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Abstract: The study presents an innovative ‘almost difference set (ADS)’-based analytical approach for the design of fully
interleaved arrays supporting Q > 2 independent functions on a shared aperture. Such a hierarchical subarraying methodology
allows one to interweave, on the same lattice, Q = 2P non-overlapped arrangements with beam properties a-priori predictable
from the descriptive parameters of the chosen ADSs. A general formulation for the pattern analysis of subarray layouts is
derived and successively employed to assess features and potentialities of the multi-level ‘ADS’ interleaved scheme. A set of
representative numerical results, concerned with different apertures, balancing factors and number of interleaved functions, is
presented to give some indications on the effectiveness, the efficiency and the reliability of the proposed approach.

1 Introduction and rationale

Modern antenna arrays for satellite [1] and ground
communications [2], electronic warfare [3] and remote
sensing [4, 5] applications are often required to enable
multiple independent functions on a single shared aperture
[6–8]. Such a feature is mainly dictated by the growing
need to enhance their stealth performance with respect to
side-by-side uniform arrangements. To fit this requirement,
array architectures interlacing different functionalities (i.e.
‘interleaved arrays’) [6, 8] have been successfully proposed
because of the advantages in terms of flexibility, costs and
fabrication complexity of the feeding network as well as
the simplicity of the array elements over standard
multi-function layouts [9–12].
On the other hand, it cannot be neglected that designing

interleaved arrays is a much more complex and challenging
task than that of synthesising non-interspread layouts [6, 8].
Indeed, interleaving different functionalities on the same
shared physical aperture reduces the number of degrees of
freedom of the synthesis process and a degradation of the
beam features [e.g. peak sidelobe level (PSL)] usually arises
[6, 8]. To counteract such an undesired effect, different
design techniques [10, 12] have been proposed over the
years including random techniques [13], stochastic
optimisation [6, 14] and hybrid approaches [15] (It is worth
pointing out that the more recent optimisation techniques
such as the artificial bee colony algorithms [16] could be
extended to the solution of array interleaving problems
(IPs), as well. However, owing to their non-analytical
nature, these methods will not be considered in the
following.).
In this framework, analytical methodologies have been

recently introduced as a powerful and efficient complement

to the existing interleaving techniques [8, 17, 18]. More
specifically, almost difference sets (ADSs) [17, 19] and
their sub-category called difference sets (DSs) [8] have
been exploited to analytically synthesise interlaced
arrangements with well-controlled sidelobes for
electromagnetic [17] as well as ultrasound [18] applications.
This has been mainly motivated by the following features
of ADSs [8, 17, 18]:

† PSL predictability: Thanks to the a-priori knowledge of the
autocorrelation function [20], the corresponding arrays
exhibit predictable PSLs.
† Complementarity: Since any ‘ADS’ has the same
autocorrelation of its complementary sequence [20], except
for a known offset, a fully interleaved layout with low
sidelobes can be synthesised by just associating the ‘0s’ and
‘1s’ of the ‘ADS’ sequence at hand to two different
functionalities.
† Efficiency: Owing to the analytical properties of the ADSs,
the design of ‘ADS’ arrangements is yielded with negligible
computational costs also for large and densely populated
apertures.

Thanks to such properties, the application of ADSs has
been successfully extended to thinned [21–25] and
correlator [26] arrangements. Moreover, the hybridisation
with global optimisers has been investigated [26, 27], as well.
Unfortunately, present-day fully analytical interleaving

methods cannot support more than two functionalities on
the same shared aperture because of the ‘ADS
complementarity’ property [8, 17, 18]. However, an
analytical synthesis method able to interlace multiple (i.e.
more than two) functionalities with predictable radiation

www.ietdl.org

794
& The Institution of Engineering and Technology 2014

IET Microw. Antennas Propag., 2014, Vol. 8, Iss. 10, pp. 794–808
doi: 10.1049/iet-map.2013.0697

mailto:
mailto:
mailto:
mailto:
mailto:


features would be of great interest for the designers of shared
aperture arrays [3] especially when dealing with large layouts
generally intractable for global optimisation techniques.
Towards this end, this paper is aimed at proposing an

innovative design approach that exploits the advantages of
analytically based layouts in terms of a-priori known pattern
features and efficiency, while interweaving more than two
functionalities on the same physical aperture. More
specifically, a hierarchical ADS-based methodology able to
interleave Q = 2P functions [In this paper, Q identifies the
number of (narrowband and isophoric) arrays that share the
same aperture.] by subarraying P suitable ‘ADS’ sequences
is introduced.
This paper is organised as follows. Firstly, the IP is stated

and the background on existing ADS-based synthesis
approaches is summarised (Section 2). Afterwards, the
hierarchical ADS-based interleaving methodology is
detailed (Section 3) and numerically validated (Section 4).
Finally, some conclusions are drawn (Section 5).

2 Problem statement and existing
ADS-based synthesis procedures

The problem of fully interleaving Q functions over a single
linear aperture can be stated as follows [6]:

Fully IP: Given a lattice of N elements spaced by d

wavelengths and Q interleaved functions (N >Q), find

the membership vector wq = {wq(n)∈ {0, 1}; n = 0,…,

N − 1}, q = 0, …, Q− 1 that satisfies the following

conditions: (a) wr(n) × ws(n) = 0, n = 0,…, N − 1, r,

s∈ [0, Q − 1], r≠ s and (b)

PSLave = 1
Q

∑Q−1
q=0 PSL wq

{ }
(PSLave represents the

average PSL of the Q interleaved functions.) is minimum

where the PSL of the qth function, PSL{wq}, is given by [28]

PSL wq

{ }
W
max u| |.Uq

Fq u( )
∣∣∣ ∣∣∣2

Fq 0( )
∣∣∣ ∣∣∣2 , q = 0, . . . , Q− 1 (1)

Moreover, the normalised array factor is equal to [28]

Fq(u) =
∑N−1

n=0 wq(n) exp i2pn du( )
Kq

,

q = 0, . . . , Q− 1 (2)

Uq being the mainlobe region (In this paper, Uq extends up to
the first null of the pattern [6].), whereas u = sin(θ) and
KqW

∑N−1
n=0 wq(n) is the total number of antennas used by

the qth function.
In [8, 17, 18], the ‘IP’ is solved when Q = 2 (i.e.

interleaving of two functions on a shared aperture) by
exploiting the complementarity properties of ‘ADS’ binary
sequences. Towards this end, the following theorems have
been profitably applied [17].

