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Abstract: This study introduces a new design method for reconfigurable phased arrays using hybrid differential evolution (DE)
and enhanced particle swarm optimisation (EPSO) technique. The proposed technique combines DE and enhanced version of
standard PSO with improved mechanism that updates velocities and global best solution. In the hybrid algorithm, DE and
EPSO are executed in parallel with frequent information sharing to enhance the newly generated population. To demonstrate
the effectiveness of the proposed algorithm over each separate algorithm, examples for designing reconfigurable linear and
circular antenna arrays with prescribed null directions are presented. Null steering is achieved by position perturbation of
array elements in arbitrary directions with minimum sidelobe level change constraint. Another objective is to minimise the
number of mobilised elements by introducing elements selection criteria. Simulation results show that the global search
ability of the proposed algorithm is improved when compared with DE and EPSO separately.

1 Introduction

Reconfigurable antenna arrays that are capable of radiating
with multiple power patterns using a single-power dividing
network are desirable for many applications. These arrays
have the potential of supporting operations such as
beamforming, null steering, interference suppression and
adaptive matching in a single geometry. Owing to the
increasing pollution of the modern electromagnetic
environments, a significant attention has been given to
nulling steering techniques in reconfigurable arrays. Null
steering techniques include controlling the feeding elements
of the array with amplitude control, phase control,
combination of both amplitude and phase control or element
position control [1–4]. Null steering by adjusting complex
weights of feeding excitations is the most efficient method
because it has greater degrees of freedom for the solution
space [5]. However, it is also the most expensive control
method considering the cost of both a phase shifter and a
variable attenuator for each array element. For reconfigurable
array with a single feeding network, the most suitable
technique is position perturbations of array elements. This
technique needs servomotor for each element to make
elements mobilised. It frees the phase shifters to be used
solely for steering the main beam toward the direction of the
desired signal. However, when the number of elements in the
array increases, the complexity of the mechanism for
position control of the elements will be higher. Also, the
process will require longer computational time to find the
new position perturbations. Hence, it is preferred to reduce

the number of mobilised elements by perturbing only the
position of selected elements depending on their contribution
in the null forming. The selection process is introduced in
[6] by eliminating the elements with less contribution to
control the nulls in the antenna pattern. However, the
solution is obtained for linear antenna arrays using a semi-
analytical technique. Linear array has excellent directivity
and it can form the narrowest main lobe in a given direction,
but it does not work equally well in all azimuthal directions.
In contrast, circular array structure owing to its symmetry
can be electronically rotated in azimuthal plane of the array
without a significant change of the beam shape. Recently,
evolutionary algorithms have been widely used as a
powerful technique to design phased antenna arrays [7].
Evolutionary algorithms such as genetic algorithms (GAs),
simulated annealing, particle swarm optimisation (PSO) and
differential evolution (DE) have been widely used in pattern
synthesis applications [8]. Several methods for improving
global optimisation performance are previously proposed.
These methods can be classified into three categories. First,
it is performing the same optimisation scheme successively
with different initialisations. Although this method increases
the chance of finding the optimum solution, it has high
computational cost. Second, it is improving the optimisation
algorithm itself by introducing a modified version with
enhanced searching capability [9]. Finally, it is to introduce
hybrid techniques of different evolutionary algorithms with
collaborative usage of population. A hybrid technique that
includes the essence and merits of GA and gradient-descent
methods was introduced in [10]. The idea is to embed a
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gradient-descent algorithm into the evolution concept of the
GA in order to provide a structured random search. Later on,
improved genetic algorithm-extremum disturbed simple
particle swarm optimisation (IGA-EDSPSO) hybrid
technique has been presented in [11]. The algorithm is
executed such that best solutions are exchanged between
improved version of GA and a simplified version of PSO in
an iterative way. Other robust hybrid methods applying
combination of more than two different meta-heuristic
optimisers have been developed in [12]. Recently, the idea of
hybridisation DE and PSO has been emerged to inherit
advantages of both techniques [13–15]. In [13], a
combination of DE and PSO has been presented in
sequential procedures. In [14], the mutation operation of DE
is embedded in the PSO algorithm to improve its diversity
exploration. The mutation operators are activated if velocity
value of PSO is near to zero or violated from the boundaries.
Another hybrid version of differential evolution named as
Hybrid DE is introduced in [15]. Hybrid DE starts with the
classical DE algorithm and then switch to PSO when the DE
procedure starts to slow down. In this paper, a hybrid DE
and enhanced version of PSO (EPSO) is proposed to
increase the search space. The main idea is to execute the
two techniques simultaneously. The evolved generations are
obtained by merging and interchanging individuals produced
from both techniques. The proposed evolutionary algorithm
is developed and then applied for optimising linear and
circular configurations by position perturbations of minimum
number of elements. The position perturbation will be
performed either in axial or vertical or both directions
simultaneously for linear array configuration. However, for
circular configurations the optimisation will be performed for
one of the three cases: angular, radial or arbitrary direction
that is combination of both angular and radial directions. The
rest of this paper is organised as follows. Section 2 describes
the classical DE algorithm, EPSO scheme and the proposed
hybrid DE/EPSO algorithm. Section 3 presents null steering
techniques using position perturbation for linear and circular
antenna, in addition the objective function formulation of the
design problem is presented. In Section 4, numerical
examples are provided and discussed to show the capability
of the proposed hybrid DE/EPSO. Finally, this paper is
concluded in Section 5.

