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Abstract. A number of materials used in industry exhibit highly-scattering properties which can reduce the performance 
of conventional ultrasonic NDE approaches. Moving Bandwidth Polarity Thresholding (MBPT) is a robust frequency
diversity based algorithm for scatter noise reduction in single A-scan waveforms, using sign coherence across a range of 
frequency bands to reduce grain noise and improve Signal to Noise Ratio. Importantly, for this approach to be extended to 
array applications, spatial variation of noise characteristics must also be considered. This paper presents a new spatial-
frequency diversity based algorithm for array imaging, extended from MBPT. Each A-scan in the full matrix capture array 
dataset is partitioned into a serial of overlapped frequency bands and then undergoes polarity thresholding to generate sign-
only coefficients indicating possible flaw locations within each selected band. These coefficients are synthesized to form a 
coefficient matrix using a delay and sum approach in each frequency band. Matrices produced across the frequency bands 
are then summed to generate a weighting matrix, which can be applied on any conventional image. A 5MHz linear array 
has been used to acquire data from both austenitic steel and high nickel alloy (HNA) samples to validate the proposed 
algorithm. Background noise is significantly suppressed for both samples after applying this approach. Importantly, three 
side drilled holes and the back wall of the HNA sample are clearly enhanced in the processed image, with a mean 133% 
Contrast to Noise Ratio improvement when compared to a conventional TFM image.

INTRODUCTION

Ultrasonic non-destructive evaluation is widely used in industry to test and evaluate a wide range of materials. A 
specific problem encountered in the testing of coarse-grained materials, such as concrete, austenitic steels, alloys, is 
that the target echoes reflected back from the flaws/cracks are often buried by the strong structural noise due to the 
heterogeneous nature and acoustically scattering properties of these materials. This kind of structural noise, sometimes 
referred as grain noise or clutter noise, is caused by the inherent properties of the material being inspected and hence, 
cannot be removed by the traditional time averaging or classical spectral filtering techniques. Lowering the frequency 
can increase the penetration depth, but also reduces the resolution and the capability of small target detection. 

For this reason, many noise reduction techniques have been developed to analyze ultrasonic signals in the presence 
of highly scattering noise. The most common way to achieve this is through frequency diversity or spatial diversity. 
Frequency diversity based techniques are widely applied to conventional, single transducer inspection techniques,
because of their superior performance on A-scans. One well-known frequency diversity based technique is Split 
Spectrum Processing (SSP) [1]. SSP is based on the concept that structural noise is usually more sensitive in frequency 
compared with the flaw echo response and uses multiple filtering and non-linear reconstruction to eliminate structure 
noise. However, SSP is highly dependent on parameter selection and hence, sensitive to materials properties, 
especially when the signal to noise ratio (SNR) is low. This is caused by the inconsistent instantaneous phase offset 
when applied to coarse-grained materials. Take one of the well-known SSP algorithms: polarity thresholding (PT) [2]
as an example. PT indicates a target echo when all the filtered frequency channels have an identical sign at certain 
instant in time. However, when materials have strong frequency dependent scattering and attenuation properties, 
certain frequency channels may have an opposite sign at that time instant, if the bandwidth of its associated filter is 
not selected properly.
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To avoid the effect of parameter sensitivity, algorithms like Optimal Detector (OD) [1] and Fragment Recognition 
Classifier (FRC) [3] have been proposed. These techniques are model based which means they can adjust themselves 
by appropriate training. However, high quality training datasets cannot always been acquired. Worse still, sometimes 
the pre-knowledge of the materials is not available at all.

In the medical imaging area, an algorithm named Moving Bandwidth Minimization (MBM) [4] was developed for 
the purpose of capturing target echoes with different spectrum characteristics and reducing the grain noise in 'localized 
frequencies'. The concept of 'moving bandwidth' can also be used in this situation to capture the predominating target 
flaw echoes at a certain frequency range. This can reduce the effect of frequency dependent scattering and attenuation 
and solve the phase inconsecutive problem associated with PT.

Hence, a robust frequency diversity based algorithm, Moving Bandwidth Polarity Thresholding (MBPT), was 
recently devised by the authors [5]. By exploring the phase coincidence within a moving bandwidth across the signal 
spectrum, MBPT reduces the effect of parameter sensitivity problems while maintaining high performance. MBPT 
uses a moving bandwidth to partition the spectrum of the processed A-scan signal into several sub-bands, inside which 
the potential defect is detected when all frequency components have uniform sign. Combining all sub-signals from 
these sub-bands through averaging gives a probability profile of the potential defect position.