Theorem 1: If a is an (N, K, Λ, t)-ADS then its
complementary sequence �a = 1− a(n), n = 0, . . . ,

{
N −

1} is an (N, N − K, N − 2K +Λ, t)-ADS.
Λ and t being parameters which define the autocorrelation

properties of the ‘ADS’ a [18] (By definition, a is a binary

sequence of length N such that
∑N−1

n=0 a(n) = K and
characterised by an autocorrelation function given by
j(t)W

∑N−1
n=0 a(n)a n+ t( )⌋modN

[ ] = {K for t = 0; Λ for t
values of t∈ [0, N− 1]; Λ + 1 else}, where ·( )⌋N stands for
the reminder of the division by N [20]. Properties and
construction techniques of ADSs can be found in [19, 20,
29, 30], whereas examples of ADSs are available in [31].).

Theorem 2: If a is an (N, K, Λ, t)-ADS then the sequence
a (n+ s) ⌋modN

[ ]{
; n = 0,…, N − 1 (σ = 0, …, N − 1, σ

being the cyclic shift) is an (N, K, Λ, t)-ADS with the same
autocorrelation properties.
According to these theorems and thanks to the

autocorrelation properties of the ‘ADS’ [17], the samples of
the power patterns of the Q = 2 interleaved arrays are
a-priori computable from the (known) autocorrelation ξ(t)
and they are given by

F0
k

dN

( )∣∣∣∣ ∣∣∣∣2 =∑N−1
t=0 j(t)exp 2pitk

N

( )
K2
0

F1
k

dN

( )∣∣∣∣ ∣∣∣∣2 =∑N−1
t=0 j(t)+ N − 2 K

[ ]
exp 2pitk

N

( )
K2
1

⎧⎪⎪⎪⎨⎪⎪⎪⎩
k [ N

(3)

Such a knowledge has been profitably exploited to deduce
suitable ‘PSL’ bounds [22]. Moreover, a computationally
efficient synthesis technique has been implemented for the
Q = 2 case [17].

3 Hierarchical interleaving methodology

To fully interleave Q = 2P functionalities on a single aperture
still retaining the positive features of the ADSs, an
ADS-based hierarchical approach is proposed. In the
following sections, the procedure is detailed starting from
an analysis of overlapped structures up to the synthesis of
binary fully interleaved architectures without shared
elements.

3.1 Interleaved arrays through hierarchical
architectures

With reference to the more general case of overlapped
structures, let us factorise N as the product of P = log2 Q
integers, N =∏P−1

p=0 N (p) and let us introduce a hierarchical
subarray architecture [7] where the pth level vector related

to the qth function is s(p)q = s(p)q (n) [ C, n =
{

0, . . . , N (p) −
1} (Fig. 1). The ‘effective’ nth element weight [7] of the qth
beam (Fig. 1) turns out to be equal to (see Appendix)

wq(n) =
∏P−1

p=0
s

p( )
q n 4 L p−1( )( )⌋

modN p( )

[ ]
,

n = 0, . . . , N − 1 (4)

where the operation (x ÷ y) stands for the quotient of x divided
by y and

L(p−1) W
1, if p = 0

N 0( ) × · · · × N p−1( ), otherwise

{
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Physically, wq(n) [ C, n = 1,…, N, represent the
excitation coefficients applied to the N antennas to
synthesize the qth function. By substituting (4) in (2), it
results that (see Appendix)

Fq(u) =
∏P−1

p=0
F

p( )
q (u)

[ ]
(5)

where

F (p)
q (u) W

∑N (p)−1
n=q s

(p)

q (n) exp i2pnd(p)u
( )

K (p)
q

,

p = 0, . . . , P − 1 (6)

is the contribution of the pth level of the hierarchical
architecture to the array factor [7], whereas

K (p)
q W

∑N (p)−1
n=0 s(p)q n( )

[ ]
and

d(p) W
d, if p = 0

d × L(p−1), otherwise

{
(7)

is the ‘effective spacing’ between two-adjacent elements of
the qth array structure [7]. It is worth noting that (5) is the
P-level generalisation of the well-known subarray pattern
multiplication formula [7].

3.2 Fully interleaved arrays through hierarchical
binary subarraying

Now, let us consider fully interleaved arrays and, for
simplicity, the binary case when s(p)q (n) [ 0, 1{ }, q = 0,…,
Q − 1 (i.e. wq(n)∈ {0, 1} through (4)). Under this
assumption, each function is synthesised by equally
weighting a subset of the N available antennas. Pictorially,
the ‘white’ elements in Fig. 2a correspond to s(p)q (n) = 0,
whereas the ‘coloured’ ones indicate s(p)q (n) = 1.
Whatever the rule for defining the binary sequence s(p)0 (n),

n = 0,…, N − 1, the membership/beam vector w0 from (4)
turns out to be a binary arrangement of K0 <N ‘active’ (i.e.
connected to the q = 0 function feeding point) elements
(Fig. 2b). The q = 1 membership vector, w1, not sharing any
element with w0 (i.e. physically non-overlapped), can be
then defined by setting the corresponding pth level vector
s(p)1 as follows

s
p( )

1 = s
p( )

0 , if p = 0

s
p( )

0 , if p = 1, . . . , P − 1

{
(8)

in order to fulfil the ‘fully interleaving’ property (a) w0(n) ×
w1(n) = 0, n = 1,…, N. Therefore the arising array architecture
implements two ‘non-overlapped’ functions by simply
switching the p = 0 sequence from ‘0s’ (Fig. 2b) to ‘1s’
(Fig. 2c) and vice-versa [(8)].
To synthesise Q = 2P perfectly interleaved functions in an

N-sized lattice, the previous ‘two’s complement’ procedure
can be iterated as follows

s(p)q = s(p)0 if a
p( )

q = 1

s(p)0 otherwise
,

{
p = 0, . . . , P − 1,

q = 0, . . . , 2P − 1

(9)

where aq = a(p)
q ; p = 0, . . . , P − 1

{ }
is the binary

representation of q such that
∑P−1

p=0 a(p)
q 2p = q. For

example, the functions q = 2 and q = 3 are implemented as
shown in Figs. 2d and e, respectively.
As expected, the resulting architecture is fully interleaved,

that is, each of the N antennas is physically connected to only
one of the Q feeding networks synthesising the independent
beams (Fig. 2a). Indeed, each qth beam is generated by

