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Abstract: The goal of this article is to introduce and use the cuckoo search (CS) as an optimisation algorithm for the
electromagnetics and antenna community. The CS is a new nature-inspired evolutionary algorithm (EA) for solving N-
dimensional optimisation problems. Compared with other nature-inspired algorithms, the CS algorithm is easy to understand
and implement and has minimum number of parameters to tune. Different examples are presented that illustrate the use of the
CS algorithm, and the results are compared with results obtained using other optimisation methods. Preliminary results
suggest that the CS algorithm can in some cases outperform other EAs, at least for the examples studied in this article.

1 Introduction

Optimisation methods can be broadly classified into two
categories: deterministic and stochastic. The deterministic
methods include analytical methods and semi-analytical
methods. The deterministic methods become quite involved
and computationally time consuming as the dimensionality
of the problem increases. On the other hand, stochastic and
metaheuristic methods are now very common, and have
many advantages over deterministic methods. These
methods include: genetic algorithm (GA), simulated
annealing, differential evolution (DE), Tabu search (TS),
particle swarm optimisation (PSO), ant colony optimisation,
biogeography based optimisation and many others.
Recently, a new evolutionary optimisation method, the

cuckoo search (CS) algorithm, has been introduced by Yang
and Deb in [1–3]. It was inspired by the strange breeding
behaviour of some cuckoo species by laying their eggs in the
nests of other host birds (of other species). Some host birds
can engage direct conflict with the intruding cuckoos. For
example, if a host bird discovers the eggs are not their own,
it will either throw these alien eggs away or simply abandon
its nest and build a new nest elsewhere. CS idealised such
breeding behaviour, and thus can be applied for various
optimisation problems. Each egg in a nest represents a
solution, and a cuckoo egg represents a new solution. The
aim is to use the new and potentially better solutions
(cuckoos) to replace a not-so-good solution in the nests. In
the simplest form, each nest has one egg. The algorithm can
be extended to more complicated cases in which each nest
has multiple eggs representing a set of solutions.
The CS algorithm is promising to be competent to other

existing evolutionary algorithms (EAs). The CS algorithm
has essentially three components: selection of the best,
exploitation by local random walk and exploration by
randomisation via Levy flights globally. The selection of

the best by keeping the best nests or solutions is equivalent
to some form of elitism that is used in GAs, which ensures
the best solution is passed onto the next generation and
there is no risk that the best solutions are cast out of the
population. The exploitation around the best solutions is
performed using a local random walk. The elitism by
keeping the best solutions makes sure that the exploitation
moves are within the neighbourhood of the best solutions
locally. On the other hand, in order to sample the search
space effectively so that new generated solutions are diverse
enough, the exploration step is carried out in terms of Levy
flights. In contrast, most metaheuristic algorithms use either
uniform or Gaussian distributions to generate new moves. If
the search space is large, Levy flights are usually more
efficient [1]. In [2], simulations were carried out to compare
the performance of the CS algorithm with the PSO and GA
on twelve standard test functions, and it was found that the
CS is more efficient in finding the global optima with
higher success rate than the PSO or the GA. Application of
the CS algorithm on some optimisation problems suggest
that it can outperform other metaheuristic algorithms [4–6].
A conceptual and statistical comparison of the CS with
PSO, DE and artificial bee colony (ABC) on 50 benchmark
functions suggest that CS and DE algorithms provide more
robust results than PSO and ABC [7]. CS has been used to
solve structural optimisation problems [8], to train neural
networks with better performance [9], in the design of
embedded systems [10], in design optimisation [11, 12] and
in solving boundary value problems [13].
In this article, our goal is to introduce the CS algorithm to

the electromagnetic and antenna community and how it works
through simple examples. Then, some application examples
of interest to the antenna community are presented.
Preliminary results of the examples studied in this article
suggest that the CS algorithm performs similar, and in some
cases, better than other optimisation methods.
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2 CS algorithm

Inspired by the breeding behaviour of the cuckoos, Yang and
Deb formulated the CS algorithm, based on the following
three simple rules:

1. Each cuckoo lays one egg (candidate solution) at a time,
and dumps its egg in a randomly chosen nest.
2. The best nests with high quality of eggs (better solution)
will carry over to the next generation.
3. The number of available host nests is fixed, and the egg
laid by a cuckoo is discovered by the host bird with a
probability pa ∈ [0, 1]. In this case, the host bird can either
throw the egg away or abandon the nest and build a
completely new nest.

Based on the above-mentioned rules, the main steps of the
CS algorithm are depicted in the flowchart diagram shown in
Fig. 1.

