental
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implementations have been conducted,[6] and in others measured results have been com-
pared with simulation results.[7–12] Computer programming in the numerical methods
needs considerable hard work and additionally, it is not a simple task to extract physical
meanings from the obtained results.[13] On the other hand, analytical treatments mostly
yield explicit expressions and lead to computer programs which are more tractable.[13]
Here, we obtain analytical results in frequency domain rather than using numerical tech-
niques in time domain. Our main focus is to investigate the use and performance of dipole
arrays in the transmission and reception of UWB signals. This is done by examining cor-
relation coefficient and energy patterns. In order to improve antenna performance over
the UWB range, elements with different lengths are selected in the transmitting array.
This frequency domain approach simplifies the analytical treatments, and in this way,
explicit expressions are obtained and computer programs are developed in a straightfor-
ward manner. Therefore, this approach allows acquiring considerably accurate results by
means of simpler mathematical operations.

Although the main focus of the study is to analyze an array of dipoles, the
approach is first applied to a single thin dipole considering that it is the elementary
antenna element and it provides preliminary information about the general behavior.
Additionally, mathematical operations performed with thin dipole are more manageable
when compared to other structures.[14]

The beam scanning characteristics are also investigated using the same frequency
domain approach and results are presented both for the array of same-length elements
and different-length elements.

2. Frequency domain analysis for a single dipole

Consider a center-fed thin dipole of length 2l and radius a as shown in Figure 1. When
the dipole is assumed to be very thin, that is 2l >> a, then current distribution along the
dipole can be expressed in frequency domain as the current distribution along a
two-wire, open-circuited transmission line of length l, with characteristic impedance
Z0 = (ζ0/π) ln (2l/a), and generator impedance Zg= αZ0 = (1 − Γ)Z0/(1 + Γ), where α is
real.[15,16] Here, ζ0 is the free-space impedance and Γ is the reflection coefficient from
the antenna to the generator. For the matched case, Γ = 0 and α = 1. Radiated far field
strength at distance r due to this center-fed thin dipole in frequency domain is [17]

Figure 1. Transmitting and receiving thin dipoles.
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When radiated field from the transmitting antenna is incident on a receiving dipole
of length 2lr and radius b in the far field region of the transmitting antenna, load volt-
age across the terminals of the receiving dipole is determined as

VLðf Þ ¼ f0

ffiffiffiffiffiffiffiffi
2pc

p
T2ZLe�ð2pTf Þ2

pr sin h sin hrZ0
�
cos 2pfl cos hc � cos 2pflc

h i
cos 2pflr cos hrc � cos 2pflrc

h i
ZL � j f0p ln

2lr
b

� �
cot 2pflrc

h i
sin 2pflr

c

e�j2pfc ðrþlÞ:

(2)

Here, Vg(f ) is taken as the Fourier Transform of Gaussian monopulse source Vg(t) with
duration T, where Vg(t) = (t/T) exp [−(1/2)(t/T)2]. Detection performance in the presence
of thermal noise at the receiver is determined by the correlation coefficient (CC)
between generator and load voltages. Therefore, we evaluate correlation coefficient to
gauge the ability of the receiver for detecting the UWB signal. Correlation coefficient
between VL and Vg is defined by

CC ¼
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By a series of mathematical derivations, explicit expression of CC is obtained as
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Radiated energy and received energy are other performance indicators that need to be
examined for comprehending the characteristics of dipoles for UWB signals, and their
expressions are derived as follows

Wrad ¼ 4p3T4
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For numerical evaluations, transmitting and receiving dipole lengths are chosen as
λc/2, where λc is the wavelength at center frequency fc in the 3.1–10.6 GHz UWB
range. For both dipoles, length-to-radius ratio is set to 100 and pulse duration is
T = 1/fc. Figure 2(a) shows the correlation coefficient between VL and Vg for different
ZL values. In the figure, correlation coefficient is almost uniform in all directions for
each value of ZL. On the whole, the values of the correlation are relatively low in all

Figure 2. (a) Correlation coefficient of VL(f ) and Vg(f ) for one dipole; and (b) radiated and
received energy patterns with ZL= 500Ω.

1490 S. Colak et al.



three choices of ZL. This is undesirable for signal detection. In Figure 2(b), the beam
width of the received energy is narrower than that of the radiated energy.