Kq =
∏P−1

p=0

K (p)
q = N

∏P−1

p=0

n
p( )

q

[ ]
, q = 0, . . . , Q− 1 (10)

active elements (n(p)q W K (p)
q

{ }
/ N (p){ }[ ]

, 1 being the ‘fill
factor’ of s(p)q ) and (see Appendix)

∑Q−1

q=0

Kq = N (11)

Thanks to the above, the binary ‘IP’ can be reformulated as
follows

Simplified IP (SIP): Given the lattice size
N =∏P

p=0 N
(p) and the number of interleaved

functions Q = 2P, find s(p)0 = s(p)0 (n) [ 0, 1{ }
{

; n = 0,

…, N(p) − 1, (p = 0, …, P − 1) such that

PSLave = (1/Q)
∑Q−1

q=0 PSL wq

{ }
is minimum, wq(q =

0,…, Q − 1) being computed by means of (4) and
(9). (It is worthwhile to note that the original IP has
been significantly simplified since now it is only
required the computation of P arbitrary binary

Fig. 1 Reference array geometry (Q = 8) – linear array with P-level weighting (P = 3)
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sequences of length N(p) instead of Q = 2P jointly
interleaved arrangements of length N =∏P−1

p=0 N
(p).)

3.3 Fully interleaved arrays through hierarchical
ADSs subarraying

Despite the simplification of the original IP when dealing
with hierarchical binary architectures (Section 3.2), the
solution of the ‘SIP’ is again not trivial. Indeed, the arising
PSLave still depends on the a-priori unknown sidelobes of
the P interleaved arrays at hand (i.e. the choice of s(p)0 and
its complementary �s(p)0 , p = 0,…, P − 1). However, there
exist complementary interleaved arrangements with low and
controllable sidelobes, such as those generated through the
‘ADS’ design procedure highlighted in Section 2 [17].
Then, let us consider a set of (N(p), K(p), Λ(p), t (p))-ADSs
a (p)(p = 0, …, P − 1) (either constructed [19, 20] or
chosen from available databases [31]) and ‘analytically’
define the sequences s(p)0 as

s(p)0 = a(p), p = 0, . . . , P − 1 (12)

to yield that each pth level of the 0th function actually
corresponds to an ‘ADS’ thinned array with spacing d(p)

[(6)]. Therefore, by (12), (9) and (6) [and analogously to

(3)], the samples of F (p)
q (u)

∣∣∣ ∣∣∣2 can be a-priori computed

from the (three-level [20]) autocorrelation

j(p)(t) =∑N (p)−1
n=0 a p( ) n( )a(p) n+ t( )⌋modN (p)

[ ]
(see (13))

retaining the pattern predictability features of the ADS-based
techniques [17]. Since the same holds true if s(p)0 (12) is
computed from a cyclically shifted version of a (p)

(Theorem 2), the design procedure resumed in Appendix
(‘ADS design procedure’) is deduced.

3.4 Descriptive example

To detail the proposed methodology (Appendix ‘ADS design
procedure’), let us consider the following illustrative example
concerned with a half-wavelength (d = 0.5) lattice of N = 120
elements. To synthesize Q = 4 (i.e. P = 2) independent beams,
let us firstly factorise the lattice dimension (Step 2). Let be N
=N(0) × N(1) = 10 × 12 our choice. Accordingly, suitable
‘ADS’ sequences with N(0) = 10 and N(1) = 12 have to be
selected [31]. For example, let us consider the (10, 5, 2, 7)
and (12, 6, 2, 3) ADSs: a(0)W 1000101101[ ] and
a(1)W 101001000111[ ].
By applying (12), the pth (p = 0, 1) levels of the q = 0 beam

are then computed [‘white’ elements in Figs. 2a – Step 4(a)]

by setting at the initialisation (Step 3) the shift indexes to σ(p)

= 0, p = 0, 1

s(0)0 = 1000101101

s(1)0 = 101001000111

{

The corresponding ‘effective’ weight vector w0 turns out to be
(4) [Step 4(a)]

w0 = sj = s(0)0 ; j = 0, . . . , N (1) − 1
( )[ ]

.OR

s(1)0 (n); n = 0, . . . , N (1) − 1
( )[ ]

(14)

where s(1)0 (n) = sj = s(1)0 (n); j = 0, . . . , N (0) − 1
( )[ ]

, n = 0,

…, (N(1) − 1), that is

w0 =
100010110110001011011000101101...[ ].OR. (p = 0)

111111111100000000001111111111...[ ] = (p = 1)

100010110100000000001000101101...[ ]
(15)

As for the subarray sequences for q = 1, they are obtained by
(9) [‘white’ (p = 1) and ‘red’ (p = 0) elements in Fig. 2a –
Step 4(a)]

s(0)1 = �s(0)0 = 0111010010

s(1)1 = s(1)0 = 101001000111

{

and

w1 =
011101001001110100100111010010 . . .[ ].OR. (p = 0)

111111111100000000001111111111 . . .[ ] = (p = 1)

011101001000000000000111010010 . . .[ ]
(16)

As expected, the beam coefficients w0 and w1 do not share any
element [i.e. w0(n) ×w1(n) = 0, n = 0,…, N − 1 – (15) against
(16)].
By applying the same procedure for the remaining beams

(i.e. q = 2, 3), the layout in Fig. 2a is synthesised whose
PSLave is then computed according to (1) [Step 4(b)].
Towards this end, (6) is used to evaluate each (P = 3)th
contribution to the qth array factor, F (p)

q (u), p = 0, 1, q = 0,
…, 3 (Figs. 3a and b). These latter are combined according
to (5) to obtain the qth array factor Fq(u), q = 0,…, 3

F
p( )

q
k

d p( )N p( )
( )∣∣∣∣ ∣∣∣∣2=

=

∑N p( )−1
n=0 j p( ) t( ) exp 2pitk

N p( )
( )

K
p( )

0

( )2 , if a
p( )

q = 1

∑N p( )−1
n=0 j p( ) t( ) + N p( ) − 2K

p( )
0

[ ]
exp

2pitk

N p( )
( )

N p( ) − K
p( )