In recent years, phased array transducers have become more commonly used in industry. Phased array transducers 
have by their nature an advantage to include spatial diversity, since they observe targets from different orientations. 
Structural noise in coarse-grained materials is not only frequency sensitive, but also spatial sensitive. It can be reduced 
by observing from different angles and positions, with an accurate and appropriate time delay introduced for each 
observation. The concept of spatial diversity is not new to array application, with algorithms such as Synthetic 
Aperture Focusing Techniques (SAFT) widely used. With the possibility of different combinations between array 
elements, many array based imaging techniques have been developed and outclass the performance of SAFT, such as 
the classic focused B-scan which is also widely used in industry, and the golden standard imaging algorithm Total 
Focusing Method (TFM) [6]. Many advanced spatial diversity based algorithm have also been proposed recently, such 
as Spatially Averaged Sub-Array Correlation Imaging (SASACI) [7] and Correlation for Adaptively Focused Imaging 
(CAFI) [8]. 

Based on array imaging applications, there are also advanced techniques using both spatial and frequency diversity 
that have been developed, such as Spectral Distribution Similarity Analysis (SDSA) [9] and Phase Coherence Imaging 
(PCI) [10]. SDSA calculates the spectrum similarity of A-scan segments across different transmitting-receiving pairs 
of array elements, while PCI uses the concept that structure noise has a more random distributed phase compared with 
target flaw across different A-scans.

MBPT is suitable for A-scan signal processing since it is frequency diversity based. However, phased array probes 
are increasing being used in many applications and importantly, the spatial diversity approach can be applied to the 
raw A-scan data. The motivation and aim of this paper is to extend the existing single element MBPT algorithm to 
accommodate an array imaging application and present a new algorithm that takes benefit from both spatial and 
frequency information, which has been named Frequency-Spatial Polarity Coherence (FSPC).

METHODOLOGY

The FSPC achieves clutter noise reduction in images by applying both frequency and spatial diversity. The entire 
procedure can be described in five steps, as illustrated in the flowchart presented in Fig. 1.

Spectrum Partition Approach

Like MBPT [4], for all A-scan traces in the acquired full matrix capture (FMC) dataset, FSPC firstly divides the 
A-scan data into a set of sub-signals which contain different frequency bands. This is achieved by bandpass filtering 
the raw signal or applying a window function to its spectrum. The reason to divide the spectrums of the raw signals 
into these sub-bands is because the attenuation and scattering of the transmitted ultrasound wave is highly frequency 
dependent. That means the energy of the target flaw can only partly dominate the frequency range of the received echo 
spectrum. The aim of this spectrum partitioning is trying to find out the most effective frequency range to process.
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To avoid the possibility of failing to detect a flaw, there should be an overlap at least 50% between adjacent 
filters/windows. Moreover, to enhance information from the raw A-scan signals, the range of total processed 
bandwidth which contains all filters or windows, should be chosen as wide as possible: typically around 100% 
bandwidth of the transducer central frequency. These sub-signals will be denoted as Yi(n), where n is the time delay 
and i is the index of filter or window.

Sign Detection in Localized Spectrum

For each sub-signal Yi(n), there is the possibility that the spectrum energy of the target flaw could fully dominate 
the bandwidth of Yi(n). Hence, the potential location of the target flaw can be detected by applying frequency diversity 
inside Yi(n) itself. This is achieved by checking the polarity coincidence across different frequency channels inside 
Yi(n): Further splitting Yi(n) into several channels within its own bandwidth, if all channels are positive/negative at a 
specific time delay, then this point is denoted by '1’ or ‘-1' as a potential flaw location, otherwise a '0‘ is recorded, as 
shown below:
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where Ck(n) refers to a channel filtered by a Gaussian window, k is the index of channels.

Based on the principle that the spectrum of a 'real defect' (flaw, back wall etc.) is generally wider than the spectrum 
of structural noise, the bandwidth of Yi(n) needs to be wide enough to ensure that the algorithm can distinguish the 
'real defect' form structural noise. However, for a coarse-grained material, if the bandwidth of Yi(n) is too wide, the 
spectrum of the 'real defect' may become inconsecutive and hence will no longer predominate. This will cause loss of 
the detection capability. In this case, the bandwidth of the filters/windows in the previous step is critical for the 
algorithm performance and typically, this should be around 50% bandwidth of the transducer central frequency.

