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Abstract: This study proposes a new method of designing a reconfigurable antenna with quantised phase excitations using a new
hybrid algorithm, called as differential evolution algorithm (DE)/artificial bee colony algorithm (ABC). The main objective of the
reconfigurable design problem is to find the element excitation that will result in a sector pattern main beam with low side lobes.
The same excitation amplitudes applying to the array with zero phase should be in a high directivity and low side lobe pencil-
shaped main beam. The dynamic range ratio is minimised to reduce the effect of mutual coupling between the antenna-array
elements. Additionally, compared with the continuous realisation and subsequent quantisation, experimental results indicate
that the performance of the discrete realisation of the phase-excitation value can be improved. In order to test the
performances of hybrid differential evolution with the artificial bee colony algorithm, the results of some state-of-the-art
algorithms are considered. The experimental results indicate the better performance of the DE/ABC.

1 Introduction

The problem of reconfigurable antenna arrays involves
radiating multiple patterns using a single power-divided
network. During the past decades, this problem has
attracted many researchers since the pioneering work of
Bucci et al. [1, 2]. Moreover, this problem has played an
important role in the field of manufacturing and
telecommunications science [3, 4]. In order to solve
this problem, many methodologies have been proposed
to obtain the multi-pattern arrays in the previous literature
[4–8].

Evolutionary algorithms perform population-based
probabilistic searches with a high speed of convergence
rate, and have been proved very successfully in solving the
problems of large scale. When it comes to solve
reconfigurable antenna problems, compared with the
traditional algorithms, evolutionary algorithms have the
ability of obtaining excitation phases and amplitudes that
can be practically implemented more easily by imposing
additional constraints. So it is not uncommon, in the past
decade, to see that different kinds of evolutionary
algorithms, such as simulated annealing [4], genetic
algorithm (GA) [4–6], particle swarm optimisation
algorithm [7, 8] and tabu search algorithm [9], have been
advanced to handle reconfigurable antenna problem,
especially for the problems of large scale. Among them,
differential evolution algorithm (DE) [10] and artificial bee
colony algorithm (ABC) [11] are the two novel meta-
heuristic algorithms introduced recently and have gained
significant attentions in the research literatures [12, 13]. DE

is a simple and yet powerful population based, direct search
algorithm with the generation and test feature for global
optimisation problems. The basic idea of DE is to create
new candidate solutions by combining the parent individual
and several other individuals of the same population, and a
candidate solution replaces the parent only if it has better
fitness. ABC is a population-based heuristic evolutionary
algorithm inspired by the intelligent foraging behaviour of
the honeybee swarm.

In the evolutionary algorithm-based antenna-array
synthesis producer, phased excitations are always
represented by continuous values; however, discrete phase
shifters are sometimes used to realise the phase excitation.
Therefore the excitation phase values obtained by these
approaches are subsequently quantised to the nearest n-bit
phase shifter excitation values. In order to solve the
reconfigurable antenna array with quantised phase
excitations, Baskar proposes a mixed integer optimisation
for the first time in an evolution search, namely, the
generalised generation-gap model GA (G3-GA) [14]. The
objective is to optimise real-valued amplitude excitations
and quantised phase excitations [15].

Although meta-heuristic methods have been proved to have
superior features to other traditional methods, they also suffer
some limitations. Additionally, researchers have found that a
skilled combination of two meta-heuristic techniques can
improve the performance of the algorithms obviously when
dealing with real-world and large-scale problems [16].
Some hybrid heuristic-based optimisation methods have
been proposed in the last few years [17–19]. However, this
field of study is still in its early days, a large number of
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future researches are necessary in order to develop hybrid
algorithms for optimisation problems.

In this paper, we will use the hybrid DE algorithm with the
artificial bee colony to solve reconfigurable antenna-array
optimisation with quantised phase excitations. Specifically,
a hybrid bee operator of ABC is adopted, combined with
mutation, crossover and selection operators of DE to
explore and exploit the search space effectively. In order to
demonstrate the advantages of the proposed design, the
results obtained using continuous-phase excitations
followed by quantisation are compared with other
algorithms including DE, CoDE, SaDE, jDE and JADE.

The rest of this paper is organised as follows: in Section 2,
we will introduce the problem formulation. Section 3
describes the fitness function. Section 4 describes the DE
algorithm. Section 5 describes the ABC. Section 6
describes the hybrid DE and artificial bee colony. The
corresponding experimental results are given in Section
7. In Section 8, we conclude this paper and point out some
future research directions.