2 Hybrid DE/EPSO optimisation technique

2.1 Differential evolution

DE [16] is a parallel direct search meta-heuristic approach for
global optimisation. The initial vector population is chosen
randomly. Each population vector is set as a target vector.
Mutation operation is performed by adding the weighted
difference between two population vectors to a third one.
The parameters of mutated vector are then mixed with the
parameters of the target vector, to yield the so-called trial
vector. Parameter mixing is often referred to as ‘crossover’.
If the trial vector yields a lower-cost function value than the
target vector, then the trial vector replaces the target vector
in the following generation. Each population vector has to
serve once as the target vector, so that competitions take
place in one generation. DE algorithm can be summarised
as follows:

Step 1: Initialise N-dimensional population vectors with P
individuals, all randomly chosen from lower and upper bound
interval [lb, ub].

Step 2: For each target vector xi(k) for individual i at time k,
where i [ {1, 2, . . . , P}, select another three random
individuals (xr1, xr2 and xr3) from the population. r1, r2
and r3 are random integers with mutually different indices
[{1, 2, . . . , P}. One of these selected individuals (xr1) will
serve as the base vector, and the other two (xr2 and xr3)
will produce the differentiation vector (xr2 2 xr3).

Step 3: Create a mutant vector xmut(k + 1) ¼ xr1 +
F(xr2–xr3), where F is a constant of differentiation that
is a randomly selected real number from the [0, 2] set.

Step 4: Crossover is introduced between target vector xi(k)
and mutant vector xmut(k + 1) in order to increase the
diversity of the perturbed vector and create a trial vector as

xi, j
trial(k + 1) = xi, j

mut(k + 1), if rand(j) ≤ Cr

xi, j(k), Otherwise

{
(1)

where xi,j(k) is the jth element in the xi(k) target vector,
rand( j) is a random number taken from the interval [0, 1],
j [ {1, 2, . . . , N} and Cr is preset crossover probability.

Step 5: When all the target vectors xi(k), i [{1, 2, . . . , P},
have been processed this way, evaluate the objective function
with the new trail vectors. If the objective function value of
any trial vector is less than that of the corresponding target
vector, replace the target vector with the new trial vector.

Step 6: Repeat from Step 2 until convergence criterion
is met.

2.2 Enhanced particle swarm optimisation

PSO is a swarm intelligence method for global optimisation
[17]. For classical PSO, each individual of the population
adjusts its trajectory towards its own previous best position,
and towards the previous best position attained by any
member of its topological neighbourhood. EPSO algorithm
[9] is similar to classical PSO with improved global search
ability. This is accomplished by introducing an updating
formula for global best particle position and adding two
new terms in the velocity updating formula of classical
PSO. EPSO algorithm can be summarised as follows:

Step 1: The positions, xi(k) and velocities, vi(k) of the
initial population of particles are randomly generated for the
ith particle at time k, where i is the current particle number
in the swarm, i [ {1, 2, . . . , P} and P is the swarm size.

Step 2: According to fitness function values for each particle,
locate particle with the best position value pi(k) over the current
swarm, and also update the global best position pg(k) for the
current and all the previous swarm moves.

Step 3: Update the position of the global best particle with
zero velocity according to the following equation

pg(k + 1) = [1 + (l · U )] pg(k) (2)

where U is a Gaussian random number with zero mean and
unit variance, l is a convergence acceleration parameter.