Beam Forming in Localized Spectrum

After all A-scans in the FMC have been processed, a set of coefficient matrices will be generated using all 
processed Zi(n), based on the desired focal law. Each coefficient matrix represents the polarity coherence of a certain 
frequency range. 

FIGURE 1. Flow chart of Frequency-Spatial Polarity Coherence (FSPC).
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Generally, the echoes from a 'real defect' has a more consistent phase across A-scans received by different array 
elements after the focal law has been applied, while structural noise may have a more random distributed phase.

Ideally, the location of a flaw in the matrix will be enhanced due to the sign coincidence across different A-scans, 
while the structure noise will be suppressed.

Weighting Matrix Generation

When all coefficient matrices have been calculated, a weighting matrix will then be synthesized through 
compounding of different frequency bands. This can be achieved in many different ways. A simple way to do this is 
by averaging all coefficient matrices and setting a suitable threshold. Alternative ways like order statistics and scaled 
polarity thresholding can also be considered and may provide benefits under certain conditions. 

Due to the scattering property of the coarse-grained material, the attenuation is highly frequency dependent. Hence 
for the region close to the array, more coefficient matrices should be used to increase the imaging resolution, and for 
the region far from the array, only coefficient matrices in low frequency bands should be included to maintain detection 
capability. The number of coefficient matrices included for a certain depth depends on the frequency of transmitted 
signals and the material attenuation property.  

Reconstruction

A weighting matrix can be used directly to indicate the defect locations, but this does not contain information on 
the amplitude associated with the defect response. Multiplying the weighting matrix with an image generated using 
the same focal law on the same datasets will reduce the background clutter noise while keep the important flaw 
information. Moreover, a median filter can also be included to smooth the image.

EXPERIMENTAL RESULTS AND DISCUSSION

Results

To facilitate data collection, experimentally acquired FMC datasets are used here. The FMC is a complete 
collection of A-scan data from every permutation of transmitting and receiving elements combinations within the 
array structure. By using FMC, different imaging algorithms can be applied off-line without repeatedly capturing data. 
Two different samples have been tested to validate the proposed method, using a commercial 5MHz 1-D linear array. 
A commercial phased array controller (Dynaray, Zetec, Quebec) which is controlled by a MATLAB (The MathWorks, 
Inc., Natick, MA) script was used to capture the FMC datasets. All images were also post-processed using MATLAB. 
Details of the samples are provided in Table 1 along with details of the experimental configuration. Images of the 
austenitic steel samples and the high nickel alloy (HNA) used in this work are shown in Fig. 2.

TABLE 1. Details of experimental parameters.
Experimental parameters Description
Array type 1-D Linear array (Vermon)
Array size 128 elements
Element pitch 0.7 mm
Center frequency 5 MHz
Fractional bandwidth 63 %
Array controller Zetec DYNARAY
Sampling frequency 100 MHz
Exciting pulse length 100 nS
Tested sample / Wave speed Austenitic steel / 5262m/s

High nickel alloy (HNA) / 5900m/s
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Figure 3 presents the FSPC image from the Austenitic steel sample, as well as a classic focused B-scan image for 
comparison. The images are 140 mm in depth and contain two reflections of the back wall (located at 54 mm) in the 
sample. The B-scan images were generated by the middle 64 elements of the array, with an aperture size of 16 
elements. It can be easily seen that the sample contains strong clutter noise, which reduces the visibility of the first 
reflection of the back wall and buries the second reflection in the classic focused B-scan. By applying FSPC, both 
reflections of the back wall are clearly evident and importantly, clutter noise has been reduced.

Figure 4 shows the processed A-scan examples using the classic focused B-scan and the equivalent FSPC 
techniques (i.e. one of the vertical scan-lines from the images in Fig. 3). Two back wall echoes are successfully 
detected for the FSPC while only the first reflection of the back wall can be observed in the focused B-scan. 

FIGURE 2. Austenitic steel and HNA.

FIGURE 3. Images of the austenitic steel sample.

FIGURE 4. Beam formed scan-line of the austenitic steel sample.

Back walls

Back walls

1652



Another experiment which compares the performance between TFM and FSPC algorithm is presented in Fig. 5, 
using the HNA sample. TFM generates images by applying appropriate time delays to each FMC trace to synthesize 
focusing, and then these contributions are summed together to form a pixel value. The HNA sample is 160mm thick 
and contains 3 side drilled holes (SDH), with depth around of 7mm, 60mm and 110mm respectively.