2 Problem formulation

The problem described is as follows: in order to design a
reconfigurable dual-beam antenna array, an amplitude
distribution can generate either a pencil-shaped or a sector
power pattern, when the phase distribution of the array is
modified appropriately. All excitation phases are set at 08
for the pencil-shaped beam, and varied in the range
21808 ≤ f ≤ 1808 for the sector pattern [7]. If the
excitation is symmetrical at the centre of the linear array,
the array with an even number of uniformly spaced
isotropic elements (2N ) can be written as [14]

F(u) = 2
∑N

k=1

(akR cosfk − akl sinfk) (1)

with

fk = 2p

l
dk sin u (2)

where dk is the distance between the position of the kth
element and the centre, u is the scanning angle from the
broadside, akR is the real part of the kth element excitation,
akI is the imaginary part of the kth element excitation and
akR and akI are set within the range [0, 1] and [21, 1],
respectively. N excitation amplitude and phase coefficients
are chosen to optimise the desired pattern. The pencil and
sector patterns should have a high directivity, low side lobe
pencil-shaped main beam and a wide sector beam.

3 Fitness function evaluation

For the reconfigurable dual-beam optimisation, the objective
of the fitness function must qualify the entire array radiation
pattern. The calculated pattern can be described in terms of
the criteria of the desired pattern. The fitness function for
the dual-beam optimisation can be described as follows [7]

E(P) =
∑3

i=1

(P(p)
i,d − P(i)

i )
2 +

∑4

i=1

(P(s)
i,d − P(s)

i )2 (3)

where the superscript p is the design specification for the

pencil pattern, the superscript s is the design specification
of the sector pattern, the subscript d indicates the desired
value of the design specification and P indicates the
applicable fitness factor in Table 1. The first part of this
fitness function is summarised over the first column of
Table 1, and the other part of this function is summarised
by the second column. Different from the fitness function of
the pencil beam pattern, the pattern ripple needs to be
calculated for the sector pattern.

In order to reduce the effect of coupling between elements,
an additional term is included in the objective function (4)
[14]. The ratio is used to minimise the coupling effect
between the maximum and minimum excitation amplitudes.
The minimisation of the amplitude-excitation dynamic
range (ADR) can reduce the mutual coupling problem [20,
21]. The objective function can be expressed as follows

Ec(P) =
∑3

i=1

(P(p)
i,d − P(i)

i )
2 +

∑4

i=1

(P(s)
i,d − P(s)

i )2 + ADR (4)

where ADR is the amplitude–dynamic ratio. The ADR is
defined as the ratio between the maximum excitation
amplitude to the minimum excitation amplitude. The
differences between the excitation amplitudes are minimised
by minimising the ADR; therefore the effect of coupling
can be minimised.

4 Differential evolution algorithm

DE [10] is a simple and yet powerful heuristic method for
solving non-linear, non-differentiable and multimodal
optimisation problems. Like other Eas, DE starts with an
initial random population and searches towards the global
optimum by some iteration operations including mutation,
crossover and selection. The main idea behind DE is a
scheme for producing trial vectors according to the
manipulation of the target vector and difference vector. If
the problem is the minimisation problem, the trail vector
competes with the current population vector and the better
one is selected to enter the next generation. Different kinds
of strategies of DE have been proposed based on the target
vector selected, and the number of different vectors used. In
this paper, we use the strategy, DE/rand/1/bin, described as
follows:

For each target vector xi(t), trail vector vi(t), i ¼ 1, . . . , NP,
let D be the dimension of the target vector, and G be the G
generation. The mutant vectors are generated in these DE/
rand/1/bin strategies respectively.

For DE/rand/1/bin

vi,G = xa,G + F(xb,G − xc,G) (5)

where a, b, c, d [ [1, . . ., NP] are randomly chosen as

Table 1 Design specifications

Design parameters Pencil pattern Sector pattern

side-lobe level (SLL) 230 dB 225 dB

half-power bandwidth (HPBW) 6.88 248
bandwidth at SLL 208 408
ripple NA 0.5 dB
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integers, and a = b = c = d = i. F is the scaling factor
controlling the amplification of the DE.