0

( )2 , otherwise k [ N

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(13)
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(Fig. 3c). Such a loop [Step 4(c)] is then iterated to minimise
the PSLave by considering different cyclic shifts until σ(p) =
N(p) − 1, p = 0, 1.
As it can be noted, the effective weights computation (4) is

a ‘copy’ and ‘multiply’ procedure of the basic s(p)q sequences
depending on the level index p [e.g. (14)–(16)]. Thanks to the
analytic nature of the method, the whole synthesis requires up
to N loops (Step 4) each one composed by log2 Q binary
sequence shifts and Q log2 Q binary sequence
multiplications [Step 4(a)]. Owing to (13), F (p)

q (u) presents
predictable samples (dots – Figs. 3a and b) that, after
combination, result in known pattern samples of the qth
array factor Fq(u) (crosses – Fig. 3c). These latter actually
corresponds to the highest sidelobes of each qth beam
(Fig. 3c). Analogously to [17], such samples coincide

whatever q if balanced layouts are at hand (n
p( )

q = 0.5, q =
0, …, Q − 1, p = 0, …, P − 1), as in this descriptive
example.
Additionally, it is worth pointing out that no grating lobes

appear in Fq(u) (q = 0, …, 3) (Fig. 3c) despite the average
spacing

dqW
d × N − 1( )

Kq − 1

is significantly above λ/2 (dq = 2 for q = 0,…, 3) (Fig. 2c).
Such a feature is actually expected from the ‘ADS’ theory.
As a matter of fact, one can deduce from (5) that

Fq(u) = 1 ⇔ F (p)
q (u) = 1 ∀p = 0, . . . , P − 1

which means that a grating lobe appears at u only if all F (p)
q (u)

exhibit a grating lobe along that direction. Since, F (0)
q (u)

represents the array factor of an N(0)-sized ‘ADS’ layout
with inter-element distance d(0) [(6)], it turns out that
grating lobes can be avoided if d(0)≤ 0.5 [22] whatever the
steering angle. Thus

d(0) ≤ 0.5 (17)

is a sufficient condition to a-priori avoiding grating
lobes whatever the value of Q. Such a result is not
negligible since only binary (i.e. non-tapered) weights are
considered.
Moreover, as concerns the directivity (D{wq}) of the Q

beams, it is worth noting that such a parameter does not
vary with q (D{wq}≃ 14.7 dB – Table 1), because of the
balanced nature of the final architecture (Kq = 30, q = 0,…, 3).

Fig. 2 Descriptive example (Q = 4, P = 2, N = 120, N(0) = 10, N(P − 1) = 12)

a Sketch of the subarray weighting of the interleaved arrangement of the qth feeding network
b q = 0
c q = 1
d q = 2
e q =Q − 1
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On the contrary, the 3 dB beamwidth (BW{wq}) depends on
the considered function (i.e. BW{wq}∈ [0.69, 1.20]° –
Table 1). As a matter of fact, each function actually
employs a different portion of the overall shared region (see
Fig. 2), and accordingly the interleaved arrays have
(slightly) different widths (e.g. Fig. 2c against e). However,
all the beamwidths are approximately similar to that of the
corresponding N-size uniformly illuminated filled array (i.e.
BWunif≃ 0.85° [28]). Furthermore, such BW differences
reduce if wider arrangements are at hand (see Section 4).

4 Numerical assessment and performance
analysis

This section is aimed at assessing the effectiveness, the
flexibility and the computational efficiency of the proposed
‘ADS’ approach for ‘IPs’ with Q > 2. Towards this end, a
set of representative numerical examples concerned with
different aperture sizes (N∈ [100, 10 000]) (Apertures
comprising up to several thousand elements have been
considered because of their importance in emerging
high-frequency applications such as wireless power
transmission [32].), Q values and balancing factors will be
presented by showing, besides the arising radiation patterns,
the values of the associated figures of merit (i.e. PSLopt,

DoptW 1
Q

∑Q−1
q=0 D wq

{ }
and BWoptW 1

Q

∑Q−1
q=0 BW wq

{ }
when

s(p) = s(p)
opt, p = 0,…, P − 1). Architectures complying with

(17) will be synthesised by means of ‘ADS’ sequences
listed in [31].

4.1 Shared aperture arrays with Q = 4 interleaved
functions

The first set of numerical examples deals with a N = 100
balanced layout (n(p)q = 0.5, q = 0, …, Q − 1, p = 0, …, P
− 1) which has been synthesised by choosing N(0) =N(1) =
10 and defining a (p) (p = 0, 1) as the (10, 5, 2, 7)-ADS
[31]. To illustrate the outcomes of ‘ADS’ design procedure,
Fig. 4a shows the behaviour of the average PSL computed
during the synthesis loop, whereas the final (optimal)
patterns are reported in Fig. 4c. As it can be noted, the plot
of PSLave against the solution index N(1)σ(0) + σ(1) (Fig. 4a)
shows that the grating lobes (i.e. PSL = 0 dB) are avoided
[−7.2≤ PSLave≤ −5 dB – Fig. 4a] thanks to (17) whatever
the cyclic shift, σ(p) = 0,…, N(p) − 1 (p = 0, 1), despite the
small arrangement (Kq = 25, q = 0, …, Q − 1 = 3) and the
large average spacing (dq = 2) of the interleaved
architectures. As expected, all the synthesised beams
comply with (13) (Fig. 4c), thus confirming the capability
of the ADS-based approach to control/predict the pattern
lobes of the synthesised layouts. As for the computational
issues, the ‘central processing unit’ time is negligible (e.g.
Δt≃ 7 s (N = 100) – Table 2) as also confirmed in the whole
numerical assessment (Table 2).
Similar conclusions hold true when wider apertures are at

hand as for the example with N = 900 elements [N(0) =N(1)

= 30 – a (p) (p = 0, 1)→ (30, 15, 7, 22)-ADS], whose PSL
behaviour and optimal radiation patterns are provided in
Figs. 4b and d, respectively. In this latter case, the
efficiency of the synthesis process is further pointed out by
the fact that the PSLopt of the optimal design (Fig. 4d ) turns
out to be quite close to that of the single-beam N = 900
fully populated uniform arrangement (PSL≃ −13.5 dB).
Moreover, the average sidelobe level ranges in a smaller
interval (i.e. −11.1≤ PSLave≤ −7.5 – Fig. 4b) than that of
the previous test case [ −7.2≤ PSLave≤ − 5 dB – Fig. 4a].