Step 4: Update velocities of all particles at time k + 1 as
follows

vi(k + 1) = w · vi(k)+ c1 · r1 · (pi(k)− xi(k))

+ c2 · r2 · (pg(k)− xi(k))+ c3 · r3 · (pi
fdr(k)− xi(k))

+ c4 · r4 · (pg
fdr(k)− xi(k)) (3)

where, r1, r2, r3 and r4 are uniformly distributed random
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variables in [0, 1], w is an inertia factor, c1 is a self-confidence
factor, c2 is a swarm confidence factor, c3 and c4 are
acceleration constants, pi

fdr(k) and pg
fdr(k) are local and

global candidate positions that are selected by locating the
individual with minimum fitness-to-distance ratio (FDR)
over all particles in the swarm.

The local and global FDR for each particle at time k is
defined as

FDRi
local =

fitness(pg(k)) − fitness(xi(k))

dist(pi(k), xi(k))
(4)

FDRi
global =

fitness(pg(k)) − fitness(xi(k))

dist(pg(k), xi(k))
(5)

where fitness(.) is the cost function to be minimised
and dist(pg(k), xi(k)) is a measure related to the distance
between the particle global best position and all other
particles on the swarm defined as

dist(pz(k), xi(k)) =
∑N

j=1

�������������������
pz,j(k)2 − xi, j(k)2

√∣∣∣∣∣
∣∣∣∣∣ (6)

where pz(k) is either the local best pi(k) or global best pg(k)
position vectors, pz,j(k) is the jth component of the pz(k)
vector. xi,j(k) is the jth component of the ith particle position
vector xi(k) that is represented as xi(k) = (xi,1, xi,2, . . . , xi,N )
in the N-dimensional search space (particle size).

Step 5: The position of each particle is updated using its
velocity vector at time k + 1 as

xi(k + 1) = xi(k) + vi(k + 1) (7)

Step 6: Repeat from Step 2 until convergence criterion is met.

2.3 Hybrid DE/EPSO algorithm

In this section, the hybrid technique of the two robust meta-
heuristic global optimisers DE and EPSO is presented. The
hybridisation purpose is to include the essence and merits
of both techniques. Generally, a hybrid DE/EPSO
procedure is aimed to give a fairly accurate optimum
solution by increasing the solution space. For each
generated population from both optimisers that are
simultaneously executed, a new generation is produced to
form DE/EPSO population. By interchanging individuals
between the two parallel optimisers, better solutions could
be achieved.

Also, it decreases the chance of trapping in local minima.
The proposed hybridisation works as follows:

Step 1: Initialise N-dimensional population of vectors with
P individuals and apply DE to create a new generation.

Step 2: Initialise another N-dimensional population of
vectors with P individuals and apply EPSO to create new
generation.

Step 3: Merge the two new generations (2P individuals)
and locate the individual with the minimum fitness function
value (best individual).

Step 4: Randomly select P individuals from the merged
generation and insure that the selected individuals contain
the best individual located in Step 3. If not, sort the
selected individuals according to their fitness function

values and replace the individual with the highest fitness
function value by the best individual.

Step 5: Apply EPSO to the generation that contains the best
individual that is produced in Step 4. This is to ensure that the
EPSO will perform properly since the global best solution is
needed in the updating equations.

Step 6: Apply DE to the remaining P individuals from the
merged 2P population of Step 3.

Step 7: Go to Step 3 until a convergence criterion is met.

3 Unequally spaced antenna arrays with
linear and circular geometries

In order to show the capability and flexibility of the proposed
hybrid DE/EPSO to design reconfigurable antennas that steer
a single null or multiple nulls in the imposed directions by
controlling the position of selected elements. This section
presents generalised array factor expressions for both linear
and circular configurations when their elements are
perturbed in arbitrary directions.

3.1 Array factor of linear antenna array with
position perturbation

Consider initially a linear antenna array with 2N elements that
are placed symmetrically along x-axis with inter-element
spacing of do as shown in Fig. 1. The array factor in the
azimuthal plane (x–y-plane) can be written as [18]

AF(f) =
∑2N

n=1

Ine jdnk( cos (f)−cos (fo)) (8)

where In is the nth element complex excitation, dn is the nth
element position from centre of the array that is defined as
dn ¼ do(n–0.5), k is the wave number, f is the angle
measured from the array line direction and fo is the
direction of the main beam steering angle.