Following the mutation phase, the crossover operator is
applied to the population. The crossover operator,
implements a recombination of the trial vector and the
parent vector to produce the offspring. This operator is
calculated as

uj,i,G = vj,i,G, (randj[0, 1] ≤ CR) or (j = jrand)
xj,i,G, otherwise

{
(6)

where j ¼ [1, . . . , D], randj [ [0, 1], jrand ¼ [1, . . . , D] is the
randomly chosen index, CR is the DE control parameter that
is called the crossover rate and is a user-defined parameter
within the range [0, 1]. vj,i,G is the differential vector of the
jth particle in the ith dimension at the Gth iteration, and
uj,i,G denotes the trail vector of the jth particle in the ith
dimension at the Gth iteration. The selection operator is
used to choose the next population between the trail
population and the target population

xi,G+1 = ui,G, f (ui,G) , f (xi,G)
xi,G, otherwise

{
(7)

The standard DE algorithm can be described as Fig. 1

5 ABC algorithm

The artificial bee colony is an evolutionary algorithm first
introduced by Karaboga in 2005. This algorithm simulates
the foraging behaviour of the bee colony. ABC algorithm is
a population-based algorithm to be developed by taking
into consideration the thought that how honeybee swarm
would find food. In this algorithm, the model of the ABC
algorithm consists of three groups of bees: employed bees,
onlooker bees and scout bees. Employed bees are

responsible for exploiting the nectar sources explored before
and sharing their information with the onlookers within the
hive. After that the onlookers will select one of the food
sources within the neighbourhood of the food source. An
employed bee becomes a scout if the food source is
abandoned, and then starts to search a new food source
randomly [11].

The ABC algorithm is an iterative algorithm. It starts by
associating all employed bees with randomly generated
food solutions. The initial population is very important in
the meta-heuristic algorithms and can be generated by
different ways. Each individual is randomly producing and
is used in this study. The initial population of solutions is
filled with SN number of randomly generated D dimensions.

In order to produce a candidate food position vij from the
old one xij in the neighbourhood of its present position is as
follows

vij = xij + wij(xij − xkj) (8)

k = int(rand ∗ SN ) + 1

where wij ¼ (rand 2 0.5) × 2 is a uniformly distributed real
random number within the range [21, 1], i [ {1, 2, . . . ,
SN}, k [ {1, 2, . . . , SN} and k = i and j [ {1, 2, . . . , n}
are randomly chosen indexes. After producing the new
solution vi, it will be evaluated and compared with xi. If the
objective fitness of vi is smaller than the fitness of xi, vi is
accepted as a new basic solution. Otherwise xi would be
obtained.

When all employed bees finish this process, an onlooker
bee can obtain the information of the food sources from all
employed bees and choose a food source depending on the
probability value associated with the food source, using the

Fig. 1 Procedure algorithm description of DE algorithm
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following expression

pi =
fitnessi∑SN
i=1 fitnessi

(9)

where fitnessi is the fitness value of the solution i evaluated by
its employed bee. Obviously, when the maximal value of the
food source decreases, the probability with the preferred
source of an onlooker bee decreases proportionally. Then
the onlooker bees produce a new source according to (9).
The new source will be evaluated and compared with the
primary food solution. If the new source has a better nectar
amount than the primary food solution, it will be accepted.

After all the onlookers have finished this process, the
sources are checked to determine whether they are to be
abandoned. If the food source does not improve after a
determined number of the trails ‘limit’, the food source is
abandoned. Its employed bee will become a scout and then
will search for a food source randomly as follows

xij = LBj + (UBj − LBj) × r (10)

where r is a uniform random number in the range [0, 1].
After the new source is produced, another iteration of the

ABC algorithm will begin. The whole process repeats again
till the termination condition is met.