3 Standard test functions

The following three multimodal functions, which all have a
known global minimum of zero, were used to test the
performance of the CS algorithm
Griewank function

f (x) = 1

4000

∑N
n=1

x2n −
∏N
n=1

cos
xn��
n

√
( )

+ 1

− 600 , xn , 600 (1)

Rastigrin function

f (x) =
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n=1

x2n − 10 cos(2pxn)+ 10
( )

− 5.12 , xn , 5.12 (2)

Rosenbrock function

f (x) =
∑N−1

n=1

xn+1 − x2n
( )2 + xn − 1

( )2( )

− 5 , xn , 10 (3)

For each of the functions in (1)–(3), the CS algorithm was run
50 times with 50 different random initial populations. Then, the
best fitness value was averaged for the 50 runs. The number of
iterations was set to 1000 and pa = 0.25. The average best
fitness curves for N = 3 and three populations sizes (M = 10,
20, 30) are plotted in Fig. 2a–c. The convergence curves in
Fig. 2 show similar results for all three test functions. The
figure clearly shows that the CS algorithm was successful in
finding the global minimum in <1000 iterations, with little
difference in the convergence speed for the three population
sizes. It appears that for N = 3, a population size of M = 10 is
sufficient to guarantee convergence of the algorithm to the
global minimum. The effect of changing N and fixing M on
the convergence is shown in Fig. 3a and b for the three test
functions. Now, the population size was fixed at M = 10,
number of iterations was set to 2000 and pa = 0.25. The
average best fitness curves from 50 different runs for three
dimension sizes (N = 3, 7, 10) are plotted in Figs. 3a–c. The
convergence speed is decreased by increasing N, especially
for the Rosenbrock function where more iterations are
needed to reach the global minimum. It can be concluded
that to guarantee convergence in a reasonable number of
iterations, the population size M should be larger than the
dimension of the problem N. The effect of changing the
abandon probability pa on the convergence of the CS
algorithm is shown in Figs. 4a–c using N = 3 and M = 10. It
is clear from the figures that CS convergence rate is
insensitive to the value of pa except when it becomes very
close to 1, particularly for the Rosenbrock function.
Therefore a value of pa = 0.25 is typically used. It should be
mentioned here that the same three test functions were also
used as test functions for the PSO method and the
convergence curves are shown in Fig. 8 [14]. The current
results (Figs. 2–4) clearly show that the CS convergence rate
is much better than that of the PSO for the three test functions.

4 Application examples

4.1 Linear isotropic array

The CS algorithm was used in the pattern synthesis of linear
arrays optimised in terms of the sidelobe level reduction and
null placement. For simplicity, a linear array of 2N isotropic
elements placed symmetrically along the z-axis is
considered, as shown in Fig. 5. Owing to the symmetry, the
array factor can be written as

AF(u) = 2
∑N
n=1

In cos kzn cos(u)+ wn

[ ]
(4)

where k = 2π/λ is the wavenumber, In, jn and zn are,

Fig. 1 Flowchart of the CS algorithm
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respectively, the excitation amplitude, phase and location of
the nth element, and θ is the angle with the z-axis. The CS
algorithm was used to search for the optimum values of the
array parameters that result in certain features in the array
pattern, which is dictated by the fitness function. The CS
algorithm was implemented on MATLAB® using Levy
flights as explained in [1]. All results were obtained using
pa = 0.25 and M = 25.
The first example shows the design of 2N = 32-element

array with side-lobe level suppression in the regions

[0°, 87°] and [93°, 180°] and nulls at 81°, 99°. For that, the
following fitness function was used [15]

Fitness =
∑
i

1

Dui

∫uui
uli

AF(u)
∣∣ ∣∣2du+∑

k

AF uk
( )∣∣ ∣∣2 (5)

where [θli, θui]’s are the spatial regions in which the SLL is
suppressed, Δθi = θui – θli and θk’s are the directions of the
nulls. The CS algorithm is used to search for element
locations zn, while assuming uniform amplitude and phase
excitations, that is, In = 1 and jn = 0. The array pattern is

Fig. 3 a–c Effect of changing N on the convergence of the CS
algorithm

a Griewank
b Rastigrin
c Rosenbrock

Fig. 2 a–c Effect of changing M on the convergence of the CS
algorithm

The CS is searching for the minimum fitness value, which is zero for each of
the functions in (1)–(3)
a Griewank
b Rastigrin
c Rosenbrock
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shown in Fig. 6. We note that a deep null (less than –60 dB) is
easily imposed just beside the first sidelobe at 81°, 99°. The
optimised array factor using comprehensive learning PSO
(CLPSO) [16] is also shown in Fig. 6. The corresponding
SLL and beamwidth (first null beamwidth) are given in
Table 1. The CS pattern has a maximum SLL = −22.8 dB
near the mainbeam and CLPSO pattern has SLL =
−22.75 dB. However, the far sidelobes of the CS array are
better (less) than that of the CLPSO array. Both arrays have
a FNBW= 7.5°. The locations of the array elements are
shown in Table 2 normalised to λ/2. It is noted that the two
arrays have almost the same length.