Table 1 Descriptive example (Q = 4, P = 2, N = 120, N(0) = 10,
N(P−1) = 12) – Figures of merit of the beams in Fig. 3c

q PSL{wq}, dB D{wq}, dB BW{wq}, deg

0 − 5.76 14.7 0.69
1 − 7.29 14.7 1.20
2 − 5.69 14.7 0.69
2 − 7.33 14.7 1.20

Fig. 3 Descriptive example (Q = 4, P = 2, N = 120, N(0) = 10,
N(P− 1) = 12) – plot of

a F (p)
q (u)

∣∣∣
p=0

b F (p)
q (u)

∣∣∣
p=1

c Fq(u), along with the predictable pattern samples
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Fig. 4 Performance analysis (Q = 4, P = 2, d = 0.5, n( p)q = 0.5, N(0) = N(P−1)) – plots of (a), (b) PSLave against σ( p) (p = 0, 1) (c), (d) Fq (u),
q = 0,…, Q − 1 when

a and c N (0) = 10
b and d N(0) = 30
e Behaviour of PSLopt against N(0)

Table 2 Performance analysis (Q = 4) – descriptive parameters and PSL performance

Test cases N a (0) a (1) s 0( )
opt s 1( )

opt Δt, s PSLopt, dB Dopt, dB BWopt, deg

Fig. 4c 100 (10, 5, 2, 7) (10, 5, 2, 7) 5 1 7.03 −7.02 13.9 1.26
Fig. 4d 900 (30, 15, 7, 22) (30, 15, 7, 22) 2 26 1.82 × 101 −11.01 23.5 1.16 × 10−1

Fig. 5b 1560 (52, 26, 12, 13) (30, 15, 7, 22) 21 26 1.44 × 102 −11.02 25.9 6.72 × 10−2

Fig. 5c 5200 (52, 26, 12, 13) (100, 50, 24, 25) 51 10 2.79 × 102 −12.74 31.1 1.96 × 10−2

Fig. 6b 1560 (30, 15, 7, 22) (52, 26, 12, 13) 12 14 1.40 × 102 −12.59 25.9 6.85 × 10−2

Fig. 6c 5200 (100, 50, 24, 25) (52, 26, 12, 13) 14 66 2.88 × 102 −12.60 31.1 2.05 × 10−2

Fig. 7 2809 (53, 14, 3, 26) (53, 14, 3, 26) 39 14 1.20 × 102 −9.04 27.3 3.61 × 10−2
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This suggests that increasing the sequence length can result
in lower sidelobes of the interleaved arrangements despite
the increased complexity of the synthesis problem.
To investigate such an issue, the value of PSLopt has been

computed in correspondence with different linear
distributions characterised by N(0) =N(1)∈ [10, 100]
(Fig. 4e). As it can be observed, the peak level decreases
with the sequence length until a stationary value Fig. 4e
close to that of the uniform arrangement (i.e. −13.5 dB) as

predicted by the ‘ADS’ theory [22]. Such a behaviour is
related to the isophoric nature of the considered problem
(see ‘fully interleaving problem’). Nevertheless, lower
sidelobes could be obtained by applying suitable amplitude
tapering to the ‘ADS’ layouts (i.e. through hybrid design
approaches [33]).
Moreover, as concerns the behaviour of Dopt and BWopt,

the values reported in Table 2 show that larger apertures
always yield narrower beams (e.g. BWopt|N = 100 = 1.26°

Fig. 5 Performance analysis (Q = 4, P = 2, d = 0.5, n( p)q = 0.5) – plots of PSLopt

a Against N(P−1) when N(0)∈ {10, 30, 52, 100}
b Against N(0) when N(P−1)∈ 10, 30, 52, 100}, and behaviour of Fq(u), q = 0,…, Q − 1
c N(0) = 52 – N(P−1) = 30
d N(0) = 30 – N(P−1) = 52
e N(0) = 52 – N(P−1) = 100
f N(0) = 100 – N(P−1) = 52
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against BWopt|N = 900 = 1.16 × 10−1°) with higher directivities
(e.g. Dopt|N = 100 = 13.9 dB against Dopt|N = 900 = 23.5 dB), as
expected. More in detail, the directivity does not depend on
q because of the balanced nature of the arrangements (i.e. D
{wq}|N = 900 =Dopt|N = 900 = 23.5 dB ∀q∈ 0,…, 3 – Fig. 4d ).
Furthermore, small BW variations are observed (e.g. BW
{wq}|N = 100∈ [1.18, 1.35] ° – Fig. 4d ), especially for wider
apertures (e.g. BW{wq}|N = 900∈ [1.14 × 10−1, 1.18 × 10−1]°
– Fig. 4d ). Such a result suggests that balanced
arrangements yield very similar figures of merit for the Q
interleaved functions.
In previous examples, the condition N(0) = N(1) has been

imposed, however, different-size aggregations (i.e. N(0)≠
N(1)) are of interest when the ‘field-of-view’ (The
beamwidth of F 0( )

q (u), q = 0,…Q− 1.) has to be fine tuned
[28]. Accordingly, next examples consider a set of fixed
N(0) values (N(0) = {10, 30, 52, 100}) and vary N(1) in the
range [10, 100] [the values of the synthesised PSL are
reported in (Fig. 5a)]. Similarly, the case N(0) =N(1), the
value of PSLopt monotonically decreases with N(1) whatever
N(0) (Fig. 5a), except for very small N(0) values (e.g. N(0) =
10) (Fig. 5a). Asymptotically, an arrangement with N(0) =
30 is already sufficient to reach the limit of −13.5 dB
(Fig. 5a), whereas larger N(0) do not significantly contribute
to the peak sidelobe reduction (Fig. 5a).
By analysing the plots of the optimal beams obtained when

N(0) = 52 (N(1) = {30, 100} – Figs. 5c and e), one can note that
the sidelobes far from the mainbeam turn out to be well
below the − 13.5 dB limit as expected from ‘ADS’
properties [22]. Indeed, the peak sidelobes are concentrated
around the mainbeam (Fig. 5a and c) when large arrays are
at hand, whereas the radiation to/from the remaining
angular directions is less and less significant as N(1)

increases (Fig. 5c against e). Asymptotically, the pattern
content outside the mainlobe regions is limited to the
a-priori known pattern samples (13) (i.e. the crosses in
Fig. 5e).