6 Our approach: DE/ABC

In this section, different steps of DE/ABC approach are
described below:

6.1 Hybrid bee operator

The main operator of DE/ABC is the hybrid bee operator,
which hybridises the DE operator with the ABC operation.
Crossover operation of the DE algorithm is applied to each
pair of the target vector xj,i,G and its corresponding mutate
vector vj,i,G to generate a trail vector. In the standard DE
algorithm, DE employs the binomial crossover defined as
follows

uj,i,G = vj,i,G, (randj[0, 1] ≤ CR) or (j = jrand)
xj,i,G, otherwise

{

The crossover operator can find the globally optimal region.
However, it is cannot converge rapidly to the globally
optimal solution. Employed bees fly onto the source which
they are exploiting. In order to solve this problem, we
tackle by integrating an employed bee operator of ABC to
maintain the diversity and obtain good solution rapidly at
the same time (Fig. 2)

The crucial idea behind DE is a scheme for producing trial
vectors according to the manipulation of the target vector and
difference vector. From the algorithm, we can find that the
proposed bee operation is based on the main update
operator of ABC. The core idea of the proposed hybrid bee
colony is based on two considerations. On the one hand,
the employed bee colony exploited the nectar sources
explored before and gave the information to the waiting
bees in the hive about the quality of the food source sites,
which they are exploiting and the onlooker bees waiting in
the hive watch the dances advertising the profitable sources
and choose a source site depending on the frequency of a
dance proportional to the quality of the source. On the other

hand, the mutation operator of the DE is able to explore the
new space. From the analysis, it can be seen that the hybrid
bee colony can balance the exploration and the exploitation
effectively.

6.2 Main procedure of DE/ABC

By incorporating the above-mentioned hybrid bee operator
into DE, the DE/ABC has been developed as a new
algorithm. The hybrid method is described as Fig. 3.

As we know, the standard DE algorithm is good at
exploring the search space and locating the region of the
global minimum, but it is relatively slow at the exploitation
of the solution. On the other hand, the standard ABC
algorithm is usually quick at the exploitation of the solution
though its exploration ability is relatively poor. Therefore,
in this literature, a hybrid meta-heuristic algorithm by
integrating the artificial bee colony into DE, called as DE/
ABC is used to solve the problem of reconfigurable antenna
array. The difference between DE/ABC and DE is that the
hybrid bee operator is used to replace the original DE
mutation operator. In this way, this method can explore the
new search space by the mutation of the DE algorithm and
exploit the population information with the employed
onlooker bee operator of ABC, and therefore can overcome
the lack of exploitation of the DE algorithm.

7 Experimental results

7.1 Compared DE/ABC with ABC and DE for global
optimisation problem

To evaluate the performances of the DE/ABC and ABC and
DE, we apply them to six classical benchmark functions.
These functions are presented in Table 2. In Table 2, Range
denotes a subset of RangeD. D is the dimension of classical
functions. The global minimum values of six classical
benchmark functions of Table 2 are zeros. Functions 1 and
2 are unimodal high-dimensional functions. Functions 3 and
6 are multimodal high-dimensional functions.

The performances of the DE/ABC are compared with those
of the DE and ABC algorithms. For all the functions, the
population size is 100 and the maximum number of
generations is 1500. For the parameter of DE/ABC, F is

Fig. 2 Procedure hybrid bee operator of DE/ABC
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0.5, CR is 0.9 and the limit is 100. For the parameter of DE, F
is 0.5 and CR is 0.9. For the ABC algorithm, the limit is 100.

In the experiment, the mean results of 30 independent runs
are summarised in Table 3. Compared with the DE algorithm,
as can be seen in Table 3, we can find that the DE/ABC is
significantly better than DE on four functions except f05.
For the multimodal functions with many local minimums,
that is, f03– f06, it is clear that the best results are obtained
by DE/ABC. DE may trap into the local minima for two
out of four functions. The DE/ABC can find better
solutions than the DE algorithm within the maximum

number of generations. This result illustrates that the
algorithm has better ability to escape from poor local
optima and locate a good near-global optimum.

Compared with ABC, from Table 3, it is obvious that DE/
ABC performs better solutions than ABC except f02. For the
multimodal function, the DE/ABC can provide better
solutions than ABC for all functions.

In general, the performance of DE/ABC is highly
competitive with DE, especially for the high-dimensional
problems. Moreover, DE/ABC is better than ABC for some
functions.

Fig. 3 Procedure algorithm description of DE/ABC
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7.2 Reconfigurable antenna-array design and
parameter setting

To evaluate the performance of the DE/ABC, the benchmark
problems for the experiments are also used in [14]. In the first
experiment, there are 20 design parameters with continuous
values. In the second experiment, there are also 20 design
parameters. Among them, ten-phase coefficients are
represented as discrete variables, and the other ten-phase
coefficients are represented as continuous variables.