The second example shows the design of 2N = 24-element
array in order to minimise the maximum SLL in a specific
region. The used fitness function was [17]

Fitness = min(max (20 log |AF(u)|))
subject to u [ [0, 76◦] and [104◦, 180◦]

(6)

Fig. 5 Geometry of the 2N-element symmetric linear array placed
along the z-axis

Fig. 4 a–c Effect of changing pa on the convergence of the CS
algorithm

a Griewank
b Rastigrin
c Rosenbrock

Fig. 6 Array factor of the 32-element linear array

The regions of suppressed SLL are [0°, 87°] and [93°, 180°] and nulls at: 81°,
99°

Table 1 SLL and beamwidth of the 32-element array

Method Max SLL, dB FNBW, deg.

CS −22.8 7.5
CLPSO −22.75 7.5

Table 2 Locations of the positive half of the 32-element array

CS CLPSO [16]

0.5553 0.450
1.2250 1.475
2.3144 2.202
3.0181 3.024
4.0500 3.800
4.8900 4.743
5.9102 5.873
6.8377 6.914
7.9085 7.833
8.9747 8.835
10.1491 9.982
11.3662 11.322
12.8269 12.922
14.4909 14.522
16.1949 16.122
17.7264 17.722

www.ietdl.org

IET Microw. Antennas Propag., 2013, Vol. 7, Iss. 6, pp. 458–464 461
doi: 10.1049/iet-map.2012.0692 & The Institution of Engineering and Technology 2013



In this example, only the excitation amplitudes are optimised
while keeping zn and jn as those of the conventional array,
that is, equally spaced at half wavelength and jn = 0. The
initial values of the amplitudes were uniformly distributed

Fig. 7 Obtained results for the 24-element array

a Array factor
b Excitation amplitudes

Table 3 SLL and Beamwidth of the 24-element array

Method Max SLL, dB FNBW, deg.

CS −34.5 15.5
PSO −34.5 15.5
TS −27.5 15.0

Table 4 Amplitude distribution of the 24-element array

CS PSO [18] TS [19]

1.0000 1.0000 1.0
0.9773 0.9712 0.9811
0.9281 0.9226 0.9373
0.8573 0.8591 0.8850
0.7753 0.7812 0.7883
0.6854 0.6807 0.7294
0.5767 0.5751 0.5984
0.4684 0.4768 0.5319
0.3836 0.3793 0.4051
0.2749 0.2878 0.3381
0.2227 0.2020 0.2123
0.2000 0.2167 0.3197

Fig. 8 Obtained results for the 30-element array

a Array factor
b Excitation amplitudes

Table 5 SLL and beamwidth of the 30-element array

Method Max SLL, dB FNBW, deg.

CS −41.7 13.5
GA −35.4 13.5
CHEBY −36.02 13

Table 6 Amplitude distribution of the 30-element array

CS GA [17] CHEBY [20]

1.0000 0.9700 1.0000
0.9886 1.0000 0.9839
0.9504 0.9200 0.9523
0.8845 0.8800 0.9064
0.8170 0.8200 0.8481
0.7442 0.7100 0.7795
0.6473 0.6800 0.7032
0.5546 0.5900 0.6218
0.4696 0.4900 0.5382
0.3776 0.4200 0.4549
0.2932 0.3300 0.3746
0.22363 0.2500 0.2992
0.1661 0.1500 0.2306
0.1059 0.1700 0.1702
0.1018 0.0800 0.2146
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in the interval [0, 1], which was also the search region of the
CS algorithm. For comparison, we also show the results
obtained using the PSO method [18] and TS method [19].
The obtained radiation patterns are shown in Fig. 7a. The
corresponding maximum SLL and beamwidth are shown in
Table 3. The far sidelobes level of the CS array is better
than the PSO and TS arrays. The amplitude distribution
over the array is shown in Fig. 7b and Table 4.
Another example is shown in Fig. 8a where the pattern of a