Defining vn as the position vector of the nth element with
distance |vn| and angle bn are defined as

|vn| = (x2
n + h2

n)1/2 and bn = tan−1 (hn/xn) (9)

where xn is the perturbation in axial direction and hn is
the perturbation in the normal direction with respect to
the antenna array line. Owing to the array symmetry, the
perturbation vector, v, can be defined for only half of the
elements number as v = [v1, v2, . . . , vN ]. The array factor
of the geometry after position perturbation of the elements
can be derived by including the contribution of perturbation

Fig. 1 Geometry of linear array with illustration of elements
perturbation directions
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vector v to (8) and it can be expressed as

AF(f, v) = 2
∑N

n=1

[In cos [dn(k cos (f) − k cos)(f0)

+ |vn|(k cos (bn − f) − k cos (f0))] (10)

3.2 Array factor of circular antenna array with
position perturbation

Consider a uniformly spaced circular antenna array that is
placed on the x–y-plane and consists of 2N isotropic
elements equally spaced by d0 around the circumference of
a circle of radius r as shown in Fig. 2. The array factor
pattern of this array can be described as in [18]

AF(f) =
∑2N

n=1

Inejrk[ cos (f−fn)−cos (f0−fn)] (11)

where In is the amplitude excitation of the nth element,
r = (2Nd0)/2p, k is the wave number, fn is the angular
position of the nth element on the x–y-plane, where
fn = 2p(n − 1/2N ) for n [ {1, 2, . . . , 2N}, f0 is the
direction of the main beam. Each element in the array is
subjected to one of three types of perturbation. Radial
perturbation (Drn) along the radius r, angular perturbation
(Dfn) along the circumference of the circle or arbitrary
perturbation that can be represented in by (Drne jDfn ). The
arbitrary perturbation can also be presented by the
displacement vector v with respect to element’s initial
positions, where vn = |vn|ejbn , where bn in the range
between {2p, p}. Noting that the array has even number 2N
with equal inter-elements spacing d0 and fn+N = fn + p,
then the overall position vector v can be reduced to N
dimensions vector as v = [v1, v2, . . . , vN ]. The array factor
patterns in this case can be written as

AF(f, v) = 2
∑N

n=1

In cos {k(r + |vn|)[ cos (f− (fn + bn))

− cos (f0 − (fn + bn))]} (12)

3.3 Null steering technique by position control
of selected elements

Null steering technique is presented in this section for linear-
and circular-phased array configurations. The technique
optimises displacement vectors and number of perturbed
elements using the proposed hybrid DE/EPSO. In this

optimisation process, two constrains are included while
achieving the nulls in the pattern: minimum change of both
average side-lobe level (SLL) and beamwidth of the main
beam compared with initial equally spaced pattern.
Considering the above constrains, the objective function is
defined as follows

F(v) = a
∑M

m=1

|AF(fm, v)|2 + b
∑

i

1

Dfi

∫f2i

f1i

|AF(f, v)|df

(13)

where |AF(f, v)| is the array factor for linear- or circular-
phased array that are described in (10) and (12), v is the
perturbation position vector that needs to be optimised, fm

is the angle of the prescribed null locations, M is the total
number of nulls, [f1i, f2i] are the ith spatial region
boundaries of the array pattern excluding the main beam in
which average peak SLL need to be constrained,
Dfi = f1i − f2i, a and b are weighting coefficients. In
(13), the first term represents the fitness function that need
to be optimised for nulls control purpose, whereas the
second term is used for constraining the average SLL. The
null steering technique is developed by optimising (13) for
a given prescribed nulls to obtain the array geometry. The
problem is then extended to iteratively minimise number of
mobilised elements as follows:

Step 1: Optimise the position vector (v) for N elements
noting that the array has 2N elements with symmetric
configuration.

Step 2: Eliminate two elements with lowest |vn| by setting
them to zero.

Step 3: Optimise v for N 2 2 elements and record the
resultant v and the corresponding F(v).

Step 4: Eliminate one more element with the lowest |vn|.
Step 5: Optimise v and then record the resultant v and the

corresponding F(v).
Step 6: Go to Step 4 if there is no significant decreasing

change (approximately 20%) between F(v) values for
current and previous iterations. Otherwise, retrieve previous
iteration and stop eliminating elements.

4 Numerical results

The goal of this section is to show the capability of DE/EPSO
technique for optimising reconfigurable antennas to achieve
accurate null steering. Designs of reconfigurable linear and
circular array configurations with 20 isotropic elements are
demonstrated. The objective is to steer two and five
prescribed nulls for both configurations by position
perturbation of minimum number of arrays elements. DE,
EPSO and the proposed hybrid technique are implemented
to optimise F(v) to obtain the position vector v for each
geometry starting with uniformly spaced configuration. The
produced pattern is required to maintain deep nulls, while
having the beamwidth of the main beam unchanged.