In experiment 1, the results of the excitation phases cannot
be used and approximated to the nearest values for an n-bit
phase. In this paper, we will compare DE/ABC with other
algorithms including DE, G3-GA, CoDE, SaDE, jDE and

JADE based on these two experiments. In experiment 2,
ten-phase excitations are indicated as quantised values
corresponding to the n-bit phase shifter is used. Therefore
the values of the phase excitation are quantised between
21808 and 1808 with 5.6258 per step. For simulating DE/
ABC, the population size NP is 20. The maximum function
evaluations are 20 000. The crossover rate CR is 0.9. The
scale factor F is 0.5. For simulating DE algorithm and
generalised generation gap GA (G3-GA), the population
size NP is 20, the maximum function evaluations are
20 000, the crossover rate CR is 0.9 and the scale factor F
is 0.5. In G3-GA, the number of the offspring is l ¼ 6, the
maximum function evaluations are 20 000, the population
size NP is 500 and sa ¼ sb ¼ 0.25. In order to compare

Table 2 Benchmark functions based in our experimental study

Test function D Range Optimum

f01 =
∑n

i=1 x2
i 30 [2100,100] 0

f02 =
∑D−1

i=1 [100(xi+1 − xi
2)2 + (xi − 1)2] 30 [230, 30] 0

f03 = −20 exp −0.2

��������������
1

D

∑D

i=1
x2

i

√( )
− exp

1

D

∑D

i=1
cos 2pxi

( )
+ 20 + e 30 [232, 32] 0

f04 = 1

400

∑D

i=1
x2

i −
∏D

i=1
cos

xi�
i

√
( )

+ 1 30 [2600, 600] 0

f05 = p

D

10 sin2 (pyi ) +
∑D−1

i=1 (yi − 1)2[1 + 10 sin2 (pyi + 1)]

+(yD − 1)2 +
∑D

i=1 u(xi , 10, 100, 4)

{ }
30 [250, 50] 0

yi = 1 + ((xi + 1)/4) u(xi , a, k , m) =
k(xi − a)m

0
k(−xi − a)m

⎧⎨
⎩

xi . a

− a , xi , a

xi , −a

f06 = 0.1 10 sin2 (pyi ) +
∑D−1

i=1 (yi − 1)2[1 + 10 sin2 (pyi + 1)] + (yD − 1)2
{ }

+
∑D

i=1 u(xi , 10, 100, 4) 30 [250, 50] 0

Table 3 Comparisons of ABC, DE and DE/ABC

F ABC Standard DE Standard DE/ABC Standard

Mean Mean Mean

f01 3.4163e–020 2.1396e–020 5.2833e–014 3.5135e–014 5.7621e–049 1.5839e–048

f02 0.1243 0.1082 16.6681 1.0638 25.0887 18.7927

f03 1.1904e–009 4.4766e–010 2.2021e–008 6.0555e–009 4.7961e–015 1.1234e–015

f04 1.1853e–009 4.1106e–010 7.3727e–008 3.1395e–008 0 0

f05 7.1651e–022 7.1565e–022 6.9083e–015 8.2614e–015 2.1351e–030 6.7022–030

f06 4.1637e–020 5.9332e–020 2.5765e–014 1.9767e–014 1.8428e–032 9.2968e–033

Table 4 Optimum results of experiment 1 and 2 without ADR

Element number Experiment 1 Experiment 1 after quantisation Experiment 2

Amplitude Phase, deg. Amplitude Phase, deg. Amplitude Phase, deg.

1/20 0.203 2179.8 0.203 2180.0 0.147 28.6

2/19 0.159 2141.9 0.159 2140.0 0.170 225.7

3/18 0.243 2157.3 0.243 2157.1 0.281 237.1

4/17 0.363 2107.2 0.363 2105.7 0.310 260.0

5/16 0.456 2103.5 0.456 2100.0 0.451 277.1

6/15 0.598 281.2 0.598 277.1 0.581 77.1

7/14 0.746 90.9 0.746 94.3 0.670 2111.4

8/13 0.835 97.2 0.835 100.0 0.787 294.3

9/12 0.912 101.9 0.912 105.7 0.893 82.9

10/11 0.954 96.0 0.954 100.0 0.918 88.6

ADR 5.99 5.99 6.23

fitness value 0.16 5.0317 0.16
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fairly, we set these algorithms with the same fitness
evaluations. In ABC, the population size is 20. The limit is
100.