2N = 30-element array was designed using the CS, GA [17]
and Chebyshev method [20]. The same fitness function in
(6) was used with θ∈ [0, 83°] and [97°, 180°]. The
obtained SLL and beamwidth are given in Table 5. The CS
array has the lowest SLL but with a slight increase in the
beamwidth compared with GA and Chebyshev arrays. The
excitations amplitudes for the three arrays are shown in
Fig. 8b and Table 6. Although Chebyshev method is able to
generate perfectly levelled sidelobes, it is only applicable to
uniform spaced arrays with isotropic elements. This
limitation does not exist in the CS or other evolutionary
optimisation algorithms.

4.2 Yagi–Uda array

Optimisation of Yagi–Uda arrays (see Fig. 9) using
deterministic and evolutionary methods has been reported
in the literature; the reader may refer to [21, 22]. Here, the
Yagi–Uda array was optimised using the CS method.
Details of theoretical analysis are omitted here but can be
found in [21]. The goal of optimisation was to maximise

the directivity and the front/back ratio using the following
fitness function

Fitness = min 1/D+ 1/Rfb

( )
(7)

As an example, a six-element array is considered. For the
unoptimised case, the antenna lengths and x-locations were
in units of λ

L = [L1, L2, L3, L4, L5, L6]
= [0.510, 0.490, 0.430, 0.430, 0.430, 0.430]

x = [x1, x2, x3, x4, x5, x6]
= [−0.25, 0, 0.310, 0.620, 0.930, 1.240]
(total size=x6− x1 = 1.49 l)

The antenna radii were fixed at a = 0.003369λ. The computed
directivity D and front/back ratio Rfb were 11 and 9.84 dB,
respectively. The results of optimisation using different
methods resulted in different lengths and x-locations as
listed in Table 7. Clearly, the CS algorithm obtained better
results than all other methods.

5 Conclusions

The goal of this article was to introduce the CS algorithm to
the electromagnetics and antenna community. The CS
algorithm was first tested on three standard benchmark
functions with a higher success and convergence rates of
finding the global optimum, compared with the PSO and
GA methods. Application examples of interest to the
electromagnetics and antenna community were also
presented. The obtained results suggest that the CS
algorithm can perform similar, and in some cases, better
than other EAs (such as the PSO, GA and DE), at least for
the examples studied in this article. CS in combination with
Levy flights is very efficient because of the fact that there
are fewer parameters to be tuned in CS than in PSO and
GA. In fact, apart from the population size M, there is
essentially one parameter pa. Furthermore, the current
simulations indicate that the convergence rate is insensitive
to the algorithm-dependent parameters such as pa. This also
means that we do not have to fine tune these parameters for
a specific problem. Subsequently, CS is more generic and
robust for many optimisation problems, comparing with

Fig. 9 N-element linear Yagi–Uda array

Table 7 Directivity and front to back ratio optimisation for six-element Yagi–Uda array

CS PSO [21] DE [22] CLPSO [23]

Element # L X L X L x L X

1 0.4787 −0.2500 0.4934 −0.1345 0.4760 −0.2500 0.4840 −0.1830
2 0.4336 0 0.5003 0 0.4520 0 0.4680 0
3 0.4499 0.2598 0.4422 0.2627 0.4360 0.2890 0.4420 0.2280
4 0.4379 0.6371 0.4273 0.6530 0.4300 0.6950 0.4240 0.6430
5 0.4328 1.0142 0.4220 1.0645 0.4340 1.0180 0.4200 1.0480
6 0.4429 1.3600 0.4285 1.4552 0.4300 1.4400 0.4280 1.4320
D, dB 13.67 12.79 12.54 12.47
Rfb, dB 37.26 17.54 17.6 17.2
Total size 1.610λ 1.590λ 1.690λ 1.615λ
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other metaheuristic algorithms. Another major advantage of
the CS algorithm, based on personal experience, is that its
tendency to be trapped in a local optimum is less than that
in the PSO or GA. This may be attributed to the fact that a
fraction of the bad solutions are abandoned and new
solutions are randomly generated. The newly generated
random solutions are less likely to settle on a local
optimum and therefore causing stagnation, as it happens in
the PSO and GA. Since its simplicity and robustness, the
CS algorithm is believed to be a practical and powerful
optimisation method for many engineering applications.
Future work will be to apply this algorithm to other antenna
and electromagnetic optimisation problems and combine it
with other methods such artificial neural networks [24] to
produce a more powerful method.
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