The DE algorithm uses the following parameters:
population size ¼ 20, number of generations ¼ 100 000,
constant of differentiation F in range of [0, 2] and
probability of crossover Cr ¼ 0.9. Meanwhile, EPSO
algorithm uses the following parameters: swarm size ¼ 20,
number of generations ¼ 100 000, inertia weight factor
w ¼ 0.5, acceleration constants c1 ¼ c2 ¼ 2, c3 ¼ 0.5,
c4 ¼ 0.55. First, null position control is implemented for

Fig. 2 Geometry of circular array with illustration of the different
types of elements position perturbation
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linear antenna array placed on x-axis. The objective is to
reconfigure the initial array pattern to have two nulls at
azimuthal angles f ¼ 1058 and 1108. Also, the problem is
extended to impose five nulls at f ¼ 188, 328, 1238, 1308
and 1388. Initial pattern is set by assigning the excitation
coefficients to produce 235 dB Chebyshev pattern with
main beam directed toward the broadside (f ¼ 908). As
defined in Section 3, each nth element is perturbed by a
distance |vn| and angle bn for one of three perturbation
cases axial, elevation and arbitrary as shown in Fig. 1. The
optimisation parameters are set as 0 ≤ |vn| ≤ 0.08l and
2p ≤ bn ≤ p. Figs. 3 and 4 depict the initial and
perturbed pattern of the linear array with arbitrary
perturbation using hybrid DE/EPSO for two and five
imposed nulls, respectively. Tables 1 and 2 compare
different perturbations and optimisation algorithms
according to the resultant number of perturbed elements,
peak SLL and the corresponding value of the worst case
null depth. It is obvious that arbitrary perturbation using
hybrid DE/EPSO algorithm gives the best solution. Table 3
presents perturbation vector values and locations of the
selected mobilised elements for the best solution. As can be
seen only six elements is to be position controlled to
achieve a worst case null depth of 2225 dB for two nulls
case; also, ten elements need to be perturbed to obtain
2212 dB for five nulls case. A comparison can be made
between the hybrid method and another semi-analytical
optimisation method [6]. Where the same 2 null example
was performed resulting in reducing the initial level to
≃272 dB by controlling 12 selected elements. Another
difference is that the hybrid technique yields peak SLL
of 232 dB besides having non-symmetrical nulls.
However in [6], a higher SSL of 228 dB was observed
with symmetrical null occurs at the other side of the main
beam. Fig. 5 shows the convergence curve for the three

Fig. 3 Initial and the three algorithms perturbed pattern for linear
array with imposed nulls at 105 and 1108

Fig. 4 Initial and the three algorithms perturbed pattern for linear
array with imposed nulls at 18, 32, 123, 130 and 1388

Table 1 Comparison between position perturbation types and optimisation algorithms for linear array and

two nulls case

Null Perturbation Algorithm No. of perturbed

elements

SLL, dB Null depth, dB

1058, 1108 axial DE 10 230 286

EPSO 10 230.5 242.2

HYBRID 10 230.5 2127

elevation DE 10 230 2335

EPSO 14 230 2239

HYBRID 8 230 2296

arbitrary DE 6 229 280.5

EPSO 6 230.5 2125

HYBRID 6 232 2225

Table 2 Comparison between position perturbation types and optimisation algorithms for linear array and

five nulls case

Null Perturbation Algorithm No. of perturbed

elements

SLL, dB Null depth, Db

188, 328, 1238, 1308, 1388 axial DE 16 231 243.2

EPSO 16 231 247.2

HYBRID 16 231 248.7

elevation DE 16 231 236.6

EPSO 16 231 241.8

HYBRID 16 231 241.8

arbitrary DE 16 231.1 239.3

EPSO 12 231.2 2212

HYBRID 10 231.1 2212
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optimisation techniques that are used to achieve the
imposed two nulls by arbitrary perturbing the elements of
the considered linear antenna array. As shown EPSO, DE
and hybrid DE/EPSO achieve convergence after
3000, 6000 and 8000 iterations, respectively, that are
equivalent to 150, 300 and 400 generations. This figure
also indicates that the proposed hybrid DE/EPSO has the
minimum value of fitness function. It should be noted here
that the fitness function is a weighted sum function of the
null depth, SLL change and the number of perturbed
elements.