The peak sidelobe reduction until the limit value also
verifies when N(1) is kept fixed (N(1) = {10, 30, 52, 100})
while varying N(0) (the behaviour of PSLopt against N(1) is
reported in Fig. 5b). Similar conclusions as those from the
previous analysis can be yielded, as well, but here the
‘PSL’ improvement depends on N(1). Consequently, it can
be inferred from Figs. 5a and b that PSLopt mainly depends on

NminW min
p=0,...,P−1

N p( ){ }

while the total sequence size N only affects it to a minor
extent.
As for the optimal layouts synthesised when N(0) = {30,

100} (as a representative example, the radiation patterns
obtained when N(1) = 52 are reported in Figs. 5d and f ), it
turns out that the effect of N(0) on the ‘far sidelobes’ is
much more important than that of N(1) whose variation does
not affect the predicted pattern samples. Indeed, it turns out
that the average value of these latter is almost constant
when changing N(1) from 30 to 100, being N(0) = 52 [(N(0)

= 52, N(1) = 30): 1/ N 0( ) − 1
{ }[ ]∑N 0( )−1

k=1 Fq k/ d 0( )N 0( )( )[ ]( )∣∣∣ ∣∣∣
= −17.07 dB – Fig. 5c; (N(0) = 52, N(1) = 100):

1/ N 0( ) − 1
{ }[ ]∑N 0( )−1

k=1 Fq k/ d 0( )N 0( ){ }( )∣∣∣ ∣∣∣ = −17.07 dB –
Fig. 5e], while there is a non-negligible variation for the
complementary case [(N(0) = 30, N(1) = 52):

1/ N 0( ) − 1
{ }[ ]∑N 0( )−1

k=1 Fq k/ d 0( )N 0( ){ }( )∣∣∣ ∣∣∣ = −14.62 dB –
Fig. 5d; (N(0) = 100, N(1) = 52): 1/ N 0( ) − 1

{ }[ ]∑N 0( )−1
k=1 Fq k/ d 0( )N 0( ){ }[ ]( )∣∣∣ ∣∣∣ = −19.95 dB – Fig. 5f ]. This

is actually motivated by (6), since the envelope of Fq is
determined by the pattern component of the subarray N(0) in
size, F 0( )

q .

Fig. 6 Performance analysis (Q = 4, P = 2, d = 0.5, N(0) = N(P − 1) = 53) – plot of Fq(u) along with the predictable pattern samples

Fq k/ d 0( )N 0( ){ }[ ]( )∣∣∣ ∣∣∣2, q = 0,…, Q− 1
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Whether well-controlled sidelobes can be obtained dealing

with ‘balanced’ layouts (i.e. n p( )
q = 0.5, q∈ [0, Q − 1], p∈

[0, P − 1]), the same still holds true when unbalanced ‘ADS’
arrangements are used. To provide a deeper insight on this,
the next numerical experiment is concerned with a lattice of
N = 2809 elements partitioned into N(0) =N(1) = 53
unbalanced ADS[(53, 14, 3, 26)] to yield Q = 4 beams with
different radiation features.
The plots of the optimal patterns in Fig. 6 indicate that no

grating lobes appear whatever q = 0,…, Q − 1, whereas the
predictable pattern samples differ

Fr k/ d p( )N p( ){ }[ ]( )∣∣∣ ∣∣∣2= Fs k/ d p( )N p( ){ }[ ]( )∣∣∣ ∣∣∣2( )
for

an a-priori known offset since their pth components differ

( F
p( )

r k/ d p( )N p( ){ }[ ]( )∣∣∣ ∣∣∣2= F
p( )

s k/ d p( )N p( ){ }[ ]( )∣∣∣ ∣∣∣2,
r≠ s (r, s∈ [0, Q − 1]) being N (p) − 2K (p)

0

( )
= 0 (p = 0, 1)

in (13). Those controllable differences can be profitably
exploited to generate different radiation performances on
the same physical aperture.

4.2 Shared aperture arrays with Q > 4 interleaved
functions

To assess the reliability and the flexibility of the proposed
approach, a higher complexity problem is addressed in the

Fig. 7 Performance analysis (Q = 8, P = 3, d = 0.5, n( p)q = 0.5, N(0) = N(1) = N(P−1)) – plots of PSLave and PSLopt against σ(p) (p = 0,…,
P− 1)

a N(0) =N(1) =N(P−1) = 10
b N(0) =N(1) =N(P−1) = 16
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final example concerned with a Q = 8 (P = 3) interleaved
array. With reference to a regular lattice of N = 1000
elements spaced by d = 0.5, the (10, 5, 2, 7)-ADS has been
used to define s(p)0 under the assumption that N(0) =N(1) =
N(2) = 10.
The plot of PSLave against the cyclic shift index in Fig. 7a

shows that despite the average spacing of dq = 4 and the low
number of elements associated to each qth function (Kq = 125,
q = 0,…, 7 – ‘ADS’ architecture reported in Fig. 8b), the
grating lobes are avoided also in this case (i.e. PSLave≠ 0
dB→ −7.3≤ PSLave≤ −5.1 dB – Fig. 7a). Moreover, the
optimal layout (Fig. 8b) has a peak sidelobe (PSLopt =
−7.22 dB – Fig. 8a) comparable with that of the Q = 2
array with N(0) =N(1) = 10 (Fig. 4c – PSLopt = −7.02 dB).

Such an observation further assesses the conclusion that
the average ‘PSL’ of the ADS-interleaved array mainly
depends on the parameters N(p), p = 0,…, P − 1
rather than by the number of interleaved functions, Q.
This is also confirmed for larger layouts as it is shown
in Fig. 7b where the PSLave values of an N = 4096
array with Q = 8 functions are reported. Indeed, as
expected, both PSLopt and the average value of PSLave

reduce with respect to the N = 1000 case (Figs. 7a
against b): PSLopt⌋N=4096 = −8.87 dB against

PSLopt⌋N=1000 = −7.22 dB; 1/N
( )∑N (0)−1

s0=0

∑N (1)−1
s1=0 PSLave

⌋N=4096 = −7.75 dB against 1/N
( )∑N (0)−1

s0=0

∑N (1)−1
s1=0

PSLave⌋N=1000 = −6.38 dB.