7.3 Optimisation without ADR

In this section, we will use DE/ABC for the reconfigurable
antenna-array design without the coupling effects. The
objection function (3) is as the fitness. Table 4 shows the
experiment results of the excitation amplitude and phase.

The best of optimal results for experiment 1 (after
quantisation of the phase excitations), and experiment 2 are
shown in Table 4. The table also illustrates the ADR of the
optimised excitation amplitudes and fitness function value.
The optimised excitation patterns and dual-beam patterns
are described in Figs. 4 and 5, respectively. Fig. 5 shows
the satisfaction of designed parameters simultaneously for
both the pencil and sector beam.

Fig. 4 Amplitude and phase excitation (experiment 1)

Fig. 5 Dual-beam array patterns (experiment 1)

Table 5 Effects of quantisation on different design specifications

Pencil beam Sector beam Fitness

HPBW SLLBW SLL HPBW SLLBW SLL Ripple

DE continuous phase excitation(experiment 1) 0.4 0 0 0 0 0 0 0.16

after quantisation 0.4 0 0 1.8 1.2 0 0 4.84

optimisation with discrete variable(2) 0.6 0 0 0 0 0 0 0.36

DE/ABC continuous phase excitation(experiment1) 0.4 0 0 0 0 0 0 0.16

after quantisation 0.4 0 0 1.8 0.2 1.26 0 5.03

optimisation with discrete variable(2) 0.4 0 0 0 0 0 0 0.16

Fig. 6 Dual-beam array pattern: experiment 1 (top) after
quantisation and experiment 2

Fig. 7 Amplitude and phase excitation (experiment 2)
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For the DE/ABC, the best dual-beam pattern is 0.16 for
experiment 1. After quantising the optimum phase values,
we can find the fitness value increases to 5.03 because the

sector beam increases most of the fitness value in Table 4.
From the quantisation of the optimum result obtained in
experiment 1, it may not be optimum for the discrete case.

Table 6 Optimum results of experiment 1 and 2 with ADR

Element numbber Experiment 1 Experiment 1 after

quantisation

Experiment 2

Amplitude Phase, deg. Amplitude Phase, deg. Amplitude Phase, deg.

1/20 0.211 29.5 0.211 28.6 0.218 2168.6

2/19 0.211 216.8 0.211 214.3 0.218 2162.9

3/18 0.221 255.9 0.221 254.3 0.226 2128.6

4/17 0.357 259.8 0.357 260.0 0.368 2145.7

5/16 0.439 289.6 0.439 288.6 0.452 117.1

6/15 0.577 105.6 0.577 111.4 0.585 260.0

7/14 0.685 277.3 0.685 277.1 0.704 277.1

8/13 0.794 88.1 0.794 94.3 0.803 254.3

9/12 0.870 241.9 0.870 237.1 0.889 60.0

10/11 0.911 39.9 0.911 42.9 0.927 2105.7

ADR 4.31 4.31 4.25

fitness value 0.05 7.19 0.09

Fig. 8 Amplitude and phase excitation (experiment 1) with
coupling effect

Fig. 9 Dual-beam array pattern (experiment 1) with coupling
effect

Fig. 10 Amplitude and phase excitation (experiment 2) with
coupling effect

Fig. 11 Dual-beam array pattern (experiment 2) with coupling
effect
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Therefore in the evolutionary process, discrete values
represent the phase excitation that can eliminate the error
arising because of quantisation.

The deviation between the desired and the computed
design specification of the optimised results in experiment 1
and experiment 2 are shown in Table 5. Fig. 6
shows experiment 1 (after quantisation) and experiment 2
for the dual-beam patterns. The difference between
experiment 1 and experiment 2 is clearly shown. The best
amplitude and phase excitations with discrete values are
shown in Fig. 7.

7.4 Optimisation with ADR

In this section, we will use the DE/ABC for the reconfigurable
antenna-array design with the coupling effects. The objective
function (4) is as the fitness. Table 6 illustrates the experiment
results of experiment 1 and experiment 2. The table also
generates the ADR and the fitness values. The best fitness
is less than the previous in this case. Moreover, in
experiment 1, the ADR is reduced from 5.99 to 4.31. In
experiment 2, the ADR is reduced from 6.23 to 4.25.
Hence, we can reduce the coupling effects by minimising
the dynamic range ratio. Figs. 8 and 9 show the excitation
pattern and dual-beam pattern obtained in experiment
1. Figs. 10 and 11 show the same thing as in Figs. 8 and 9
(the excitation pattern and dual-beam pattern obtained in
experiment 2).