Second, hybrid DE/EPSO is applied to design
reconfigurable circular array to form multiple nulls in the
azimuthal radiation pattern. The initial circular array pattern
is assumed to be similar to the Chebyshev pattern of linear
antenna array. The initial array geometry consists of 36
uniformly excited elements with 0.25l inter-element arc
spacing. The complex excitation coefficients of this circular
array are obtained from [19]. These excitation coefficients
produce a 233 dB Chebyshev-like pattern. The positions of
the array elements are perturbed in one of three directions,
angular, radial or arbitrary. The objective is to steer two

Fig. 5 Convergence curves for the three algorithms used to design
perturbed linear array (two nulls – arbitrary perturbation case)

Fig. 7 Initial and the three algorithms perturbed pattern for
circular array with imposed nulls at 54, 73, 94, 110, 1528

Table 3 Values of the position vector for arbitrary perturbation

of linear array using hybrid DE/EPSO

Element

location

Nulls 1058, 1108 Nulls 188, 328, 1238, 1308, 1388

|vn| bn |vn| bn

1,11 0 0 0 0

2,12 0 0 0 0

3,13 0 0 0 0

4,14 0 0 0.0137 2.9216

5,15 0 0 0 0

6,16 0 0 0.0261 2.7572

7,17 0.0332 4.1457 0 0

8,18 0 0 0.0292 2.5362

9,19 00181 3.3935 0.0659 3.269

10,20 0.0678 0.9771 0.0646 1.3362

Fig. 6 Initial and the three algorithms perturbed pattern for
circular array with imposed nulls at 54, 1108

Table 4 Comparison between position perturbation types and optimisation algorithms for circular array

and two nulls case

Angle Perturbation type Algorithm No. perturbed element SLL, dB Null depth, dB

548, 1108 angular DE 36 230 233.3

EPSO 36 230 234.9

HYBRID 36 230 234.4

radial DE 28 230 2166.5

EPSO 28 230 2208

HYBRID 18 230 2324.9

arbitrary DE 36 230 234

EPSO 18 230 2221.7

HYBRID 18 230 2332
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nulls at 548 and 1108 and five nulls at 548, 738, 948, 1108 and
1528. The optimising parameters was set to
20.1l ≤ Drn ≤ 0.1l for radial perturbation and
22.58 ≤ Dfn ≤ 2.58 for angular perturbation. Figs. 6 and 7
show the initial and the perturbed pattern by imposing two
and five nulls respectively. As can be seen, nulls are
perfectly formed at the prescribed values. Tables 4 and 5
compare angular, radial or arbitrary perturbation for
different optimisation techniques. Similar to linear array
examples, arbitrary perturbation using hybrid DE/EPSO
method leads to the best solution. The superiority of hybrid
DE/EPSO technique is proved by achieving the two preset

nulls by perturbing only 18 out of the 36 elements with
values not greater than 2332 dB. Also, 22 elements are
perturbed to form five nulls with worst case depth of
2178 dB. Table 6 provides further details for the best
solution by presenting the Drn and Dfn values and the
locations of mobilised elements. It should be noted that the
number of selected elements could be further reduced if
either the null depth or SLL optimisation are relaxed. Similar
to the linear array case, the convergence curves for imposing
two nulls using arbitrary perturbation of circular array are
presented in Fig. 8. In this particular example, it is noted that
DE converges too fast and trapped in a local minimum
solution. However, the proposed hybrid DE/EPSO achieves
the minimum value compared with DE and EPSO.

5 Conclusion

In this paper, a novel hybrid global optimisation algorithm
DE/EPSO combining DE and EPSO has been introduced.
The proposed technique has been applied for interference
suppression by position-only control using minimum
number of mobilised elements for linear- and circular-
phased arrays. Null steering is performed by perturbing the
positions of selected elements while freezing the positions
of those elements that have insignificant contributions. The
resultant patterns are optimised to impose non-symmetric
deep nulls and be as close as possible to the initial
equiripple Chebyshev patterns. The numerical results show
that the hybrid DE/EPSO outperforms the classical DE and
the EPSO in obtaining the desired patterns with minimum
number of perturbed elements. Different types of position
perturbations in either one or two dimensions have been
presented and compared. It can be concluded that the
hybrid DE/EPSO is very effective algorithm with good
accuracy and it is promising to be applied for solving
global optimisation problems and designing reconfigurable
antenna arrays.
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