Fig. 8 Performance analysis (Q = 8, P = 3, d = 0.5, n( p)q = 0.5, N(0) = N(1) = N(P−1) = 10) – plots of

a Fq(u), q = 0,…, Q − 1
b Associated interleaved arrangements
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5 Conclusions and remarks

An innovative approach for the analytical design of fully
interleaved arrays supporting more functionalities on the
same shared aperture has been proposed in this paper,
which is not aimed at finding an optimal interleaving
scheme for a specific design problem, but rather at giving
simple and reliable guidelines for the design of
non-overlapped layouts exhibiting low and predictable
‘PSL’ values. Towards this end, a hierarchical ADS-based
methodology has been introduced. By means of a
subarraying strategy that exploits P = log2 Q suitable ‘ADS’
sequences, the proposed approach proved to be able to
interweave Q independent functions with a-priori known
beam features.
The obtained results have pointed out the following

features of the ‘ADS’ hierarchical interleaving scheme:

† An arbitrary number of independent functions can be fully
interleaved by suitably selecting the number of hierarchical
levels P (Section 3).
† The design procedure is computationally efficient also for
large apertures and Q values since it just requires a simple
shifting of reference ‘ADS’ sequences widely available in
open-access repositories [31] (Section 3.3).
† Thanks to the ‘ADS’ autocorrelation features, the approach
avoids the occurrence of grating lobes in any qth independent
beam and predictable pattern samples are available whatever
Q (Section 4).
† The approach is suitable for synthesising both balanced
and unbalanced architectures, thus per-function ‘PSL’
constraints can be effectively taken into account (Section 4.1).
† Owing to their isophoric and non-overlapped nature,
sidelobe values in the range PSLopt∈ [−7.02 dB, −12.74
dB] are obtained (Table 2), thus making unlikely their
direct application (i.e. without tapering) in ‘PSL’
demanding systems; however, ADS-based layouts can be
profitably used as initial trial solutions for enhancing the
convergence rate of multiple-agent evolutionary algorithms
towards optimal-PSL architectures as already proved in
other array synthesis problems [26, 27].

In addition to these features, other main contributions of
this paper consist in the following methodological novelties:

1. An extended formulation for the analysis of
subarray-based architectures comprising an arbitrary number
of aggregation levels P [(5)–(7)] that generalises the
subarray pattern multiplication formula [7] (Section 3.1).
2. A generalised ‘ADS’ interleaving approach that extends
the method in [17] (Section 3.3).

Future works will be aimed, on the one hand, at extending
the proposed design approach to other array geometries and,
on the other hand, at taking into account in the
mathematical derivation the mutual coupling effects among
the array elements as well as the possible tolerances to
other parameter variations (i.e. frequency). Moreover, an
analysis of the relations among the maximum Q, the
physical size of the elements and the lattice spacings in
practical multi-band designs will be the subject of future
numerical and experimental assessments, along with an
investigation of the array phase centre location and its
possible shifting in the considered architecture.
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7 Appendix

7.1 Proof of (4)

To prove that wq(n) in Fig. 1 complies with (4), let
us apply the induction principle. More in detail, the
aim is to verify that (a) (4) holds true when P = 1 and (b) if
(4) holds when P = P̃, then the same verifies when
P = P̃ + 1.
As for the logical step (a), (4) when P = 1 case (i.e. the case

of single-level interleaving) reduces to

wq(n)
∣∣∣
P=0

= s 0( )
q n⌋modN 0( )
( ) = s 0( )

q n( )

n = 0, . . . , N 0( ) − 1

and the effective weights turn out to be equivalent to those of
the 0th sequence alone.
Concerning (b), let us now assume that (4) holds true for a

given P = P̃. It is then possible to write that

wq n( )
∣∣∣
P=̃P

=
∏P̃−1

p=0
s

p( )
q n 4 L p−1( )( )⌋modN p( )
[ ]

n = 0, . . . , L P̃
( )

− 1

where the length of the sequence is expressed as

L P̃
( )

= ∏̃P−1
p=0 N

p( ). By observing Fig. 1, it can be inferred

that the weights of the case P = P̃ + 1 are the replicated

and weighted version of those at the P̃th level

wq n( )
∣∣∣
P=̃P+1

=

wq n( )
∣∣∣
P=̃P

×s
P̃
( )
q 0( ) if 0 ≤ n , L P̃

( )
wq n( )

∣∣∣
P=̃P

×s
P̃
( )
q 1( ) if L P̃

( )
≤ n , 2 L P̃

( )
..
. ..

.

wq n( )
∣∣∣
P=̃P

×s
P̃
( )
q N P̃

( )( ) if N P̃
( )

− 2

( )
L P̃
( )

≤

n , N P̃
( )

− 1

( )
L P̃
( )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(18)

By means of simple mathematical manipulations, it results
that

wq n( )
∣∣∣
P=̃P+1

= wq n( )
∣∣∣
P=̃P

×s
P̃
( )
q n 4 L P̃

( )( )⌋
modN

P̃+1

( )[ ]
Such an expression is equivalent to (4) when P = P̃ + 1.

7.2 Derivation of (5)

By substituting (4) in (2), it results that the qth beam exhibits
the following array factor (see (19))

To simplify such an expression, let us firstly rewrite the term
within curly brackets as∏P−1

p=0
s

p( )
q n 4 L p−1( )( )⌋modN p( )
[ ]

= b P−2( )
q n( ) × s P−1( )

q n 4 L P−2( )( )⌋modN P−1( )

[ ]
(20)

where b P−2( )
q n( )W ∏P−2

p=0 s
p( )

q n 4 L p−1( )( )⌋modN p( )
[ ]( )

. By
noting that

n 4 L P−2( )( )⌋modN P−1( )

= n 4 L P−2( )( )⌋
mod N

P−1( )L P−2( )
L P−2( )

= n 4 L P−2( )( )⌋
mod N

L P−2( )
= n 4 L P−2( )( ) (21)

it turns out that (see (22))

By considering that b P−2( )
q (n) is periodic with period L(P−2)