7.5 Comparison of DE/ABC with DE, ABC and
G3-GA [14]

In order to study the effect of DE/ABC, we carried out a
scalability study to compare the algorithm with the
generalised generation gap GA, artificial bee colony and
DE. The experiment is conducted for the determination of
amplitude and phase excitation patterns for the dual beam
optimisation with quantisation. The best fitness is reported

in Table 7. As can be seen in Table 7, we can find that the
DE/ABC can obtain better solution for experiment 1 and
experimental 2. Especially, for the dual beam optimisation
with quantisation, DE/ABC can perform better than G3-
GA, ABC and DE.

7.6 Comparison of DE/ABC with DE, CoDE, SaDE,
jDE and JADE

In order to evaluate the effectiveness and efficiency of DE/
ABC, we compare its performance with DE, CoDE [22],
SaDE [23], jDE [24] and JADE [25]. Brest et al. [24]
proposed a self adaptive parameter setting in DE in order to
avoid the manual parameter setting of F and CR. The
parameter control technique is based on the self adaption of
two parameters associated with the evolutionary process.
Qin and Suganthan [23] propose a self-adaptive DE
algorithm (SaDE), in which both the trail vector generation
strategies and their associated control parameter values are
gradually self-adaptive by learning from their previous
experiences in generating promising solutions. In the JADE
propose by Zhang and Sanderson [25], a normal
distribution and a Cauchy distribution are utilised to
generate F and CR for each target vector, respectively.
JADE extracts information from the recent successful F and
CR and uses such information for generating new F and
CR. Wang [22] proposes a novel method, called composite
DE (CoDE), which has been proposed in this paper. This
method uses three trial vector generation strategies and
three control parameter settings. It randomly combines them
with the generated trial vectors. Each method was run 30
times on each test function. Table 8 summarises the
experimental results. As can be seen in Table 8, DE/ABC
significantly outperforms DE, CoDE, SaDE, jDE and JADE
for experiment 1 and experimental 2. By minimising the
dynamic ratio, we can find that the DE/ABC can provide
4.25 (ARD) and 0.09 (fitness) better than those of the other
algorithms.

Table 7 Comparison of G3-GA with DE

Experiment 1 without ADR Experiment 2 without ADR Experiment 1 with

ADR

Experiment 2 with

ADR

Fitness Fitness ADR Fitness ADR Fitness

G3-GA 0.16 0.619 4.4137 0.1028 5.8026 0.2630

ABC 0.16 0.16 4.36 0.04 4.76 0.22

DE 0.16 0.36 4.3470 0.04 4.7190 0.16

DE/ABC 0.16 0.16 4.31 0.05 4.25 0.09

Table 8 Comparison of DE/ABC with DE, CoDE, SaDE, jDE and JADE

Experiment 1 without ADR Experiment 2 without ADR Experiment 1 with

ADR

Experiment 2 with

ADR

Fitness Fitness ADR Fitness ADR Fitness

DE 0.16 0.36 4.3470 0.04 4.7190 0.16

CoDE 0.64 0.64 4.94 0.23 4.31 0.09

SaDE 0.16 0.36 4.63 0.28 4.38 0.12

jDE 0.36 0.36 4.40 0.10 4.33 0.26

JADE 0.36 0.17 4.35 0.09 4.47 0.16

DE/ABC 0.16 0.16 4.31 0.05 4.25 0.09
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8 Conclusions

The application of hybrid DE with artificial bee colony for the
reconfigurable antenna array with quantised phase shifter is
discussed in this paper. The effectiveness of the proposed
algorithm is demonstrated in the design of a reconfigurable
array antenna without and with the quantised phase
excitations. The effect of the quantisation in the continuous
formulation of the phased excitation is presented. In order
to reduce the effect of mutual coupling between the
antenna-array elements, the dynamic range ratio is
minimised. The experimental results clearly indicate
superior performance of the proposed algorithm in
comparison with some recent optimisation algorithms. We
hope that this paper sparks a new venue of research in the
problem of solving reconfigurable antenna array.
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