For verification purposes, the analysis presented in this study is reconsidered in a
different manner to evaluate the antenna’s capability for maintaining the shape of the
signal with direction, which was investigated by Mclean et al. [2]. The aim here is to
compare the results obtained in this paper with those of [2]. Computations were per-
formed using Method of Moments in [2]. At this point, correlation coefficient has been
reconsidered using the definition proposed by Mclean et al. [2], where correlation coef-
ficient for the radiated electric field and the electric field radiated in the maximum field
direction is evaluated. Here, we also use Gaussian pulse as input and select pulse
widths as in [2]. Figure 3 shows the results obtained using these values. These results
are in good agreement with the results presented by Mclean et al. [2].

Figure 3. Correlation coefficient of E(f,θ) and E(f,π/2) as described by Mclean et al.

Figure 4. Transmitting array and receiving dipole.
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3. A linear array of dipoles with different length elements

Arrays are effective designs to handle challenging issues of antennas in UWB systems,
since array parameters can be adjusted for a better performance. The aim here is to
conduct analysis in frequency domain to evaluate the behavior of dipole arrays. In the
array, dipoles are designed with different lengths such that each dipole works at a spe-
cific frequency and the combination of all element bandwidths forms the frequency
range of the array.[18,19] The main point for using this structure is to form an array
that would perform better in a broader frequency range – a property that is desired for
UWB antenna systems.

To that end, consider a linear array of M = 2N + 1 equally spaced center-fed thin
dipoles which is positioned along the z-axis with element spacing d (Figure 4). Each
dipole has length 2ln and radius an, n = −N, …, −1, 0, 1, …, N. Consider also a receiv-
ing dipole orienting along the z-axis at far field. Radiated field at distance r is given by
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where Zn= (ζ0/π) ln (2ln/an) is the characteristic impedance for dipole n.[15,16] Each
dipole is assumed to be matched to the feed network and mutual coupling between the
elements is ignored for simplicity. Radiated energy, received energy, and correlation
coefficient are evaluated for the case of the Gaussian monopulse [19] as follows
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For numerical calculations, array elements are selected such that the shortest dipole
corresponds to the highest frequency component fh which is 10.6 GHz and the longest
one corresponds to the lowest frequency component fl which is 3.1 GHz in the UWB
range. Each of the other intermediate elements between the shortest and the longest

Figure 5. Correlation coefficient for (a) M = 3, 5, 7, 9; d = c/(2 fl); and (b) d = 0.5c/fl, 0.6c/fl,
0.7c/fl; M = 5; ZL = 500Ω.
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dipoles corresponds to a certain frequency in the UWB range. The lengths of two con-
secutive elements differ by a constant that is proportional to the difference between the
longest and shortest dipole lengths, and inversely proportional to the number of dipoles
in the array.[19] Pulse duration is T = 1/fc and length-to-radius ratio for each dipole is
chosen as 100. Figure 5(a) illustrates the correlation coefficient between VL and Vg with
respect to the observation angle for M = 3, 5, 7, 9, d = c/(2 fl), and ZL = 500Ω. When M
increases, correlation coefficient curve tends to become narrower. If M is smaller, corre-
lation coefficient varies within a smaller range. Correlation coefficients for various ele-
ment spacings are compared in Figure 5(b) with M = 5. In the figure, correlation
coefficient pattern is narrower for larger d. In Figure 6, energy beam widths decrease
and side lobes start to appear as M increases. In all cases, maximum energy is achieved
in the neighborhood of the broadside direction.

Figure 6. For M = 3, 5, 7, 9; d = c/(2 fl); ZL = 500Ω (a) Normalized radiated energy; and (b)
normalized received energy.
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Numerical calculations for an array of M dipoles with same-length elements are also
conducted for comparison and results are presented in Figures 7 and 8. Dipole length is
selected as λc/2, where λc is the wavelength at the center frequency fc and 2l/a = 100.
In these figures, for d = 0.5c/fl, plots for different M dipoles are presented. In Figure 7,
correlation coefficient pattern shows a similar behavior to the one in Figure 5 except
that there is reduction in the peak value of the correlation coefficient. This result shows
that correlation coefficient improves significantly for the different-length element case.