To show the performance and improvement of FSPC for these experimental results, the related Signal to Noise 
ratio (SNR) and Contrast to Noise Ratio (CNR) are given in Table 2. The SNR in this case is defined as peak value of 
the interested area minus average of the noise. The CNR is defined as:

(2)

where As is the peak value of flaw area, n is the mean value of noise area, n is the standard deviation of the speckle 
area.

The selected noise regions are marked in the figures. From Table 2 it can be seen that FSPC has improved SNR at 
around 23dB for the austenitic steel (average SNR for two reflections of the back wall) and 50dB for the HNA
(averaged from three SDHs and the back wall). The average CNR for the three SDHs and the back wall in Fig. 5 has 
increased by 133%.

TABLE 2. Comparison of SNR and CNR for different imaging algorithms.
SNR (dB) CNR

Sample Austenitic steel HNA
Classic focused B-scan / TFM 19 12 3.6

FSPC 42 62 8.4

FIGURE 5. TFM and FSPC images of the HNA sample.
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Influence of Frequency Dependent Attenuation

In course grained materials, the high frequency ultrasound components are more easily scattered and absorbed.
Hence, for an imaging region near the array, a wider frequency range could be used for the coefficient matrix to 
improve the imaging resolution. Figure 6 shows the resolution increases as the processed frequency range is increased. 
The horizontal axis refers to the total included frequency range, e.g. 3MHz means all coefficient matrices from 
0.5MHz to 3MHz are used to generate image. The vertical axis is the number of pixels that higher than -6dB, where 
a lower value refers to a higher resolution. The tested target is the 7mm depth SDH, with a 5mm diameter, in Fig. 5. 
Through the inclusion of higher frequencies, the processed images will have higher resolution and detection capability 
in the region near to the array. In Fig. 6 the resolution stops increasing at around 4MHz due to frequencies higher than 
4MHz being significant attenuated for this material. Hence coefficient matrices higher than that 4MHz did not provide 
much helpful information.

Figure 7 gives in indication of this resolution improvement. It shows the normalized weighting matrix combined 
using two different set of coefficient matrices. The dark regions in the images refer to the pixels which have a value 
larger than 0.3: this is an arbitrary threshold chosen to illustrate the influence of the frequency band selection on the 
performance of the imaging algorithm. Figure 7 (a) only includes a coefficient matrix with the lowest frequency band 
(0.5MHz-2MHz), and Fig. 7 (b) uses all coefficient matrices from 0.5MHz to 6.5MHz. It can be seen that in Fig. 7 (b) 
the flaw size is closer to 5mm compared with Fig. 7 (a) (as marked on the images), and its shape more closely 
resembles the spherical surface of the SDH. 

For imaging regions far from array, only coefficient matrices with lower frequencies should be used, to increase 
detection capability. Figure 8 compares the images of the 160mm back wall of the HNA sample. The coefficient 
matrices used in Fig. 8 (a) is 0.5MHz-3MHz while in Fig. 8 (b) it is 1MHz-4MHz. It can be clearly seen that the 
visibility of the back wall is decreased significantly when higher frequencies are included in the FPSC algorithm.

FIGURE 6. The effect of total processed frequency range.

FIGURE 7. Normalized weighting matrices of a SDH with a threshold of 0.3. (a) with frequency range from 0.5MHz to 2MHz, 
(b) with frequency range from 0.5MHz to 6.5MHz

0

50

100

150

200

0 1 2 3 4 5 6 7N
um

be
r o

f p
ix

el
s h

ig
he

r 
th

an
 -6

dB

Frequency range (MHz)

1654



FIGURE 8. FSPC images of back wall of HNA sample. (a) with frequency range from 0.5MHz to 3MHz, (b) with frequency 
range from 1MHz to 4MHz

CONCLUSIONS AND FUTURE WORK

A new spatial-frequency diversity based algorithm has been proposed for array imaging applications, extended 
from MBPT. The algorithm explores the polarity coherence among different frequency bands and different A-scan 
traces, to reduce clutter noise in the image. The proposed algorithm is less sensitive to material properties compared 
with conventional frequency diversity based techniques. The focal law used to generate the coefficient matrix is the 
same as used with a conventional imaging algorithm; hence it can be adapted to many imaging applications. In this 
work, both focused B-scan and TFM have been used. It shows that the FSPC has significantly improved the visibility 
of the flaw and back wall, compare with focused B-scan and TFM. Future work includes algorithm acceleration and 
further development of adaptive weighting and reconstruction methods.
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