(i.e. b P−2( )
q (n) = b P−2( )

q n+ rL P−2( )( )
, r = 0,…, N(P−1) − 1),

Fq u( ) =
∑N−1

n=0

∏P−1
p=0 s

p( )
q n 4 L p−1( )( )⌋modN p( )
[ ]{ }

exp i2pn du( )∏P−1
p=0 K

(p)
q

,

q = 0, . . . , Q− 1

(19)

Fq u( ) =
∑N−1

n=0 b P−2( )
q n( ) × s P−1( )

q n 4 L P−2( )( ){ }
exp i2pn du( )∏P−1

p=0 K
(p)
q

,

q = 0, . . . , Q− 1

(22)
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(19) can be rewritten as follows

Fq u( ) = 1∏P−1
p=0 K

(p)
q

∑N (P−1)−1

r=0

∑L P−2( )−1

n=0
b P−2( )
q n( )

{
× s(P−1)

q r( ) exp i2p n+ rL(P−2)( )
du

[ ]}
which, by simple manipulations, is equal to

Fq u( ) =
∑N P−2( )−1

n=0 b P−2( )
q n( )

{ }
exp i2pn du( )∏P−2

p=0 K
(p)
q

⎡⎣ ⎤⎦

×
∑N P−1( )−1

r=0 s P−1( )
q r( ) exp i2prL P−2( ) du

[ ]{ }
K P−1( )
q

⎡⎣ ⎤⎦

=
∑N P−2( )−1

n=0 b P−2( )
q n( )

{ }
exp i2pn du( )∏P−2

p=0 K
(p)
q

⎡⎣ ⎤⎦× F P−1( )
q u( )

(23)

By iteratively applying the same procedure to the term within
square brackets in (26), it finally results that

Fq u( ) = F P−1( )
q u( ) × F P−2( )

q u( ) × · · · × F 0( )
q u( )

q = 0, . . . , Q− 1

7.3 Derivation of (11)

According to (10), the number of ‘active’ elements generating
the qth function is equal to

∑Q−1

q=0

Kq = N
∑Q−1

q=0

∏P−1

p=0

n
p( )

q

( )[ ]
(24)

where

n
p( )

q = 1

N p( )
∑N p( )

n=0
s

p( )
q n( )

( )
=

=

∑N p( )
n=0 1− s

p( )
0 n( )

( )[ ]
N p( ) if a

p( )
q = 1∑N p( )

n=0 s
p( )

0 n( )
( )[ ]
N p( ) otherwise

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

=

N p( ) 1− n
p( )

0

( )[ ]
N p( ) if a

p( )
q = 1

N p( ) n
p( )

0

( )[ ]
N p( ) otherwise

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
= 1− n

p( )
0 if a

p( )
q = 1

n
p( )

0 otherwise

{

(25)

according to (9). By substituting (25) in (24) and noting that
a P−1( )
q = 0 if 0≤ q≤ (Q/2) − 1 and a P−1( )

q = 1 if (Q/2)≤

q≤Q − 1, it turns out that∑Q−1

q=0
Kq = N

∑Q−1

q=0

∏P−1

p=0
n

p( )
q

( )[ ]{ }
= N

∑Q−1

q=0

∏P−2

p=0
n

p( )
q

( )
× n P−1( )

q

[ ]{ }
= N

{∑Q
2 − 1
q=0

n P−1( )
0 ×

∏P−2

p=0
n

p( )
q

( )[ ]

+
∑Q−1

q=Q/2
1− n P−1( )

0

( )× ∏∏P−2

p=0
n

p( )
q

( )[ ]}

= N

{
n P−1( )
0 ×

∑Q
2 − 1
q=0

∏P−2

p=0
n

p( )
q

( )[ ]

+ 1− n P−1( )
0

( )×∑Q−1

q=Q/2

∏P−2

p=0
n

p( )
q

( )[ ]}

(26)

By observing that
∑Q

2 − 1
q=0

∏P−2
p=0 n

p( )
q

( )[ ]
=∑Q−1

q=Q/2

∏P−2
p=0 n

p( )
q

( )[ ]
because of the symmetry of the

structure under analysis, the previous relationship can be
rewritten as follows

∑Q−1

q=0

Kq = N
∑Q2 − 1

q=0

∏P−2

p=0

n
p( )

q

( )[ ]⎧⎪⎨⎪⎩
⎫⎪⎬⎪⎭

By iterating P − 1 times such a simple procedure, one
obtains that

∑Q−1

q=0

Kq = N n 0( )
0 + n 0( )

1

{ }
Let us finally note that n 0( )

1 = 1− n 0( )
0

( )
[a 0( )

1 = 1, (25)].
Consequently, (11) is yielded.

7.4 ADS design procedure

According to the derivation in Section 3, the following ‘ADS’
hierarchical design procedure is deduced:

1. Input: Define the number of desired interleaved functions
Q and the lattice size N.
2. ADS selection: Compute P = log2 Q, factorise

N =∏P−1
p=0 N

p( ), and choose a set of (N(p), K(p), Λ(p), t (p))
– ‘ADS’ sequences a (p) (p = 0, …, P − 1).
3. Initialisation: Set σ(p) = 0 (p = 0,…, P − 1) and PSLave =
PSLopt = 1.
4. Loop: For each shift value σ(p) = 0,…, N(p) − 1, (p = 0,
…, P − 1), perform the following steps:

(a) Weight synthesis: Compute s
p( )

0 =
a p( ) n+ s p( )( )⌋

modN p( )

[ ]
, n = 0, . . . , N p( ) − 1

{ }
(p = 0,…, P − 1) and determine wq q = 0, . . . , Q− 1

( )
by means of (4) and (9).
(b) Update optimal layout: Evaluate PSLave by (1). If
PSLave < PSLopt then update PSLopt = PSLave and set
s(p)
opt = s(p) (p = 0,…, P − 1).
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(c) Convergence check: If σ(p) =N(p)− 1, p = 0, …, P− 1,
then exit the loop, otherwise continue.

5. Output: Evaluate s
p( )

0 = a p( ) n+ s p( )( )⌋modN p( )
[ ]

,
{

n = 0, . . . , N p( ) − 1} (p = 0,…, P − 1) and ‘return’ the
associated wq (q = 0,…, Q − 1) [by (4) and (9)].

It is worth remarking that, similarly [17], the above
procedure requires the ‘Loop’ to be performed N times.
Moreover, the method discussed in [17] actually coincides
with the proposed one when Q = 2.
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