The characteristics obtained for the energy patterns in Figure 8 using this frequency
domain approach for the array of same-length dipoles are in agreement with studies that
have been performed in time domain by various authors.[14,20,21] All these studies
state that, by increasing the number of elements or the element spacing, a narrower
beam width is achieved.

4. Beam scanning for the linear array of dipoles

In this section, beam scanning for UWB dipole arrays is investigated. The scanning
is achieved by applying a time delay τ between consecutive elements.[14,20]
Consider again the linear array of M = 2N + 1 elements. Radiated far field is obtained
as follows
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which includes the term nτ. Here, τ = d cos(θs)/c is the delay parameter and θs is the scan
angle.[14] If the source voltage is Gaussian monocycle, then the radiated energy is

Figure 7. Correlation coefficient in the case of same-length elements for M = 3, 5, 7, 9;
ZL = 500Ω.
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Energy pattern is described as the normalized energy which is normalized relative
to the energy at broadside observation and scan angles.[14] In Figure 9, normalized
energy patterns for the same-length element case are illustrated in polar plots for

Figure 8. (a) Normalized radiated energy; and (b) normalized received energy, in the case of
same-length element array with M = 3, 5, 7, 9; dipole length = λc/2; 2l/a = 100; d = 0.5λl;
ZL = 500Ω.
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M = 7, d = 0.5c/fl, (a) θs = 90°, 60°, 45°, and 30° and (b) θs = 90°, 120°, 135°, and
150°. In the figures, maximum energy is achieved when both the scan and observa-
tion angles are at broadside direction. As θs moves from broadside to end fire, peak
of the main lobe decreases. Beam scanning cannot be accomplished successfully at
the specified scan directions towards end fire, a situation which has also been pointed
out in [14].

The next step is to repeat beam-scanning analysis for the array of different-length
elements. Figure 10 illustrates the radiation pattern for M = 7 for various scan angles.
At broadside scan, the pattern is symmetric around π/2 and side lobes appear around
the main lobe. As θs approaches to end fire, symmetry disappears and the main lobe

Figure 9. Radiation pattern for the array of same-length elements in polar plot for M = 7 and
d = 0.5λ1, with scan angles (a) θs= π/2, π/3, π/4, π/6; and (b) θs= π/2, 2π/3, 3π/4, 5π/6.
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Figure 10. Radiation pattern for the different-length element case for M = 7, d = 0.5λ1, (a)
θs= π/2; (b) θs= π/3; (c) θs= π/6; (d) θs= 2π/3; and (e) θs = 5π/6.
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Figure 11. Radiation pattern for the different-length element case for M = 11, d = 0.5λ1, (a)
θs= π/2; (b) θs= π/3; (c) θs= π/6; (d) θs = 2π/3; and (e) θs = 5π/6.
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decreases. Figure 11 illustrates the patterns for M = 11. A similar behavior is observed
as in the M = 7 case but the main lobe decreases more rapidly as the scan angle moves
towards the end fire.

5. Conclusion

In this paper, characteristics of dipole arrays for UWB signals are investigated in a dif-
ferent manner by obtaining results in frequency domain rather than focusing on time
domain numerical techniques. In order to improve the performance of the antenna, an
array with different-length elements is selected at the transmitting side. Since different
lengths correspond to different frequencies in the UWB frequency range, the array
becomes more suitable for that range. Correlation coefficient and energy relations are
derived for this structure in frequency domain. The main advantage of making analysis
in frequency domain is its simplicity. In most cases, it is possible to obtain explicit
expressions that yield reasonably accurate results. This is significant because the pro-
posed frequency domain analysis can be first applied to many different antenna struc-
tures, and the promising ones could then be chosen for fine tuning by employing other
slower but more accurate methods. This approach provides a different point of view
and will be a valuable step to progress in UWB antenna design.

Although the aim is to analyze the use of dipole arrays as UWB antennas, analysis
is first applied to a single thin dipole since it is the fundamental array element. Analy-
sis is then extended to an array of dipoles with different-length elements. Beam scan-
ning characteristics of UWB dipole arrays are also investigated in the same manner.
The results illustrate that, antenna performance is improved significantly when the array
is composed of elements with different lengths.
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